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Abstract

This survey gives an overview of a Universal Desig-
nated Verifier Signature (UDVS) without random
oracles. It also discusses the security requirements
set to the scheme.

1 Introduction

The demand for designated verifier signature
schemes came from the need to make sure that only
verifiers with proper rights could be convinced by
the validity of a proof and they should not be able
to present the signatures to other parties (e.g. cer-
tificates for hospital records, income summaries).
The solution was first suggested in 1996 in the form
of designation of verifiers [1].

Universal designated verifier signature (UDVS)
is an important tool to protect the privacy of the
signature holder from dissemination of signatures
by verifiers. UDVS schemes are signature schemes
with additional functionality where any holder of
the signature alone can transform the signature to a
non-interactive proof statement for a desired desig-
nated verifier using the knowledge of the signature,
such that the designated verifier can verify the mes-
sage is signed by the signer but cannot prove the
same fact to a third party, since he can also produce
such a proof statement using his secret key [5].

In this case Alice wants to prove to Bob that the
statement Θ is true. Let ΦBob be the statement ”I
know Bob’s secret key”. Alice will prove to Bob Θ∨
ΦBob, who will be convinced that Θ is true (or that
his secret key has been compromised). Since Bob
knows his secret key, Cindy will not be convinced
that Θ is true, after seeing the proof of Θ ∨ ΦBob,
even if Bob reveals his secret key to her, since Bob is

able to produce such a proof himself, independently
of whether Θ is true or not.[1]

The good properties of UDVS make it an impor-
tant tool to prevent dissemination of digital signa-
tures in user certification systems. It is thus de-
sirable to have a rigorous model and corresponding
formal analysis for UDVS schemes. However, most
of the UDVS schemes are provably secure in the
random oracle model. Random oracle model is a
formal model in analyzing cryptographic schemes,
where a hash function is considered as a black-box
that contains a random function. However, many
impossibility results have shown that security in
the random oracle model does not imply the se-
curity in the real world in that a scheme can be
secure in the random oracle model and yet be bro-
ken without violating any particular intractability
assumption, and without breaking the underlying
hash functions.[5]

In 2005 Rui Zhang, Jun Furukawa, and Hideki
Imai proposed the first UDVS scheme [5] whose se-
curity can be proven without random oracles. This
is based on a short signature scheme without ran-
dom oracles. Also new security definitions are given
for UDVS, which allow the adversary to behave
more adaptively in oracle accessing.

In 2005 Helger Lipmaa, Guilin Wang and Feng
Bao defined a new security property - non-
delegatability - that is essential for designated ver-
ifier signatures [3]. Together with the results of [2],
they show that most of the proposed DVS schemes
are delegatable. However the UDVS scheme pro-
posed by Zhang-Furukawa-Imai may still be secure
in practice, since the only party who can delegate
signing is the designated verifier, who may not have
motivation to do so. [3]
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2 Cryptographic Background

In this section short explanations to the crypto-
graphic notions used in the text, are given.

2.1 Signature Schemes

A signature scheme consists of three algorithms:
SIG = (KG,Sig, V er). KG(1k) is the key genera-
tion algorithm that outputs a pair of keys (pk, sk).
The signing algorithm S takes sk and a message
m from the associated message space M, outputs
a signature s. V er is the deterministic verification
algorithm, that takes pk, a message m, and s as
input, outputs acc for accepted or rej for rejected
as the verification result.

In this scheme the security definition called
strong existential unforgeability against adaptive
chosen message attack (sEUF-CMA) is considered.
Let’s view the following game:

Setup: KG is run, generates a key pair (pk, sk).
pk is given to the adversary A and sk is given to a
challenger.

Training: The adversary A requests signatures
on at most qs messages m1,m2, ...,mqs

∈ M cho-
sen adaptively by itself. The challenger responds
with the corresponding signature si = Sig(mi),
i = 1, ..., qs.

Forge: Eventually, the adversary A outputs
a pair (m, s) and wins the game if (m, s) /∈
{(m1, s1), ..., (mqs

, sqs
)} and V er(m, s) = acc.

Let Adv be the probability that the adversary
wins the above game, which is taken over the coin
toss made by A and the Challenger.

Definition 2.1 An adversary (qs, t, ε)-breaks the
signature scheme if A makes at most qs signature
queries, runs in time at most t and Adv is at least ε.
A signature scheme is (qs, t, ε)-strong existentially
unforgeable under an adaptive chosen message at-
tack if no PPT adversary (qs, t, ε)-breaks it.

2.2 Bilinear Groups

Let G1 and G2 be two cyclic groups of prime or-
der p, where Computational Diffie-Hellman prob-
lem (CDH) is considered hard. Let g1 be a gen-
erator of G1 and g2 be a generator of G2. A bi-
linear map is a map e : G1 × G2 → GT such that
|G1| = |G2| = |GT | with the following properties:

1. Bilinear: for all u ∈ G1 and v ∈ G2 and a, b ∈
Z, e(ua, vb) = e(u, v)ab.

2. Non-degenerate: e(g1, g2) 6= 1.

Two groups G1 and G2 of prime order p are a
bilinear map group pair if there is an additional
group GT with |G1| = |G2| = |GT |, such that there
exist a bilinear map e and an efficiently computable
isomorphism ψ : G2 → G1.

2.3 Strong Diffie-Hellman Assump-

tion

Definition 2.2 Let g1 and g2 be as above with
g1 = ψ(g2). A PPT adversary A (q, t, ε)-breaks the
Strong Diffie-Hellman problem in (G1,G2) if after

given q-tuples of g
(xi)
2 with 1 ≤ i ≤ q and running

time t, has the probability ε of outputting a pair

(c, g
1

(x+c)

1 ) where c ∈ Z∗

p. The probability is taken
over the random choice of generator g2, the choice
of x ∈ Z∗

p, and internal random coins of A. The
(q, t, ε)-Strong Diffie-Hellman assumption holds if
no PPT algorithm solves the SDH problem.

3 Short Signature Scheme

This short signature scheme without random or-
acles is used as an important building block of
UDVS.

Let (G1,G2) be bilinear groups where |G1| =
|G2| = p for some large prime p m is the message
to be signed and is encoded as an element of Z∗

p.

Generate: Pick a random generator g2 ∈ G2

and set g1 = ψ(g2). Pick x, y ← Z∗

p, and compute
u = gx

2 and v = gy
2 . For fast verification, also

compute z = e(g1, g2) ∈ GT . The public key is
(g1, g2, u, v, z) and the secret key is (x, y).

Sign: Given a secret key (x, y) ∈ (Z∗

p)
2 and a

messagem ∈ Z∗

p, pick r = Z∗

p. If x+r+ym = 0 mod
p, try again with a different random r. Compute

σ = g
1/(x+r+ym)
1 ∈ G1. The signature is (σ, r).

Verify: Give the public key (g1, g2, u, v, z), a
message m ∈ Z∗

p, and a signature (σ, r), accept if
e(σ, u · gr

2 · v
m) = z, otherwise, reject.

If a collision-free hash function is applied to m,
whose output can be encoded as an element of
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Z∗

p, one can still prove the security against (sEUF-
CMA) of the resulting signature scheme without
random oracles.

4 General Model of UDVS

A universal designated verifier sig-
nature (UDVS) scheme UDVS =
(CPG, SKG, V KG, S, PV,DS,DV, PKR).

1. Common Parameter Generation CPG -
a probabilistic algorithm, given a security pa-
rameter k, outputs a string cp consisting of
common scheme parameters (publicly shared
by all users).

2. Signer Key Generation SKG - a proba-
bilistic algorithm, on input a common param-
eter string cp, outputs a key-pair (sks, pks) for
Signer.

3. Verifier Key Generation V KG - a proba-
bilistic algorithm, on input a common param-
eter string cp, outputs a key-pair (skv , pkv) for
V erifier.

4. Signing S - possibly a probabilistic algorithm,
on input Signer’s secret key sks and a message
m, outputs Signer’s public verifiable (PV) sig-
nature s.

5. Public Verification PV - a deterministic
algorithm, on input Signer’s public key pks

and message/PV-signature pair (m, s), out-
puts verification result d ∈ (acc, rej).

6. Designation DS - possibly a probabilistic
algorithm, on input Signer’s public key pks,
Verifier’s public key pkv, and a message/PV-
signature pair (m, s), outputs Designated-
Verifier (DV) signature ŝ.

7. Designated Verification DV - a determin-
istic algorithm, on input Signer’s public key
pks, Bob’s secret key skv , and messge/DV-
signature pair (m, ŝ), outputs verification de-
cision acc or rej.

8. Verifier Key Registration PKR(KR, V ) - a
protocol between a Key Registration Author-
ity KR and a Verifier V. The verifier registers
a verifier’s public key. On common input cp,

KR and V interact with messages sent each
other. At the end of the protocol, KR outputs
a pair (pkv , Auth), where pkv is the public key
of V and Auth ∈ {acc, rej} indicates whether
or not the key-registration is successful.

The key registration is necessary in practice be-
cause the signature receiver can easily convince a
third party the validity of a signature by claiming
he is the owner of the third party’s public key and
present the UDVS to the third party.

5 Security Notions for UDVS

5.1 Strong DV-Unforgeability

There are two types of unforgeability to consider:
Public Verifiable signature unforgeability (PV-
unforgeability), the security for the signer, which
states that noone should be able to forge a PV-
signature of the signer. Designated Verifier signa-
ture unforgeability (DV-unforgeability) is the secu-
rity for the designated verifier, which states that for
any message, an adversary without a PV-signature
should be unable to convince a designated verifier
of holding such a PV-signature. DV-unforgeability
always implies PV-unforgeability, because anyone
able to forge a PV-signature can transform it into
a DV-signature. Thus it is enough to consider only
DV-unforgeability.

In this scheme the security definition called
strong existential unforgeability for designated ver-
ifier against adaptive chosen public key and chosen
message attack (sEUF-DV-CPKMA) is considered.
It is defined via the following game:
F , a forger attacking the DV-unforgeability of

UDVS, plays the following game with a challenger.
Setup: The key generation algorithms are

run, cp ← CPG(1k), (pks, sks) ← SKG(cp),
(pkvi

, skvi
) ← PKGi(cp) for 1 ≤ i ≤ n. All public

keys are given to F and the challenger. All secret
keys are given to the challenger. The challenger
maintains two lists: M and Ŝ, initially empty. The
challenger additionally maintains a list L which
consists of all the public keys {pkvi

} for 1 ≤ i ≤ n,
which are assumed to be already registered.

Training: F may adaptively issue qs times sign-
ing queries, qd times designation queries, qv times
Designated Verification queries, and up to n− 1 of
key registration queries to the challenger. However,
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once pkvi
is queried by F , the challenger neglects

further designated verification queries with respect
to verifier Vi’s public key pkvi

.

1. On a Signing query by F on m, the chal-
lenger returns the corresponding signature s =
S(sks,m) to F and adds m to M .

2. On Designation query by F on m and pkv ,
the challenger first computes the correspond-
ing PV-signature s = S(sks,m), and then
ŝ = DS(pks, pkv,m, s). The challenger then
adds (m, ŝ) to Ŝ, and returns ŝ to F .

3. On a Designated Verification oracle query
by F on (m, ŝ) on pkvi

, the challenger
runs the designated verification algorithm
DV (pks, skvi

,m, ŝ) and returns the corre-
sponding verification result to F .

4. On a Key Registration query by F on pkv , the
challenger sends the corresponding secret key
skv to F , and deletes pkv from L.

Forge: Denote F ’s running time as t.
F outputs (m∗, ŝ∗) and wins the game if
DV (pks, skv∗ ,m∗, ŝ∗) = acc with (m∗, ŝ∗) /∈ Ŝ,
where pkv∗ ∈ L, and m∗ ∈ M is a valid message
from the message space.

Suppose qs, qd, qv and t are all polynomially
bounded. A UDVS signature is secure against
sEUF-DV-CPKMA if no any probabilistic polyno-
mial time F , can win the above game with non-
negligible probability.

In this notion the adversaries are allowed to
adaptively corrupt designated verifiers and adap-
tively choose the target designated verifier, which
reflects more essence of real world adversaries.

The adversary is allowed to make designation
queries which captures the attack scenario where
a real world adversary may obtain (m, ŝ) without
knowing the corresponding PV-signature s.

5.2 Non-Transferability

A is an attacker that tries to brag about its inter-
action with the signature holder. S is a simulator
that simulates the output of A. S is able to access
A as a black-box. D is a distinguisher that tries to
distinguish whether a given output is of A or of S.

Setup: cp← CPG(1k). (pks, sks) ← SKG(cp).
KR is a Key Registration oracle, who maintains a
list of verifier’s public keys, initially empty.

Training: A and S are allowed to have the fol-
lowing resources:

1. A and S are allowed to access the Signing or-
acle S(sks, ·) up to qs times and q′s times, re-
spectively. However, after the challenge mes-
sagem∗ is output, they may not access to Sign-
ing oracle S with respect to this challenge mes-
sage.

2. S and A can output the challenge message m∗

at an arbitrary time but only once.

3. A and S are allowed to access KR up to qk

and q′k times, respectively.

4. A and S are allowed to access D up to qc and
q′c times, respectively.

5. A is allowed to access to designation oracles
DS(pkvi , ·) up to qd times as long as (pkvi is
correctly registered.

6. S is NOT allowed to access DS.

Guess: The running time of A, S are t and t′,
respectively. Finally, A and S return their outputs
to D with respect to m∗. D decides whether this
output is of A or of S.

We say a UDVS scheme is unconditionally non-

transferable against adaptive chosen public key at-

tack and chosen message attack (NT-CPKMA), if
there exists S such that for every A, every com-
putationally unbounded D distinguishes outputs of
A and S on any challenge message m∗ with only
probability negl(k), where the probability is taken
over the coin toss of key generation algorithms, S,
A, S and D. A is able to access to Designation
oracle with respect to any message (including the
challenge message) before the challenge message is
determined. This helps the adversary adaptively
choose the challenge message.

Basically, it means that given a message-
signature pair (m,σ), that is accepted by the des-
ignated verifier, and without access to the secret
key of the signer, it is computationally infeasible
to determine whether the message was signed by
the signer, or the signature was simulated by the
designated verifier [2].
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6 UDVS without Random Or-

acles

For simplicity, the verifier key registration protocol
is omitted, since in practice this is needed to run
only once.

1. Common Parameter Generation CPG:
Choose a bilinear group pair which is denoted
by a description string StrD : (G1,G2) of
prime order |G1| = |G2| = p with a bilinear
map e : G1 × G2 → GT and an isomorphism
ψ : G2 → G1. Choose a random generator
g2 ∈ G2 and compute g1 = ψ(g2) ∈ G1. Then
the common parameter is cp = (StrD , g1, g2).

2. Signer Key Generation SKG: Given cp,
pick random x1, y1 ← Z∗

p, compute u1 = gx1
2

and v1 = gy1

2 . Specially, for speeding up
the verification, one may also compute z ←
e(g1, g2) ∈ GT . The public key is pks =
(cp, u1, v1, z), the secret key is sks = (x1, y1).

3. Verifier Key Generation V KG: Given cp,
pick random x3, y3 ← Z∗

p. Compute u3 =
gx3
2 and v3 = gy3

2 The public key is pkv =
(cp, u3, v3) and the secret key is skv = (x3, y3).

4. Signing S: Given the signer’s secret key
(cp, x1, y1) and a message m, select r ← Z∗

p.
If x1 + r +my1 = 0 mod p, restart. Compute

σ = g
1/(x1+r+my1)
1 and output s = (σ, r) as the

PV-signature.

5. Public Verification PV : Given the signer’s
public key (cp, u1, v1, z), and a message/PV-
signature pair (m, s), accept only if e(σ, u1 ·
gr
2 · v

m
1 ) = z; otherwise reject.

6. Designation DS: Given the signer’s pub-
lic key (cp, u1, v1), a verifier’s public key
(cp, u3, v3) and a message/PV-signature pair
(m, s), where s = (σ, r), let h = gr

2 and com-
pute d = e(ψ(u3), v

r
3) ∈ GT . Then the DV-

signature is ŝ = (σ, h, d).

7. Designated Verification DV : Given a
signer’s public key (cp, u1, v1), a verifier’s se-
cret key (x3, y3), and message/DV-signature
pair (m, ŝ), accept only if the following two
equations hold simultaneously: z = e(σ, u1 ·h ·
vm
1 ) and d = e(ψ(u3), h

y3). Otherwise, reject.

The scheme is correct, strong existentially un-
forgeable against adaptive chosen public key and
chosen message attack for designated verifier, and
unconditionally non-transferable. The security
proofs are given in [5].

7 On Delegatability

In [3] a new security property for DVS schemes -
non-delegatability - is defined. This means that
either the signer or one of the designated verifiers
can delegate the signing rights to a third party T
without disclosing his or her secret key.

Non-delegatability - there exists an efficient
knowledge extractor that can extract either the
Signer’s or the Verifier’s secret key, when given or-
acle access to an adversary who can create valid
signatures with a high probability. Let κ ∈ [0, 1]
be the knowledge error. We say that ∆ is (τ, κ)-
non-delegatable if there exists a black-box knowl-
edge extractor K that, for every algorithm F and
for every valid signature σ, satisfies the follow-
ing condition: For every (pks, sks) ← Generate,
(pkv , skv) ← Generate and message m, if F pro-
duces a valid signature on m with probability ε > κ
then, on input m and on access to the oracle Fm,
K produces either sks or skv in expected time

τ
ε−κ (without counting the time to make the oracle
queries).

In [2] the delegatability notion is specified further
with verifier-only delegatability. This means that
one of the designated verifiers (or even only the
coalition of all verifiers) can delegate the signing
right to a third party without disclosing his or her
secret key, while the signer cannot do it.

Verifier-only delegatability : Fm denotes F with
m as its input. Oracle calls are counted as one
step. More precisely, let κ ∈ [0, 1] be the knowl-
edge error. We say that δ is verifier-only (τ, κ)-
delegatable if it is not (τ, κ)-non-delegatable and
there exists a black-box knowledge extractor K
that, for every algorithm F and for every mes-
sage m ∈ M satisfies the following condition:
for every (sks, pks) ← KeyGen, (skv1 , pkv1) ←
KeyGen, ..., (skvn

, pkvn
)← KeyGen, for every bit-

string d (delegation token) that does not depend on
skvi

for any i ∈ [1, n], and for any message m, if F
produces a valid signature on m with probability
ε > κ then, on input m and on access to the oracle

5



Fm, K produces skvi
for some i ∈ [1, n] in expected

time τ
ε−κ (without counting the time to make the

oracle queries). F ’s probability is taken over the
choice of her random coins.

In [2] an attack on the Zhang-Furukawa-Imai
UDVS scheme is brought out.

Simulpks,skv
(m): Pick a random s ∈ Z

∗

q and

compute σ′ ← gs
2, h ← g

1/s
2 u−1

1 v−m
1 and d ←

〈g1, h〉
x3y3 . Return σ ← (σ′, h, d).

In the simulation algorithm, the designated ver-
ifier can compute d as d ← 〈gx3y3

1 , h〉. Thus, the
designated verifier can reveal gx3y3

1 , and therefore
this scheme is delegatable by the verifier. The del-
egation token does not depend on the signer.

Thus the Zhang-Furukawa-Imai UDVS scheme is
verifier-only delegatable.
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