MTAT.07.014 Cryptographic Protocols

Helger Lipmaa

University of Tartu

MTAT.07.014 Cryptographic Protocols Last modified: November 8, 2011

Outline I

1 Homomorphic Protocols: Beginning

- First Lecture: Introduction
- Second Lecture: Elgamal
- Third Lecture: MH Protocols. Security
- Fourth Lecture: Additively Homomorphic Encryption
- Semisimulatability ++
 Fifth Lecture. Semisimulatability

References I

Aiello, W., Ishai, Y., and Reingold, O. (2001).

Priced Oblivious Transfer: How to Sell Digital Goods. In Pfitzmann, B., editor, *EUROCRYPT 2001*, volume 2045 of *LNCS*, pages 119–135, Innsbruck, Austria. Springer-Verlag.

Cramer, R., Gennaro, R., and Schoenmakers, B. (1997).

A Secure and Optimally Efficient Multi-Authority Election Scheme. In Fumy, W., editor, *EUROCRYPT 1997*, volume 1233 of *LNCS*, pages 103–118, Konstanz, Germany. Springer-Verlag.

Damgård, I. and Jurik, M. (2001).

A Generalisation, a Simplification and Some Applications of Paillier's Probabilistic Public-Key System. In Kim, K., editor, *PKC 2001*, volume 1992 of *LNCS*, pages 119–136, Cheju Island, Korea. Springer-Verlag.

Elgamal, T. (1985).

A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. *IEEE Transactions on Information Theory*, 31(4):469–472.

Gentry, C. and Ramzan, Z. (2005).

Single-Database Private Information Retrieval with Constant Communication Rate. In Caires, L., Italiano, G. F., Monteiro, L., Palamidessi, C., and Yung, M., editors, *ICALP 2005*, volume 3580 of *LVGS*, pages 803–815, Lisboa, Portugal. Springer-Verlag.

References II

Laur, S. and Lipmaa, H. (2007).

A New Protocol for Conditional Disclosure of Secrets And Its Applications. In Katz, J. and Yung, M., editors, ACNS 2007, volume 4521 of LNCS, pages 207–225, Zhuhai, China. Springer-Verlag.

Lipmaa, H. (2009).

First CPIR Protocol with Data-Dependent Computation.

In Lee, D. and Hong, S., editors, *ICISC 2009*, volume 5984 of *LNCS*, pages 193–210, Seoul, Korea. Springer-Verlag.

Naor, M. and Pinkas, B. (1999).

Oblivious Transfer And Polynomial Evaluation. In STOC 1999, pages 245–254, Atlanta, Georgia, USA. ACM Press.

Paillier, P. (1999).

Public-Key Cryptosystems Based on Composite Degree Residuosity Classes.

In Stern, J., editor, *EUROCRYPT 1999*, volume 1592 of *LNCS*, pages 223–238, Prague, Czech Republic. Springer-Verlag.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

First Lecture: Introduction

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Preliminaries

- I assume you have seen different primitives
 - Block ciphers, stream ciphers
 - Hash functions
 - Public-key cryptosystems
 - Signature schemes

(Crypto I or an equivalent course...)

• For every type of primitive, you have hopefully seen some representatives, a security definition, and sometimes an attack showing that the representatives are not secure

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Goal of Cryptographic Protocols

- More and more activities are done online
 - Examples: e-voting, digital signatures
- Some activities are completely new/on a completely new scale
 - Example: (privacy-preserving) data mining
- In all such cases, one should get security/correctness and privacy in the presence of malicious parties

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Def. of Cryptographic Protocols

• Cryptographic protocol: a two/multi-party protocol that achieves its goals and protects privacy even in the presence of realistically malicious parties

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Why It May Be Hard: CPIR I

- Server has database $\vec{f} = (f_1, \ldots, f_n), |f_i| = \ell$
- Client has index $x \in \{1, \ldots, n\}$
- Computationally-Private Information Retrieval:
 - Client should obtain f_{x} (and may be more)
 - Server should obtain no new information

• Nothing about x!

- Simple protocol: server sends \vec{f} to client
 - Takes ln bits, too expensive in practice
- Can it be done better?

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Why It May Be Hard: CPIR II

- If no privacy needed:
 - Client sends x, $|x| = \lceil \log_2 n \rceil$, to server
 - Server sends f_x , $|f_x| = \ell$, to client
 - $\lceil \log_2 n \rceil + \ell$ bits
 - Very small constant $\Theta(1)$ computation on modern computer
- What if privacy needed?
- Communication can be cut down to $\Theta(\log n + \ell + \kappa)$ [Gentry and Ramzan, 2005]

• κ is security parameter (e.g., key length)

• What about computation?

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Why It May Be Hard: CPIR III

- "Theorem": since server does not know which index client obtains, server has to "touch" all database elements. ⊖(n) computation
- It was thought a few years ago that this is it
- [Lipmaa, 2009]: ⊖(n) computation can be done in preprocessing phase, online computation can be decreased to O(n/ log n) and often less
- Preprocessing is still ⊖(n) as compared to
 ⊖(1) in non-private case ☺

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Why Often Simpler Than Assumed I

- In e-voting, server receives ciphertexts of individual ballots, and outputs a plaintext tally
- Goal: tally is correct but server does not know anything extra about individual ballots
- Sounds impossible?
- Can be done if one can do arithmetics on ciphertexts: one server "adds up" ballots and second server decrypts "sum"

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Why Often Simpler Than Assumed II

- In e-voting, server must prove that his actions were correct, without revealing any extra information
- Sounds impossible?
- Can be done by using zero-knowledge and proven with simulation-based proofs

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Simple Example: Veto

- Assume Alice and Bob have to decide on some issue
- Vetoing: decision taken only if everybody supports it
- Privacy: minimal amount of information about votes will be leaked
 - If Alice votes for then the result will be equal to Bob's vote ⇒ Bob's privacy cannot be protected here
 - If Alice votes against then result will be "no" independently of Bob's input ⇒ Alice should get no information

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Mathematical Formulation: Veto = AND

- Assume the private inputs are $a, b \in \{0, 1\}$
- The common output is $f(a, b) := a \wedge b$
- Alice/Bob should not get to know more than inferred from her/his private input and f(a, b)
- In general case, every party can have a different private output $f_i(x_1, \ldots, x_n)$
- Then the task is:
 - given private inputs b_i , party *i* should learn $f_i(b_1, \ldots, b_n)$ and nothing else

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Example 2: Scalar Product

- Alice's input is $\vec{a} = (a_1, \dots, a_n)$, Bob's input is $\vec{b} = (b_1, \dots, b_n)$
- Alice's output: $f(\vec{a}, \vec{b}) = \sum_{i=1}^{n} a_i \cdot b_i$
- Bob's output: \perp (nothing)
- Alice should be convinced that her output is correct

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Example 3: E-voting

- *n* voters *v_i*, *m* candidates *c_i*
- Simple case: All voters cast v_i their ballots for some candidate c_j, b_i = c_j
- Ballots are sent to voting servers who output the tally: for each $j \in \{1, ..., m\}$, $T_j = |\{i \in [n] : b_i = c_j\}|$
- Everybody should learn $\{T_j : j \in \{1, \ldots, m\}\}$
- Nobody should learn anything else
- Voters should be convinced the result is correct

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Definitions of Security

- Will be postponed we will first see some natural protocols
- Semihonest model: parties behave honestly, but are curious
 - Security = privacy (in semihonest model)
- Malicious model: parties behave adversarially
 - Security = privacy + correctness
 - Will study later

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Efficient Protocols Based on Algebra

- Many efficient protocols are based on algebraic structures
- Common example: a finite cyclic group (G, ∘) where the exponentiation φ : Z_q → G is both one-way (hard to invert) and an isomorphism:

$$g^0 = 1 \; , \;\;\; g^{-a} = 1/g^a \; , \;\;\; g^a g^b \equiv g^{a+b} \; .$$

 One-way exponentiation makes it possible to design very efficient protocols for many problems.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Reminder: Groups

(\mathbb{G}, \circ) is a group if:

- \mathbb{G} is set, $\circ : \mathbb{G} \times \mathbb{G} \to \mathbb{G}$ is binary operation
- Associative: $g_1 \circ (g_2 \circ g_3) = (g_1 \circ g_2) \circ g_3$
- Exists $1 \in \mathbb{G}$, s.t. for all g, $1 \circ g = g \circ 1 = g$
- $\forall g \exists g^{-1} \in \mathbb{G}$, s.t. $g \circ g^{-1} = g^{-1} \circ g = 1$

 (\mathbb{G}, \circ) is abelian if additionally $g_1 \circ g_2 = g_2 \circ g_1$ for all g_1, g_2

- Multiplicative group: \cdot , 1, g^{-1}
- Additive group: +, 0, -g

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Reminder: Cyclic groups

- Let (\mathbb{G}, \circ) be a group • $g^{x} = g \cdot g \cdot \cdots \cdot g$ (x times) • If $x = \sum 2^{i} x_{i}$ then $g^{x} = g^{\sum 2^{i} x_{i}} = \prod (g^{2^{i}})^{x_{i}}$ • $g^{-x} = g^{-1} \cdot g^{-1} \cdot \cdots \cdot g^{-1}$ • For $g \in \mathbb{G}$, let $\langle g \rangle := \{g^x : x \in \mathbb{Z}\}$ • g is a generator of $\langle g \rangle$ • If $\mathbb{G} = \langle g \rangle$ then \mathbb{G} is cyclic • Example: • $(\mathbb{Z}, +)$ is cyclic with generator 1
 - $(\mathbb{Z}_q = \{0, 1, \dots, q-1\}, +)$ is cyclic with gen. 1

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Reminder: Group Order

- Element $g \in \mathbb{G}$ has order $q = \operatorname{ord}(g)$ if $g^q = 1$ and $g^i \neq 1$ for 0 < i < q
- Group G has order q, q = ord(G) if q = max_{g∈G} ord(g)
- If G is cyclic of order q, then for every generator g, h ∈ G, there exists a unique i ∈ Zq, such that h = gⁱ
- Note that if $q = \operatorname{ord}(\mathbb{G})$, then $\forall i : g^i = g^i \mod q$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Reminder: Divisibility Etc

- For a, b ∈ Z, a | b if there exists c ∈ Z such that b = ca
- For a, b > 1, gcd(a, b) is the greatest common divisor of a and b
 - $gcd(a, b) \mid a, gcd(a, b) \mid b$

• If $c \mid a$ and $c \mid b$, then $c \leq \operatorname{gcd}(a, b)$

- If gcd(a, b) = 1, then a and b are coprime
- gcd(a, b) can be computed efficiently by using the Euclidean Algorithm

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Instantiation 1 of G

- For n > 1, Z_n^{*} := {i ∈ {1,..., n − 1} : gcd(n, i) = 1}
 Fact: i is reversible in (Z_n, ·) iff gcd(n, i) = 1

 (Z_n^{*}, ·) is group

 φ(n) := |Z_n^{*}| is Euler's totient function
 If p is prime, then φ(p) = p − 1

 Z_p^{*} = Z_p \ {0}
- Lagrange's theorem: If G is finite and G' ⊆ G is subgroup, then ord(G') | ord(G)
- OTOH: If q | p and G is group of order p, then
 G has subgroup of order q

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Instantiation 1 of G

Example

Let p, q be two large primes s.t. $q \mid (p-1)$. Let \mathbb{G} be the unique subgroup of \mathbb{Z}_{p^*} of order q. Let g be the generator of \mathbb{G} .

Explanation: $|\mathbb{Z}_p^*| = p - 1$, thus there exists (unique) subgroup \mathbb{G} of \mathbb{Z}_p^* of order q. In practical instantiations, $\log_2 p \approx 1536$ and $\log_2 q \approx 160$. We need 1536 bits to represent an element of \mathbb{G} . Exponentiation in \mathbb{G} takes up to 160 multiplications.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Instantiation 2 of G

The most popular alternative involves elliptic curve groups, where $\log_2 q = 160$ and \mathbb{G} can be represented by using $\approx \log_2 q$ bits. Much more efficient than the previous case, though also much more complicated mathematics.

Fineprint: The elliptic curve groups must be chosen carefully. For example, in some e.c. groups, one can efficiently solve DDH problem. But such groups are useful otherwise.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Abstracting

In the next, we will abstract away the concrete group and assume that \mathbb{G} is a multiplicative cyclic group of order q (with some hardness assumptions).

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Second Lecture: Elgamal

See [Elgamal, 1985] for original paper on Elgamal cryptosystem.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Reminder: group isomorphisms

- Let (𝔅₁, +) and (𝔅₂, ·) be groups
 Function f : 𝔅₁ → 𝔅₂ is group isomorphism, if

 f(g₁ + g₂) = f(g₁) · f(g₂)
 f(0) = 1
 - $f(-g) = f(g)^{-1}$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Discrete Logarithm Problem

Let G be cyclic group of prime order q
Efficiently computable isomorphism f(a) : Zq → G: given a generator g, a → g^a =: f(a).

• f is an isomorphism: $f(a) \cdot f(b) = g^a g^b = g^{a+b} = f(a+b),$ $f(0) = g^0 = 1, f(-a) = g^{-a} = 1/g^a = f(a)^{-1}$

 Discrete Logarithm Assumption: f⁻¹ is intractable to compute. I.e., given (g, g^a), it is difficult to find a.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Reminder: Basic Complexity Theory

- Parameter: input size κ
- poly(κ) = κ^{O(1)}: polynomial in κ, exists polynomial f such that |poly(κ)| ≤ |f(κ)|
- negl(κ) = κ^{-ω(1)}: negligible in κ, for every polynomial f, |poly(κ)| < |f⁻¹(κ)|
- "Efficient" algorithm: works in time $poly(\kappa)$
- Probabilistic algorithm can use a random string
- Non-uniform algorithm: construction of algorithm for concrete input size can be inefficient

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

DL Assumption, More Formally

Let \mathbb{G} be a cyclic group of prime order q. Fix generator $g \in \mathbb{G}$. Let

$$\mathsf{Adv}^{\mathit{dl}}_{\mathbb{G}}(\mathcal{A}) := \mathsf{Pr}[a \leftarrow \mathbb{Z}_q : \mathcal{A}(g, g^a) = a]$$
 .

We say that G is (τ, ε) -DL group if for any non-uniform probabilistic adversary \mathcal{A} that works in time $\leq \tau$, $Adv_{G}^{dl}(\mathcal{A}) \leq \varepsilon$. We say G is DL group if it is $(poly(\kappa), negl(\kappa))$ -DL group.

Assumption:

- Sampleability: it is easy to pick a random element from G
- Follows from isomorphism: sample a ← Z_q (easy) and compute b ← g^a; since a is a random element of Z_q, then b is a random element of G

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Diffie-Hellman Key Exchange Protocol I

- Alice and Bob have both secret keys sk_a and sk_b and public keys pk_a and pk_b
- Only Alice knows sk_a, while everybody knows pk_a. Same for Bob
- Alice and Bob generate a new common secret key x such that only Alice and Bob know it
- x is later used to encrypt other messages
- We assume that all messages are sent on authenticated channels
 - Alice's/Bob's messages are known to come from Alice/Bob

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Diffie-Hellman Key Exchange Protocol II

- Fix prime q,
 s.t. log₂ q ≈ 2 ⋅ κ, and
 cyclic group G of order q.
 Let g be generator of G
- Protocol is on the right
 x_a = (g^{sk_b})^{sk_a} = g<sup>sk_a·sk_b</sub> = (g^{sk_a})^{sk_b} = x_b and Alice and Bob have established a secret key
 </sup>

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Security of DH Key Exchange

- Goal of adversary: given (g, g^{sk_a}, g^{sk_b}) for random $sk_a, sk_b \leftarrow \mathbb{Z}_q$, output $x = g^{sk_a \cdot sk_b}$
- This is not known to be hard under DL assumption, and thus there is separate assumption (CDH) for this problem

• Computational Diffie-Hellman

- If CDH is hard, then clearly DL is hard
- There are some contrived groups where DL is hard but CDH is not

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

CDH Assumption, Formally

Let \mathbb{G} be a cyclic group of prime order q. Fix generator $g \in \mathbb{Z}_q^*$. Let

 $\mathsf{Adv}^{\mathit{cdh}}_{\mathbb{G}}(\mathcal{A}) := \mathsf{Pr}[a, b \leftarrow \mathbb{Z}_q : \mathcal{A}(g, g^a, g^b) = g^{ab}]$.

We say that G is (τ, ε) -CDH group if for any non-uniform probabilistic adversary \mathcal{A} that works in time $\leq \tau$, $Adv_{G}^{cdh}(\mathcal{A}) \leq \varepsilon$. We say G is CDH group if it is $(poly(\kappa), negl(\kappa))$ -CDH group.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Security of DH Key Exchange, II

- Goal of adversary: given (g, g^{sk_a}, g^{sk_b}) for random sk_a, sk_b ← Z_q, output x ← g^{sk_a⋅sk_b}
- Not sufficient!
- Adversary should not get to know anything about *x*, i.e., *x* should look to her completely random
- Not known to be hard under CDH assumption, and thus there is separate assumption for this problem
 - Decisional Diffie-Hellman
 - There are well-known CDH groups that are not DDH groups

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

DDH Assumption, Formally

Let \mathbb{G} be cyclic, prime order q. Fix gen. $g \in \mathbb{Z}_q^*$.

Experiment 1

Set $(a, b) \leftarrow \mathbb{Z}_q \times \mathbb{Z}_q$. Set $\vec{g} \leftarrow (g, g^a, g^b, g^{ab})$.

Experiment 2

Set
$$(a, b, c) \leftarrow \mathbb{Z}_q \times \mathbb{Z}_q \times \mathbb{Z}_q$$
.
Set $\vec{g} \leftarrow (g, g^a, g^b, g^c)$.

 $\mathsf{Adv}^{ddh}_{\mathbb{G}}(\mathcal{A}) := |\Pr[\mathsf{Exp1}:\mathcal{A}(\vec{g})=1] - \Pr[\mathsf{Exp2}:\mathcal{A}(\vec{g})=1]|$.

G is (τ, ε) -DDH group if for any non-uniform probabilistic adversary \mathcal{A} that works in time $\leq \tau$, $Adv_{\mathbb{G}}^{ddh}(\mathcal{A}) \leq \varepsilon$. G is DDH group $\Leftrightarrow (poly(\kappa), negl(\kappa))$ -DDH group.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Public-Key Encryption

Public-key cryptosystem is triple of efficient algorithms $\Pi = (G, E, D)$, such that

- κ is security parameter (e.g., key length)
- $(\mathsf{sk},\mathsf{pk}) \leftarrow G(1^{\kappa})$ is key generation algorithm
- $E_{pk}(m; r) = c$ is randomized encryption algorithm
- $D_{sk}(c) = m$ is decryption algorithm

and

Correctness: $D_{sk}(E_{pk}(m; r)) = m$ for all m, r and $(sk, pk) \in G(1^{\kappa})$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Homomorphic Encryption

A public-key cryptosystem is multiplicatively homomorphic if:

 The plaintext set (M, ·) is multiplicative group, the randomizer set (R, ○) is group, and the ciphertext set (C, ·) is multiplicative group.

• All three sets can depend on (sk, pk).

- $E_{\rm pk}(m_1; r_1) \cdot E_{\rm pk}(m_2; r_2) = E_{\rm pk}(m_1 \cdot m_2; r_1 \circ r_2)$
- Thus $D_{sk}(E_{pk}(m_1; r_1) \cdot E_{pk}(m_2; r_2)) = m_1 \cdot m_2$ for every m_1, m_2, r_1, r_2 .
- Discrete logarithm problem is hard in group ${\mathcal M}$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Hom. Encryption: Basic Properties

- $D_{\rm sk}(E_{\rm pk}(m_1;r_1)\cdot E_{\rm pk}(m_2;r_2))=m_1\cdot m_2$
 - Computation of encryption of m₁ · m₂ does not need knowledge of m₁ or m₂
- For $m \in \mathcal{M}$ and $\alpha \in \mathbb{Z}_{|\mathcal{M}|}$, $D_{sk}(E_{pk}(m; r)^{\alpha}) = m^{\alpha}$ (by def. of exp.)
- Given x and {E_{pk}(g^{f_i})} for i ∈ {0,...,t}, one can compute

$$E_{\sf pk}(g^{f(x)}) = \prod_{i=0}^t E_{\sf pk}(g^{f_i})^{x^i}$$
 .

where $f(X) := \sum_{i=0}^{t} f_i X^i$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Elgamal Encryption

Assume a cyclic group $\mathbb{G} = \langle g \rangle$ of prime order q.

- $G(1^{\kappa})$: let sk $\leftarrow \mathbb{Z}_q$ and pk $\leftarrow h = g^{sk}$.
- Encryption of $m \in \mathbb{G}$: generate random $r \leftarrow \mathbb{Z}_q$. Compute $E_{pk}(m; r) \leftarrow (mh^r, g^r)$
- Decryption of $c = (c_1, c_2) \in \mathbb{G}^2$: set $D_{\mathsf{sk}}(c_1, c_2) \leftarrow c_1/c_2^{\mathsf{sk}}$.

Correctness:

$$egin{aligned} D_{\mathsf{sk}}(E_{\mathsf{pk}}(m;r)) = &D_{\mathsf{sk}}(mh^r,g^r) = m \cdot h^r/(g^r)^{\mathsf{sk}} \ = &m \cdot (g^{\mathsf{sk}})^r/(g^{\mathsf{sk}})^r = m \ . \end{aligned}$$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Elgamal Encryption is Homomorphic

Homomorphism in cyclic group \mathbb{G} of order q, where DL is assumed to be hard. Ciphertext group is \mathbb{G}^2 with $(g_1, g'_1) \cdot (g_2, g'_2) = (g_1g_2, g'_1g'_2)$

$$E_{\mathsf{pk}}(m_1; r_1) \cdot E_{\mathsf{pk}}(m_2; r_2) = (m_1 m_2 h^{r_1 + r_2}, g^{r_1 + r_2})$$
$$= E_{\mathsf{pk}}(m_1 \cdot m_2; r_1 + r_2)$$

Also, for known α ,

$$E_{\mathsf{pk}}(m;r)^{\alpha} = (m^{\alpha}h^{\alpha r},g^{\alpha r}) = E_{\mathsf{pk}}(m^{\alpha};\alpha r)$$
.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Example Protocol: Asymmetric Veto

- Alice learns if
 a \lapha b = 1, Bob learns
 nothing
- Comp. DL is easy
- In semihonest model, Alice learns nothing except a ∧ b, if Elgamal is secure

Alice (a) Bob (b $(\mathsf{sk},\mathsf{pk}) \leftarrow G(1^{\kappa}),$ $r \leftarrow \mathcal{R}$ $(\mathsf{pk}, E_{\mathsf{pk}}(g^a; r))$ $c \leftarrow E_{\mathsf{pk}}(g^a; r)^b$ $= E_{\rm pk}(g^{ab}; br)$ С $m \leftarrow DL(D_{sk}(c))$ $= DL(g^{ab}) = ab$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

IND-CPA Security

Assume $\Pi = (G, E, D)$. Let \mathcal{A} be efficient adversary.

Experiment 1

Set $(sk, pk) \leftarrow G(1^{\kappa})$. Obtain $(m_1, m_2) \leftarrow \mathcal{A}(pk)$. Output $E_{pk}(m_1; r)$ for $r \leftarrow \mathcal{R}$.

Experiment 2

Set $(sk, pk) \leftarrow G(1^{\kappa})$. Obtain $(m_1, m_2) \leftarrow \mathcal{A}(pk)$. Output $E_{pk}(m_2; r)$ for $r \leftarrow \mathcal{R}$.

 $\mathcal{A}dv_{\Pi}^{cpa}(\mathcal{A}) := \left| \mathsf{Pr}[\mathsf{Exp1}: \mathcal{A}=1] - \mathsf{Pr}[\mathsf{Exp2}: \mathcal{A}=1] \right| \; .$

 Π is IND-CPA secure if no efficient \mathcal{A} has non-negligible $Adv_{\Pi}^{cpa}(\mathcal{A})$.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Elgamal Is IND-CPA Secure

Theorem

Assume that G is DDH-group. Then Elgamal is IND-CPA secure.

For proof, we note that if $(g_1, g_2, g_3, g_4) = (g, g^a, g^b, g^{ab})$ then $(g_4, g_3) = (g^{ab}, g^b)$ is encryption of 1 under public key $pk = g_2 = g^a$. OTOH, if $(g_1, g_2, g_3, g_4) = (g, g^a, g^b, g^c)$ for random c, then $(g_4, g_3) = (g^c, g^b) = (g^{c-ab}g^{ab}, g^b)$ is encryption of random plaintext g^{c-ab} under public key $pk = g_2 = g^a$.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Elgamal Is IND-CPA Secure: Proof I I

Assume that \mathcal{A} can break IND-CPA security with probability ε . Construct the next DDH distinguisher \mathcal{D} . (This shows that if DDH is hard, then Elgamal is IND-CPA secure.)

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Elgamal Is IND-CPA Secure: Proof II I

Main idea of the proof: \mathcal{D} participates in DDH "game" with challenger. Since \mathcal{A} can break IND-CPA of Elgamal, \mathcal{D} can use "help" from \mathcal{A} . Help consists in interacting with \mathcal{A} in conversation that looks like IND-CPA game to \mathcal{A} . Thus, \mathcal{A} will "break" IND-CPA of Elgamal inside that game with probability ε .

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Elgamal Is IND-CPA Secure: Proof II II

 $b'_{ddh \stackrel{?}{=} b_{ddh}}$

Challenger

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Elgamal Is IND-CPA Secure: Proof IV

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Elgamal is IND-CPA Secure: Proof V

$$\begin{aligned} & \Pr[\mathcal{D} \text{ is correct}] = \Pr[b'_{ddh} = b_{ddh}] \\ & = \Pr[b'_{ddh} = 1 : b_{ddh} = 1] \Pr[b_{ddh} = 1] + \\ & \Pr[b'_{ddh} = 2 : b_{ddh} = 2] \Pr[b_{ddh} = 2] \\ & = \frac{1}{2} \cdot \Pr[b'_{cpa} = b_{cpa} : b_{ddh} = 1] + \frac{1}{2} \cdot \Pr[b'_{cpa} \neq b_{cpa} : b_{ddh} = 2] \\ & = \frac{1}{2} \cdot \varepsilon + \frac{1}{2} \cdot \frac{1}{2} = \frac{\varepsilon}{2} + \frac{1}{4} \end{aligned}$$

Thus if \mathcal{A} is successful, then \mathcal{D} is successful with approximately same time and success probability. QED

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Third Lecture: MH Protocols. Security

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Homomorphic Encryption: Blinding

- Let E_{pk}(m; R) be distribution that one gets by first choosing r ← R and then outputting E_{pk}(m; r)
- Rerandomization/blinding: For any $m \in \mathcal{M}$ and $r \in \mathcal{R}$,

 $E_{\mathsf{pk}}(m;r) \cdot E_{\mathsf{pk}}(1;\mathcal{R}) = E_{\mathsf{pk}}(m;\mathcal{R})$.

- Holds since *R* is cyclic, sampleable group
 Used in situations where revealing *r* might
 - compromise privacy

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Example Protocol: Scalar Product I

- Alice has $(a_1, \ldots, a_t) \in \mathbb{Z}_q^t$
- Bob has $(b_1, \ldots, b_t) \in \mathbb{Z}_q^t$
- Alice learns $\sum_{i=1}^{t} a_i b_i \mod q \in \mathbb{Z}_q$
- Privacy in semihonest model:
 - Alice learns nothing else, Bob learns nothing

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Example Protocol: Scalar Product II

Al

- Comp. DL is easy if a_i, b_i are Boolean (Alice's output is ≤ t)
- r is used for blinding: c is a random encryption of g^m

$$(sk, pk) \leftarrow G(1^{\kappa}),$$

$$(r_1, \dots, r_t) \leftarrow \mathcal{R}^t,$$

$$c_i \leftarrow E_{pk}(g^{a_i}; r_i)$$

$$(pk, (c_1, \dots, c_t))$$

$$r \leftarrow \mathcal{R},$$

$$c \leftarrow \prod_{i=1}^t c_i^{b_i} \cdot E_{pk}(1; r)$$

$$(pk, (c_i))$$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Correctness: Scalar Product Protocol

Recall $c_i = E_{pk}(g^{a_i}; r_i)$. Clearly,

$$egin{aligned} c =& \prod_{i=1}^t c_i^{b_i} \cdot E_{\mathsf{pk}}(1;r) = \prod_{i=1}^t E_{\mathsf{pk}}(g^{a_i};r_i)^{b_i} \cdot E_{\mathsf{pk}}(1;r) \ =& E_{\mathsf{pk}}\left(g^{\sum_{i=1}^t a_i b_i};\sum_{i=1}^t b_i r_i + r
ight) \ . \end{aligned}$$

and thus $m = \log_g(D_{sk}(c)) = \log_g(g^{\sum_{i=1}^t a_i b_i}) = \sum_{i=1}^t a_i b_i$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Example Protocol: Hamming Distance I

- Alice has $\vec{a} := (a_1, \ldots, a_t) \in \mathbb{Z}_2^t$
- Bob has $\vec{b} := (b_1, \dots, b_t) \in \mathbb{Z}_2^t$
- Define $w_h(\vec{a}, \vec{b}) := |\{i \in \{1, ..., t\} : a_i \neq b_i\}|$
- Alice learns $w_h(\vec{a}, \vec{b})$
- Privacy in semihonest model:

• Alice learns nothing else, Bob learns nothing

• Clearly
$$w_h(\vec{a}, \vec{b}) := \sum_{i=1}^t (a_i \oplus b_i) = \sum_{i=1}^t (b_i + (-1)^{b_i} a_i):$$

• $0 + (-1)^0 a_i = a_i = a_i \oplus 0$
• $1 + (-1)^1 a_i = 1 - a_i = a_i \oplus 1$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Example Protocol: Hamming Distance II

Alice
$$(a_1, \ldots, a_t)$$

 $(sk, pk) \leftarrow G(1^k),$
 $(r_1, \ldots, r_t) \leftarrow \mathcal{R}^t,$
 $c_i \leftarrow E_{pk}(g^{a_i}; r_i)$
 $(pk, (c_1, \ldots, c_t))$
 $r \leftarrow \mathcal{R},$
 $c \leftarrow \prod_{i=1}^t (E_{pk}(g^{b_i}; 0) \cdot c_i^{(-1)^{b_i}}) \cdot E_{pk}(1; r)$
 c
 $m \leftarrow \log_g(D_{sk}(c))$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Correctness: Hamming Distance Protocol

Recall $c_i = E_{pk}(g^{a_i}; r_i)$. Clearly,

$$c = \prod_{i=1}^{t} (E_{pk}(g^{b_i}; 0) \cdot c_i^{(-1)^{b_i}}) \cdot E_{pk}(1; r)$$

= $E_{pk}\left(g^{\sum_{i=1}^{t}(b_i + (-1)^{b_i}a_i)}; \sum_{i=1}^{t} (-1)^{b_i}r_i + r\right) = E_{pk}(g^{w_h(\vec{a}, \vec{b})}; \dots)$

and thus $m = \log_g(D_{sk}(c)) = \log_g(g^{w_h(\vec{a},\vec{b})}) = w_h(\vec{a},\vec{b})$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

-Message Protocols I

- 2-pessage protocol is IND-CPA secure if Bob cannot distinguish between Alice's message, corresponding to Alice's input a₁, from Alice's message, corresponding to a₂
- Similar definition to IND-CPA of PKC

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

IND-CPA Security of 2-Message Protocols

Assume $\Gamma = (Query, Reply, Answer)$. Let \mathcal{A} be efficient adversary.

Experiment 1

Obtain $(a_1, a_2) \leftarrow \mathcal{A}(1^{\kappa})$. Output q where $(q, state) \leftarrow Query(a_1)$.

Experiment 2

Obtain $(a_1, a_2) \leftarrow \mathcal{A}(1^{\kappa})$. Output q where $(q, state) \leftarrow Query(a_2)$.

 $\mathsf{Adv}_{\Gamma}^{\mathsf{cpa}}(\mathcal{A}) := ig| \mathsf{Pr}[\mathsf{Exp1}:\mathcal{A}=1] - \mathsf{Pr}[\mathsf{Exp2}:\mathcal{A}=1] ig|$.

Γ is IND-CPA secure if no efficient \mathcal{A} has non-negligible $Adv_{\Gamma}^{cpa}(\mathcal{A})$.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

-Message Homomorphic Protocols

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Metatheorem: 2MHP are IND-CPA Secure

Theorem

Assume $\Pi = (G, E, D)$ is IND-CPA secure. Then $\Gamma = (Query, Reply, Answer)$ is IND-CPA secure.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Proof: 2MHP are IND-CPA Secure I

Assume \mathcal{A} can break Γ with time τ and probability ε . Construct adversary \mathcal{B} that breaks Π with same probability and time $\tau + 2t\tau_{exp} + small$ as follows. $(\tau_{exp} \text{ is time for one exp.})$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Proof: 2MHP are IND-CPA Secure II

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Proof: 2MHP are IND-CPA Secure III

- \mathcal{A} first gives (a_1, a_2) to \mathcal{B}
- Assume that if B's input to Γ is a_{b_Π}, then the values encrypted in Γ are (f₁(a_{b_Π}),..., f_t(a_{b_Π}))
 In Hamming distance protocol, f_i(*ā*) = a_i
- Bob does not know $b_{\Pi} \in \{1,2\}$ but he knows $E_{\mathsf{pk}}(g^{b_{\Pi}};r)$ and $(f_j(a_1),f_j(a_2))$
- Clearly, $f_j(a_{b_{\Pi}}) = (2 - b_{\Pi})f_j(a_1) + (b_{\Pi} - 1)f_j(a_2)$ • $b_{\Pi} = 1 : (2 - 1)f_j(a_1) + (1 - 1)f_j(a_2) = f_j(a_1)$ • $b_{\Pi} = 2 : (2 - 2)f_j(a_1) + (2 - 1)f_j(a_2) = f_j(a_2)$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Proof: 2MHP are IND-CPA Secure IV

- $f_j(a_{b_{\Pi}}) = (2 b_{\Pi})f_j(a_1) + (b_{\Pi} 1)f_j(a_2)$
- $c = E_{pk}(g^{b_{\Pi}}; r)$
- Thus $(E_{pk}(g^{2}; 0)/c)^{f_{j}(a_{1})} \cdot (c/E_{pk}(g; 0))^{f_{j}(a_{2})} = (\underbrace{(E_{pk}(g^{2}; 0)/E_{pk}(g^{b_{\Pi}}; r))}_{E_{pk}(g^{2-b_{\Pi}}; -r)})^{f_{j}(a_{1})} \cdot \underbrace{(E_{pk}(g^{b_{\Pi}}; r)/E_{pk}(g; 0))^{f_{j}(a_{2})}}_{E_{pk}(g^{(b_{\Pi}-1)f_{j}(a_{2})}; rf_{j}(a_{2}))}$

 $E_{\mathsf{pk}}(g^{(2-b_{\Pi})f_{j}(a_{1})+(b_{\Pi}-1)f_{j}(a_{2})};r(f_{j}(a_{2})-f_{j}(a_{1}))) = E_{\mathsf{pk}}(g^{f_{j}(a_{b_{\Pi}})};r(f_{j}(a_{2})-f_{j}(a_{1})))$

B can compute encryption of g^{f_j(a_{b_Π})} without knowing b_Π!

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Proof: 2MHP are IND-CPA Secure V

Proof: 2MHP are IND-CPA Secure VI

- By previous discussion, \mathcal{B} 's input to Γ is equal to his honest input corresponding to $a_{b_{\Pi}}$ even if he does not know b_{Π} .
- Assume \mathcal{A} is successful with probability ε . Then \mathcal{B} is successful with probability

$$\Pr[b'_{\Pi} = b_{\Pi}] = \Pr[b'_{\Gamma} = b_{\Gamma}] = \varepsilon$$
 .

 \mathcal{B} 's time is dominated by the execution of \mathcal{A} and 2t exponentiations. QED

Conclusions

- All homomorphic protocols are IND-CPA secure given PKC is IND-CPA secure
- We can always cite this metatheorem!
 - E.g.: if PKC is IND-CPA secure, then Hamming distance protocol is IND-CPA secure
- No significant security loss in arepsilon or au
 - Surprising: we intuitively expect that since attacker of Γ sees more than 1 ciphertext, he gains more advantage than when seeing just one
- Proof uses same homomorphic properties of Π
- We will deal with server's security later

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Different Homomorphism: E-Voting I

- Two candidates, 0, 1
- Assume voter v_i , $i \in \{1, ..., V\}$, votes for candidate $c_i \in \{0, 1\}$
- Voter v_i encrypts his ballot as $C_i \leftarrow E_{pk}(g^{c_i}; r_i)$, sends it to vote collector
- At the end, vote collector "sums" all ballots as $C \leftarrow \prod_{i=1}^{V} C_i = E_{pk}(g^{\sum_{i=1}^{V} c_i}; \sum_{i=1}^{V} r_i)$ $= E_{pk}(g^{|\{i:c_i=1\}|}; \sum_{i=1}^{V} r_i)$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Different Homomorphism: E-Voting II

- Vote collector does not know sk, it is only known by separate tallier
- Vote collector sends $C \cdot E_{pk}(1; \mathcal{R})$ to tallier
- By decrypting the result and taking discrete logarithm of it, tallier finds |{i : c_i = 1}|, and declares 1 as winner exactly if that value is > 50% of voters
- Computation is efficient if number of voters is "small"
 - DL of number from $\{0, \ldots, 2^n 1\}$ can be done in time $2^{n/2} = \sqrt{2^n}$ by standard algorithms

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Different Homomorphism: E-Voting III

- Viable say for n ≤ 80 and number of voters is smaller than 2⁸⁰!
- World population: $< 2^{33}$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Multiple-Candidate Elections I

- γ candidates mapped to $\{0,\ldots,\gamma-1\}$
- Voter v_i prefers candidate c_i . His ballot is $C_i \leftarrow E_{pk}(g^{(V+1)^{c_i}}; r_i)$
- Denote T_k = |{i : c_i = k}| number of voters who voted for k
- "Sum": $\prod_{i=1}^{V} C_i = E_{\mathsf{pk}}(g^{\sum_{i=1}^{V}(V+1)^{C_i}}; \sum_{i=1}^{V} r_i)$
- Intuition:
 - All voters who vote for k contribute g^{V^k} to sum
 - Thus sum is $g^{\sum_{i=0}^{\gamma-1} T_i \cdot (V+1)^i}$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Multiple-Candidate Elections II

- Basis V + 1 was chosen here so that there are no overflows: T_i < V + 1 and thus T_i(V + 1)ⁱ < (V + 1)ⁱ⁺¹
- Tallier takes discrete logarithm of sum, obtains $\sum_{i=0}^{\gamma-1} T_i (V+1)^i$
- Tallier looks at this as number in (V + 1)-ary number system, where *i*th "digit" is equal to T_i
- Tallier extracts all digits $(T_0, \ldots, T_{\gamma-1})$

See [Cramer et al., 1997, Damgård and Jurik, 2001]

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Problems with MC Elections

- Maximum value for "sum" may be just slightly smaller than $g^{(V+1)^{\gamma}}$
- Assume $V = 2^{20} 1$ (appr million), $\gamma = 2^3 = 8$ (usual Estonian parliamentary election, voting for parties)
- $g^{(V+1)^{\gamma}} = g^{160}$, and computing DLs of this (2⁸⁰ steps) is intractable!

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Fourth Lecture: Additively Homomorphic Encryption

Helger Lipmaa MTAT.07.014 Cryptographic Protocols

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

What Went Wrong?

- We always utilized multiplicatively homomorphic PKC (Elgamal) as additively homomorphic PKC in exponents, but at the end, one party had to compute DL
- By assumption if MH PKC, then DL is hard!
- Thus MH PKC is mostly only useful for applications where the final result comes from small (or well-structured) set

Lifted Elgamal

- Define lifted Elgamal (G, E, D) as follows
- Let G be cyclic multiplicative group of prime order *q*, generator *g* ∈ G
- Key generation: choose sk $\leftarrow \mathbb{Z}_q$, pk = $h \leftarrow g^{sk}$
- Encryption: set $r \leftarrow \mathbb{Z}_q$, $c = (c_1, c_2) = E_{pk}(m; r) := (g^m h^r, g^r)$
- Decryption: set $D_{pk}(c) = \log_g(c_1/c_2^{sk})$
- Correctness: $D_{pk}(E_{pk}(m; r)) = \log_g(g^m h^r/(g^r)^{sk}) = \log_g g^m = m$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Lifted Elgamal

- Additive homomorphism: $E_{pk}(m_1; r_1) \cdot E_{pk}(m_2; r_2) = (g^{m_1+m_2}h^{r_1+r_2}, g^{r_1+r_2})$ $= E_{pk}(m_1 + m_2; r_1 + r_2)$
- All previous protocols can be rewritten in terms of lifted Elgamal, with small modifications
 - $E_{\mathsf{pk}}(g^a; r) \to E_{\mathsf{pk}}(a; r)$ and $E_{\mathsf{pk}}(a; r) \to E_{\mathsf{pk}}(\log_g a; r)$
 - $\log_g D_{\rm sk}(c)
 ightarrow D_{\rm sk}(c)$ and $D_{\rm sk}(c)
 ightarrow g^{D_{\rm sk}(c)}$
- All previous protocols and security results work
- Decryption is inefficient unless in a small plaintext space

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Hamming Distance with Lifted Elgamal

Alice
$$(a_1, \ldots, a_t)$$

 $(sk, pk) \leftarrow G(1^{\kappa}), (r_1, \ldots, r_t) \leftarrow \mathcal{R}^t, c_i \leftarrow E_{pk}(a_i; r_i)$
 $(pk, (c_1, \ldots, c_t))$
 $r \leftarrow \mathcal{R}, c \leftarrow \prod_{i=1}^t (E_{pk}(b_i; 0) \cdot c_i^{(-1)^{b_i}}) \cdot E_{pk}(0; r)$
 c
 $m \leftarrow D_{sk}(c)$

Efficiency

- While efficiency of cryptographic protocols is very important, we have not talked about it much
- Several measures:
 - Communication complexity
 - Computational complexity (of Alice/Bob)
 - Round complexity
- Up to now all protocols have had 2 messages

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Efficiency of HD Protocol with L. Elgamal

- Communication complexity: 1 PK + t ciphertexts = 2t + 1 group elements
- 1 elliptic curve group element is 160 bits, thus 320t + 160 bits
- Alice's computation (dominated by): t enc + 1 dec = 2t + 1 exp + 1 DL
- Bob's computation (dom by): ≤ t inversions (≈ t mults) and t + 1 mult
 - $E_{pk}(b_i; 0) = (g^{b_i}, g) \text{ can be}$ precomputed for $b_i \in \{0, 1\}$ (costless — no exps)
- $E_{pk}(0; r) = (h^r, g^r)$ (2 exps)
- $c_i^{(-1)^{b_i}}$ is either c_i or c_i^{-1} (no exp)
- 1 exp \approx 1.5 log q = 240 mults, 1 DL $\approx 2^{t/2}$ mults
- Alice: $\approx 480t + 120 + 2^{t/2}$ mults
- DL time dominates for t ≥ 28

Bob: $\leq 2t + 1$ mults

Alice (a_1, \ldots, a_t) $(sk, pk) \leftarrow G(1^k), (r_1, \ldots, r_t) \leftarrow \mathcal{R}^t, c_i \leftarrow E_{pk}(a_i; r_i)$ $(pk, (c_1, \ldots, c_t))$ $r \leftarrow \mathcal{R}, c \leftarrow \prod_{i=1}^t (E_{pk}(b_i; 0) \cdot c_i^{(-1)^{b_i}}) \cdot E_{pk}(0; r)$ c $m \leftarrow D_{sk}(c)$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Efficiency w (L.) Elgamal: General

- Alice:
 - To encrypt t plaintexts, Alice encrypts t times $2t \exp = 3t \log q$ mults
 - Alice decrypts/computes DL say s times $s(1.5 \log q + 2^{n/2})$ mults for some n
 - Total: $3t \log q + s(1.5 \log q + 2^{n/2})$ mults
 - Plus may be some additional ops
 - Inherit lower bound
 - Goal of protocol designer is to minimize t, s and n
- Bob's efficiency can vary

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Additively Homomorphic Cryptosystems

- PKC (G, E, D) with $E_{pk}(m_1; r_1) \cdot E_{pk}(m_2; r_2) = E_{pk}(m_1 + m_2; r_1 \circ r_2)$
- With efficient decryption no need to compute DL!
- Lifted Elgamal: AH for small plaintext group
- Need AH PKC with large plaintext group
 - Paillier [Paillier, 1999]: \mathbb{Z}_n with $n > 2^{1536}$
 - Damgård-Jurik [Damgård and Jurik, 2001]: \mathbb{Z}_n^s with $n > 2^{1536}$ and integer $s \ge 1$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Background: Factoring Assumption

Let $\ell = \ell(\kappa)$ some bitlength, and $\mathcal{A} = \mathcal{A}_{\ell}$ be a non-uniform adversary. Let \mathfrak{P}_{ℓ} be the set of all ℓ -bit primes. Define

 $\mathsf{Adv}_\ell^{\mathsf{fact}}(\mathcal{A}) := \mathsf{Pr}[p, q \leftarrow \mathfrak{P}_\ell, n \leftarrow p \cdot q : \mathcal{A}(n) = (p, q)]$

Factoring 2ℓ -bit RSA moduli is hard if for any non-uniform probabilistic adversary $\mathcal{A} = \mathcal{A}_{\ell}$ that works in time $\leq \tau$, $Adv_{\ell}^{fact}(\mathcal{A}) \leq \varepsilon$. Best factorization algorithm (GNFS) works in time $e^{(\sqrt[3]{64/9}+o(1))(\log n)^{1/3}(\log \log n)^{2/3}}$ for integer n

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Corollaries of Factoring Assumption I

- If factoring is hard, then computing φ(n) for random RSA modulus n is hard
 - $\varphi(n) = \varphi(pq) = (p-1)(q-1) = pq p q + 1$
 - If one knows both *n* and $\varphi(n)$, one also knows

 $s = n - \varphi(n) + 1 = p + q$

- $n = pq = p(s p) = sp p^2$, thus $p^2 - sp + n = 0$ — quadratic equation
- One can recover $p \leftarrow (s \pm \sqrt{s^2 4n})/2$
- Example: n = 4347803203, $\varphi(n) = 4347671328$
- Thus s = 131876, and p = 65809 or p = 66067. In fact, $65809 \cdot 66067 = 4347803203$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Corollaries of Factoring Assumption II

- Since $\phi(n) = |\mathbb{Z}_n^*|$, if $y = x^e \mod n$ then $x = y^{e^{-1} \mod \phi(n)} \mod n$. Finding $e^{-1} \mod \phi(n)$ is hard without knowing how to factor n
- A lot of other things are hard if factoring is hard

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Background: Binomial Theorem and DL

- $(a+b)^c = \sum_{i=0}^c {c \choose i} a^i b^{c-i}$
- For example:
 - $(n+1)^c = \sum_{i=0}^c {c \choose i} n^i =$ $1 + cn + {c \choose 2} n^2 + \text{higher powers of } n$

$$(n+1)^c \equiv cn+1 \pmod{n^2}$$

• Can compute certain discrete logarithms easily:

- If y = (n + 1)^x mod n², then y = xn + 1 mod n²
 Thus x = (y − 1)/n mod n²
- Denote $L(y) := \frac{y-1}{n}$ (quotient of integer division)
- Thus: $L((n+1)^x \mod n^2) = x$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Background: Basic Number Theory

lcm(a, b) — least common multiplier
a | lcm(a, b), b | lcm(a, b)
If a | c and b | c, then b ≤ c
a · b = gcd(a, b) · lcm(a, b)
Example: a = 4, b = 6
gcd(4, 6) = 2, lcm(4, 6) = 12
4 · 6 = 24 = 2 · 12

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Background: Carmichael Function

- **Def:** for positive integer *n*, smallest positive integer $\lambda(n) = m$ such that $a^m \equiv 1 \pmod{n}$ for every integer *a* coprime to *n*.
- $\lambda(p^k) = p^{k-1}(p-1)$ if $p \ge 3$ or $k \le 2$ $(= \varphi(p^k)),$ $\lambda(2^k) = 2^{k-2}$ for $k \ge 3$, and $\lambda(p_1^{k_1} \dots p_t^{k_t}) = \operatorname{lcm}(\lambda(p_1^{k_1}), \dots, \lambda(p_t^{k_t}))$

Theorem (Carmichael Theorem)

If gcd(a, n) = 1 then $a^{\lambda(n)} \equiv 1 \pmod{n}$.

Full proof is 6+ pages.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Paillier's Cryptosystem: Key Generation

- Generate two independent random large prime numbers p and q // both ≥ 768 bits
- Let $n \leftarrow p \cdot q$
- Let $\lambda \leftarrow \lambda(n) = \operatorname{lcm}(p-1, q-1)$
- Let $\mu \leftarrow \lambda^{-1} \mod n$.
- The public key is pk = n, the private key is $sk = (\lambda, \mu)$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Paillier's Cryptosystem

• Encryption of $m \in \mathbb{Z}_n$ with pk = n: Select random $r \leftarrow \mathbb{Z}_n^*$. Compute

 $c \leftarrow (n+1)^m r^n \mod n^2$

Note: $c = (mn+1)r^n \mod n^2$ r has order $\varphi(n) = (p-1)(q-1)$.

• Decryption of $c \in \mathbb{Z}_{n^2}^*$ with sk = (λ, μ) :

$$m \leftarrow L(c^{\lambda} \mod n^2) \cdot \mu \mod n$$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Correctness of Paillier Decryption

For sk = (λ, μ) and pk = n,

$$D_{sk}(E_{pk}(m; r)) \equiv D_{sk}((n+1)^m r^n \mod n^2)$$

$$\equiv L((n+1)^{\lambda m} r^{\lambda n} \mod n^2) \cdot \mu$$

$$\equiv L((\lambda mn+1)r^{\lambda n} \mod n^2) \cdot \mu \pmod{n}$$

We have to get rid of $r^{\lambda n}$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Correctness of Paillier Decryption

Now, $\lambda(n^2) = \lambda(p^2q^2) = \operatorname{lcm}(\lambda(p^2), \lambda(q^2)) =$ $\operatorname{lcm}(p(p-1), q(q-1)) = pq \cdot \operatorname{lcm}(p-1, q-1) = \lambda n.$ By Carmichael theorem, $r^{\lambda n} \equiv r^{\lambda(n^2)} \equiv 1 \mod n^2.$ Thus

$$egin{aligned} D_{\sf sk}({\it E}_{\sf pk}({\it m};{\it r})) \equiv & L(\lambda{\it mn}+1) \cdot \mu \ \equiv & \lambda{\it m} \cdot \lambda^{-1} \ \equiv & rac{\lambda{\it m}}{\lambda} \equiv {\it m} \pmod{\it n} \ . \end{aligned}$$

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Paillier: Homomorphism

Clearly,

$$\begin{split} E_{\mathsf{pk}}(m_1;r_1) \cdot E_{\mathsf{pk}}(m_2;r_2) \equiv & (n+1)^{m_1} r_1^{\ n} \cdot (n+1)^{m_2} \cdot r_2^{\ n} \\ \equiv & (n+1)^{m_1+m_2} (r_1 r_2)^n \\ \equiv & E_{\mathsf{pk}}(m_1+m_2;r_1 \cdot r_2) \pmod{n^2} \end{split}$$

Thus the Paillier cryptosystem is homomorphic in $\mathcal{M} = \mathbb{Z}_n$.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Security of Paillier

x is *n*-th residue modulo n^2 iff there exists y such that $y^n \equiv x \pmod{n^2}$

Definition

Decisional Composite Residuosity Assumption: Distinguish a random *n*-th residue from a random *n*-th non-residue modulo n^2 .

Equivalent (with small error): Distinguish a random *n*-th residue from a random element of $C = \mathbb{Z}_{n^2}$. **Fact:** If factoring is easy, then DCRA is easy. Opposite is not known.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Security of Paillier

Theorem

Assume that DCRA is true. Then Paillier is IND-CPA secure.

Sketch.

Idea: random encryption of 0 is a random *n*-th residue; random encryption of a random element in \mathcal{M} is a random element of \mathcal{C} . Proof goes along the same lines as the security proof of Elgamal.

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Efficiency of Paillier

- $\log n \ge 1536$ (need hardness of factoring)
- Encryption: dom. by 1 1536-bit exp \approx 2304 3072-bit multiplications
 - Less efficient than lifted Elgamal on elliptic curve groups (10x more mults, bitlength 20x longer)
- Decryption: dom. by 1 3072-bit exp \approx 2304 3072-bit multiplications
 - Significantly more efficient than lifted Elgamal: polynomial instead of exponential — thus can decrypt much larger plaintexts
- Ciphertext: 3072 bits

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

-Message AH Protocols

- a anything (e.g., a real value)
- $m_i \in \mathcal{M}$ are functions of *a*
- $m_i = m_i(a)$

Except this sentence, this is copy of previous slide!

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Efficiency of HD Protocol with Paillier

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Elgamal or Paillier

- If decrypted values not too big (DL efficient), use (lifted) Elgamal
- If decrypted values of average size, depends
 - Alice's ops are 10x faster but Bob's ops 50x slower — what is more important?
 - E.g.: homomorphic e-voting
- If decrypted values are large (DL intractable), use Paillier

First Lecture: Introduction Second Lecture: Elgamal Third Lecture: MH Protocols. Security Fourth Lecture: Additively Homomorphic Encryption

Metatheorem: 2AHP are IND-CPA Secure

Theorem

Assume additively homomorphic $\Pi = (G, E, D)$ is IND-CPA secure. Then $\Gamma = (Query, Reply, Answer)$ is IND-CPA secure.

Proof.

Simple modification of MH case. Replace plaintexts g^{x} with plaintexts x.

Fifth Lecture. Semisimulatability

For original definition of semisimulatability, see [Naor and Pinkas, 1999]. For our (me and Sven Laur) paper on DIE/CDS, see [Laur and Lipmaa, 2007]

Recap: 2-Message AH Protocols

Alice (a) Bob (b) • a — anything (e.g., a real value) $(\mathsf{sk},\mathsf{pk}) \leftarrow G(1^{\kappa}),$ For $i \in \{1, ..., t\}$, $c_i \leftarrow E_{\rm pk}(a_i, r_i)$ • $a_i(a) \in \mathcal{M}$ are functions of a $(pk; c_1, ..., c_t)$ Alice's privacy $\mathfrak{r} \leftarrow Reply(1^{\kappa}, b, \mathsf{pk}, c_1, \ldots, c_t)$ follows from r IND-CPA of PKC $\mathfrak{a} = Answer(1^{\kappa}, a, sk, pk, \mathfrak{r})$

Recap: What Can Be Done with 2AH/2MH?

- Alice can encrypt arbitrary functions a_i of a • See m-c elections, Hamming distance protocol Bob can compute affine functions of encrypted values for some functions b_i , b' of b: MH: $\prod_{i} E_{pk}(g^{a_i}; r_i)^{b_i} \cdot E_{pk}(g^{b'}; r') =$ $E_{\rm nk}(g^{\sum_i b_i a_i + b'}; \cdot)$ AH: $\prod_i E_{pk}(a_i; r_i)^{b_i} \cdot E_{pk}(b'; r') =$ $E_{\rm pk}(\sum_i b_i a_i + b'; \cdot)$
- Quite limited most freedom is in choosing a_i, b_i, b'

Can We Do More?

• Functionality:

- Are there any non-algebraic things we can do?
- More algebraic freedom compute quadratic equations, ...?
- Many rounds will it help?
- Many parties will it help?
- Security:
 - Previous protocols guaranteed only Alice's privacy
 - can we do more?

This Lecture

• Functionality:

- Are there any non-algebraic things we can do?
- More algebraic freedom compute quadratic equations, ...?
- Many rounds will it help?
- Many parties will it help?
- Security:
 - Previous protocols guaranteed only Alice's privacy
 - can we do more?

Security in Malicious Model

- Alice:
 - Privacy: Bob does not learn Alice's input IND-CPA security, we dealt with it
 - Security: Alice gets back correct answer future lectures
- Bob:
 - Privacy: Alice does not learn more about Bob's input than necessary
 - Security: Bob gets back correct answer easy

Recap: (Boolean) Scalar Product

- Alice has $(a_1, \ldots, a_t) \in \mathbb{Z}_2^t$
- Bob has $(b_1, \ldots, b_t) \in \mathbb{Z}_2^t$
- Alice learns $\sum_{i=1}^{t} a_i b_i \mod q \in \mathbb{Z}_q$
- Privacy in semihonest model:
 - Alice learns nothing else, Bob learns nothing
- What about privacy in malicious model?
 - Bob still learns nothing, what about Alice?

Within this lecture we use Elgamal & corresponding notation

Cheating the Scalar Product

- Alice obtains $\sum_{i=1}^{t} a_i b_i \mod q$
- Malicious Alice sets a_i ← 2ⁱ
- $\sum_{\substack{i=1\\j=1}^{t}}^{t} a_i b_i = \sum_{\substack{i=1\\j=1}}^{t} 2^i b_j \mod q$
- Alice recovers Bob's whole input!

Alice
$$(a_1, \ldots, a_t) \in \mathbb{Z}_2^t$$
 Bob $(b_1, \ldots, b_t) \in \mathbb{Z}_2^t$

$$(sk, pk) \leftarrow G(1^{\kappa}), (r_1, \ldots, r_t) \leftarrow \mathcal{R}^t, c_i \leftarrow E_{pk}(g^{a_i}; r_i)$$

$$(pk, (c_1, \ldots, c_t)) \rightarrow r \leftarrow \mathcal{R}, c \leftarrow \prod_{i=1}^t c_i^{b_i} \cdot E_{pk}(1; r)$$

$$\leftarrow c$$

$$m \leftarrow \log_g D_{sk}(c)$$

Getting Bob's Privacy. First Idea

- Malicious Alice can only attack SSP by encrypting values out of range
- Make it so that if Alice encrypts wrong values then Alice gets back garbage!

Randomizing Elgamal Plaintexts

- Plaintext group *M* is cyclic of prime order *q*.
 Let *g* be generator
- For fixed $y = g^{\times} \in \mathcal{M}$, and random $r \leftarrow \mathbb{Z}_q$,

$$y^r = g^{xr} = \begin{cases} g \ , & x = 0 \ , \\ random \ element \ of \ \mathbb{G} \ , & otherwise \ . \end{cases}$$

- Latter holds since if $x \neq 0$ and r is random, then $xr \mod q$ is a random element of \mathbb{Z}_q
- Thus E_{pk}(m; s)^r for random r encrypts 1 if m = 1, and encrypts random plaintext if m ≠ 1

More Than Just Algebra

- Alice can encrypt arbitrary functions a_i of a
 - See multi-candidate elections, Hamming distance protocols
- Bob can compute affine functions of encrypted values, $\prod_{i} E_{pk}(g^{a_i}; r_i)^{b_i} \cdot E_{pk}(g^{b'}; \mathcal{R}) = E_{pk}(g^{\sum_{i} b_i a_i + b'}; \mathcal{R})$
- Bob can conditionally randomize plaint-s: $(\prod_{i} E_{pk}(g^{a_{i}}; r_{i})^{b_{i}} \cdot E_{pk}(g^{b'}; 0))^{\mathbb{Z}_{q}} \cdot E_{pk}(g^{b''}; \mathcal{R})$ encrypts $g^{b''}$ if $\sum_{i} b_{i}a_{i} + b' = 0$, and a random value otherwise

Disclose-if-Equal Protocol with Elgamal

- Alice's input is $a \in \mathbb{Z}_q$
- Bob's input is $b \in \mathbb{Z}_q$, $b' \in \mathcal{M}$
- Alice obtains b' if a = b and random value if a ≠ b
- Note: one could also choose $a, b \in \mathbb{G}$
 - In this application, using MH cryptosystem does not mean that one has to compute discrete logarithm!
 - However since we use DIE mostly to secure other protocols, we use g^a/g^b instead of a/b
 - We however use $b' \in \mathcal{M}$

Disclose-if-Equal Protocol with Elgamal

Correctness of DIE Protocol

Recall $c = E_{pk}(g^a; r_a)$. Then

$$c' = \underbrace{(c \cdot E_{pk}(g^{-b}; 0))}_{E_{pk}(g^{a-b}; r_a)}^{r_b} \cdot E_{pk}(b'; r'_b)}_{E_{pk}(g^{(a-b)r_b}; r_a r_b)}_{E_{pk}(g^{(a-b)r_b} \cdot b'; r_a r_b + r'_b)}$$

Since $r'_b \leftarrow \mathbb{Z}_q$ is random, c' is random encryption of $g^{(a-b)r_b} \cdot b'$. Since r_b is random, then $D_{sk}(c') = b'$ if a = b and random if $a \neq b$.

Bob's Privacy in DIE

- As we showed, Alice obtains random encryption of b' if a = b and random encryption of random plaintext if a ≠ b
- The latter contains no information about *b*
- Intuitively, thus the protocol is private for Bob
- How to formalize?

Simulation I

- Want: Bob's second message \mathfrak{r} gives Alice no extra information compared to what she would have given her input a, first message \mathfrak{q} , and rightful output $\mathfrak{a} = f(a, b)$ of protocol
 - Instead of a we take a*, set of plaintexts encrypted by Alice in q
 - Reasoning: malicious Alice has no well-defined input. It only matters what she did send to Bob
- If Alice can construct r herself, given (a, q, a), she gains no more information from r

Simulation II

- We construct simulator that, given (a, q, α), constructs simulated second message τ*
- Required: (a, q, r, a) and (a, q, r*, a) are indistinguishable — come from (almost) same distributions

Recap: DIE Protocol

- Input a* (= g^a if Alice is honest)
- $\mathfrak{a} = b'$ if $a^* = g^b$, $\mathfrak{a} = \mathcal{M}$ if $a^* \neq g^b$
- q = (pk, c)
- $\mathfrak{r} = (c' = E_{\mathsf{pk}}(\mathfrak{a}; \mathcal{R}))$

Alice
$$a \in \mathbb{Z}_q$$

 $(sk, pk) \leftarrow G(1^k)$,
 $r_a \leftarrow \mathcal{R}$,
 $c \leftarrow E_{pk}(g^a; r)$
 (pk, c)
 $r_b \leftarrow \mathbb{Z}_q, r'_b \leftarrow \mathcal{R}$,
 $c' \leftarrow (c \cdot E_{pk}(g^{-b}; 0))^{r_b} \cdot E_{pk}(b'; r'_b)$
 c'
 $a \leftarrow D_{sk}(c)$

Simulator for DIE Protocol

- Simulator gets $(a^*, q = (pk, c), a)$ where $a = \begin{cases} b' , & a^* = g^b , \\ \mathcal{M} , & a^* \neq g^b . \end{cases}$
- Simulator returns

$$\mathfrak{r}^* := E_{\mathsf{pk}}(\mathfrak{a};\mathcal{R}) = egin{cases} E_{\mathsf{pk}}(b';\mathcal{R}) \ , & a^* = g^b \ , \ E_{\mathsf{pk}}(\mathcal{M};\mathcal{R}) \ , & a^*
eq g^b \ . \end{cases}$$

without knowing (b, b')• Clearly $\mathfrak{r}^* = \mathfrak{r}$ as a distribution

Semisimulatability

- 2-message protocol is semisimulatable if:
 - Alice's privacy is guaranteed by IND-CPA security
 - Bob's privacy is guaranteed by above definition of simulatibility
- Simulatability is stronger than IND-CPA security
 - It expresses what we want from protocol
 - Simulatable protocols are usually much less efficient
- Fully simulatable security future lectures

 $Terminology: \ Semisimulatable = half-simulatable = relaxed$

secure

DIE Protocol Is Semisimulatable

Theorem

DIE protocol is semisimulatable.

Proof.

IND-CPA security follows from earlier metatheorem. We just showed Bob's privacy.

Constructing Semisimulatable Protocols

- Construct 2-message homomorphic protocol
- Make it Bob-private by using CDS suitable generalization of DIE protocol
- Conditional Disclosure of Secrets: Alice obtains Bob's answer iff Alice's encrypted inputs belong to some public set *S* of valid inputs. Otherwise Alice obtains random value [Aiello et al., 2001, Laur and Lipmaa, 2007]

Reminder: Scalar Product Protocol

- Alice obtains $\sum_{i=1}^{t} a_i b_i \mod q$
- Valid inputs: $a_i \in \{0, 1\}$ for $t \in \{1, \dots, t\}$
- Boolean formula for valid inputs: $\bigwedge_{i=1}^{t} (a_i = 0 \lor a_i = 1)$

$$\begin{array}{c} \text{Alice } (a_1, \dots, a_t) \in \mathbb{Z}_2^t \\ (\text{sk}, \text{pk}) \leftarrow G(1^\kappa), \\ (r_1, \dots, r_t) \leftarrow \mathcal{R}^t, \\ c_i \leftarrow E_{pk}(g^{a_i}; r_i) \\ \end{array} \\ \hline \\ \begin{array}{c} (\text{pk}, (c_1, \dots, c_t)) \\ \\ \hline \\ c \leftarrow \prod_{i=1}^t c_i^{b_i} \cdot E_{\text{pk}}(1; r) \\ \hline \\ \\ \hline \\ m \leftarrow \log_g D_{\text{sk}}(c) \end{array} \end{array}$$

Semisim. SSP: Idea

- Idea:
 - Alice obtains secret s_i if $a_i = 0$ or $a_i = 1$
 - Alice obtains $s = \sum_{i=1}^{t} s_i$ if he knows all values s_i
 - Alice obtains $\sum a_i b_i + s$. Thus Alice obtains $\sum a_i b_i$ only if $a_i \in \{0, 1\}$ for all *i*

Semisimulatable SSP

$$\begin{split} \textbf{Alice } (a_1, \dots, a_t) \in \mathbb{Z}_2^t \\ \textbf{(sk, pk)} \leftarrow \textbf{G}(1^{\kappa}), \\ (r_1, \dots, r_t) \leftarrow \mathcal{R}^t, \\ c_i \leftarrow \textbf{E}_{pk}(g^{a_i}; r_i) \\ \hline \textbf{q} \leftarrow (\textbf{pk}, (c_1, \dots, c_t)) \\ \hline \textbf{lf } \textbf{q} \notin \mathbb{G}^{2t+1}, \text{ then halt.} \\ r, s_1, \dots, s_t, (r'_{ij}, r''_{ij})_{i \in \{1, \dots, t\}, j \in \{0, 1\}} \leftarrow \mathbb{Z}_q, \\ \textbf{For } i \in \{1, \dots, t\} \text{ and } j \in \{0, 1\} \\ c \leftarrow \prod_{i=1}^t c_i^{b_i} \cdot \textbf{E}_{pk}(g^{j_i}; 0))^{r'_{ij}} \cdot \textbf{E}_{pk}(g^{s_i}; r''_{ij}) \\ c \leftarrow \prod_{i=1}^t c_i^{b_i} \cdot \textbf{E}_{pk}(g^{\sum_{i=1}^t s_i}; r) \\ \hline \textbf{t} \leftarrow ((c'_{ij})_{i \in \{1, \dots, t\}; i \in \{0, 1\}, c)} \\ \hline \textbf{For } i \in \{1, \dots, t\}; w_i \leftarrow D_{sk}(c'_{i,a_i}) \\ \textbf{a} \leftarrow \log_g(D_{sk}(c)) / \prod_{i=1}^t w_i) \end{split}$$

Semisimulatable SSP: Correctness I

Recall
$$c_i = E_{pk}(g^{a_i}; r_i)$$
 for some a_i, r_i . Then
 $c = \prod_{i=1}^{t} E_{pk}(g^{a_i}; r_i)^{b_i} \cdot E_{pk}(g^{\sum_{i=1}^{t} s_i}; r) = E_{pk}(g^{\sum_{i=1}^{t} a_i b_i + \sum_{i=1}^{t} s_i}; \sum_{i=1}^{t} r_i b_i + r)$ and

$$c'_{ij} = \underbrace{(c_i/E_{pk}(g^j; 0))_{ij}^{r'_{ij}} \cdot E_{pk}(g^{s_i}; r''_{ij})}_{E_{pk}(g^{(a_i-j) \cdot r'_{ij}}; r_i r'_{ij})}_{E_{pk}(g^{(a_i-j) \cdot r'_{ij}}; r_i r'_{ij})}$$

Semisimulatable SSP: Correctness II

Since r'_{ij}, r''_{ij} are random,

$$c_{ij}' = egin{cases} E_{\mathsf{pk}}(g^{s_i};\mathcal{R}) \ , & a_i = j \ , \ E_{\mathsf{pk}}(\mathcal{M};\mathcal{R}) \ , & a_i
eq j \ . \end{cases}$$

Thus $w_i \leftarrow g^{s_i}$, if Alice is honest. If Alice is malicious, $w_i \leftarrow \mathcal{M}$ (random). Thus if Alice is honest then $m = \log_2(g^{\sum a_i b_i}) = \sum a_i b_i$, otherwise g^a is a random element of \mathbb{G} (and computing DL is hard!)

Remarks: CDS with Paillier

- One can substitute Elgamal with Paillier, but it's more complex then
- $\mathcal{M} = \mathbb{Z}_n$ with n = pq has nontrivial subgroups. If $a_i \neq 0$ belongs to some such subgroup \mathcal{M}_1 , then $a_i \cdot \mathcal{M} = \mathcal{M}_1$, not $a_i \cdot \mathcal{M} = \mathcal{M}$
- If malicious Alice encrypts say *p*, then
 D_{sk}(E_{pk}(p; ·)^M) divides by *p* and thus does not hide perfectly
- See [Laur and Lipmaa, 2007] for simple solution

Remarks

- One can generalize SSP example to CDS for arbitrary efficiently computable set ${\cal S}$
 - Write down circuit that computes *S*. Handle AND/OR gates as in SSP case. For NOT gates, see [Laur and Lipmaa, 2007] (easy)
- **Example.** Assume that valid value of a_i is $a_i \in \{0, \dots, 255\}$
 - Simplistic approach: distribute g^{s_i} iff $a_i = 0 \lor a_i = 1 \lor \cdots \lor a_i = 255$ — requires 256 ciphertexts
 - More efficient: encrypt bits a_{ij} of a_i separately. Distribute $g^{s_{ij}}$ if $a_{ij} = 0 \lor a_{ij} = 1$. Write $s_i = \sum_j s_{ij}$ — requires $2 \cdot 8 = 16$ ciphertexts