MTAT.07.014 Cryptographic Protocols

Helger Lipmaa

University of Tartu

MTAT.07.014 Cryptographic Protocols
Last modified: November 8, 2011

Outline I

(1) Homomorphic Protocols: Beginning

- First Lecture: Introduction
- Second Lecture: Elgamal
- Third Lecture: MH Protocols. Security
- Fourth Lecture: Additively Homomorphic Encryption

2) Semisimulatability ++

- Fifth Lecture. Semisimulatability

References

```
Aiello, W., Ishai, Y., and Reingold, O. (2001).
Priced Oblivious Transfer: How to Sell Digital Goods.
In Pfitzmann, B., editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 119-135, Innsbruck, Austria.
Springer-Verlag.
Cramer, R., Gennaro, R., and Schoenmakers, B. (1997).
A Secure and Optimally Efficient Multi-Authority Election Scheme.
In Fumy, W., editor, EUROCRYPT 1997, volume 1233 of LNCS, pages 103-118, Konstanz, Germany.
Springer-Verlag.
Damgård, I. and Jurik, M. (2001).
A Generalisation, a Simplification and Some Applications of Paillier's Probabilistic Public-Key System.
In Kim, K., editor, PKC 2001, volume 1992 of LNCS, pages 119-136, Cheju Island, Korea. Springer-Verlag.
Elgamal, T. (1985).
A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.
IEEE Transactions on Information Theory, 31(4):469-472.
Gentry, C. and Ramzan, Z. (2005).
Single-Database Private Information Retrieval with Constant Communication Rate.
In Caires, L., Italiano, G. F., Monteiro, L., Palamidessi, C., and Yung, M., editors, ICALP 2005, volume
3580 of LNCS, pages 803-815, Lisboa, Portugal. Springer-Verlag.
```


References II

\square Laur, S. and Lipmaa, H. (2007).
A New Protocol for Conditional Disclosure of Secrets And Its Applications.
In Katz, J. and Yung, M., editors, ACNS 2007, volume 4521 of LNCS, pages 207-225, Zhuhai, China. Springer-Verlag.

Lipmaa, H. (2009).
First CPIR Protocol with Data-Dependent Computation.
In Lee, D. and Hong, S., editors, ICISC 2009, volume 5984 of LNCS, pages 193-210, Seoul, Korea. Springer-Verlag.

Naor, M. and Pinkas, B. (1999).
Oblivious Transfer And Polynomial Evaluation.
In STOC 1999, pages 245-254, Atlanta, Georgia, USA. ACM Press.
Paillier, P. (1999).
Public-Key Cryptosystems Based on Composite Degree Residuosity Classes.
In Stern, J., editor, EUROCRYPT 1999, volume 1592 of LNCS, pages 223-238, Prague, Czech Republic. Springer-Verlag.

First Lecture: Introduction

Preliminaries

- I assume you have seen different primitives
- Block ciphers, stream ciphers
- Hash functions
- Public-key cryptosystems
- Signature schemes
(Crypto I or an equivalent course...)
- For every type of primitive, you have hopefully seen some representatives, a security definition, and sometimes an attack showing that the representatives are not secure

Goal of Cryptographic Protocols

- More and more activities are done online
- Examples: e-voting, digital signatures
- Some activities are completely new/on a completely new scale
- Example: (privacy-preserving) data mining
- In all such cases, one should get security/correctness and privacy in the presence of malicious parties

Def. of Cryptographic Protocols

- Cryptographic protocol: a two/multi-party protocol that achieves its goals and protects privacy even in the presence of realistically malicious parties

Why It May Be Hard: CPIR I

- Server has database $\vec{f}=\left(f_{1}, \ldots, f_{n}\right),\left|f_{i}\right|=\ell$
- Client has index $x \in\{1, \ldots, n\}$
- Computationally-Private Information Retrieval:
- Client should obtain f_{x} (and may be more)
- Server should obtain no new information
- Nothing about x !
- Simple protocol: server sends \vec{f} to client
- Takes ℓn bits, too expensive in practice
- Can it be done better?

Why It May Be Hard: CPIR II

- If no privacy needed:
- Client sends $x,|x|=\left\lceil\log _{2} n\right\rceil$, to server
- Server sends $f_{x},\left|f_{x}\right|=\ell$, to client
- $\left\lceil\log _{2} n\right\rceil+\ell$ bits
- Very small constant $\Theta(1)$ computation on modern computer
- What if privacy needed?
- Communication can be cut down to $\Theta(\log n+\ell+\kappa)$ [Gentry and Ramzan, 2005]
- κ is security parameter (e.g., key length)
- What about computation?

Why It May Be Hard: CPIR III

- "Theorem": since server does not know which index client obtains, server has to "touch" all database elements. $\Theta(n)$ computation
- It was thought a few years ago that this is it
- [Lipmaa, 2009]: $\Theta(n)$ computation can be done in preprocessing phase, online computation can be decreased to $O(n / \log n)$ and often less
- Preprocessing is still $\Theta(n)$ as compared to $\Theta(1)$ in non-private case $(+$

Why Often Simpler Than Assumed I

- In e-voting, server receives ciphertexts of individual ballots, and outputs a plaintext tally
- Goal: tally is correct but server does not know anything extra about individual ballots
- Sounds impossible?
- Can be done if one can do arithmetics on ciphertexts: one server "adds up" ballots and second server decrypts "'sum"

Why Often Simpler Than Assumed II

- In e-voting, server must prove that his actions were correct, without revealing any extra information
- Sounds impossible?
- Can be done by using zero-knowledge and proven with simulation-based proofs

Simple Example: Veto

- Assume Alice and Bob have to decide on some issue
- Vetoing: decision taken only if everybody supports it
- Privacy: minimal amount of information about votes will be leaked
- If Alice votes for then the result will be equal to Bob's vote \Rightarrow Bob's privacy cannot be protected here
- If Alice votes against then result will be "no" independently of Bob's input \Rightarrow Alice should get no information

Mathematical Formulation: Veto $=$ AND

- Assume the private inputs are $a, b \in\{0,1\}$
- The common output is $f(a, b):=a \wedge b$
- Alice/Bob should not get to know more than inferred from her/his private input and $f(a, b)$
- In general case, every party can have a different private output $f_{i}\left(x_{1}, \ldots, x_{n}\right)$
- Then the task is:
- given private inputs b_{i}, party i should learn $f_{i}\left(b_{1}, \ldots, b_{n}\right)$ and nothing else

Example 2: Scalar Product

- Alice's input is $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$, Bob's input is $\vec{b}=\left(b_{1}, \ldots, b_{n}\right)$
- Alice's output: $f(\vec{a}, \vec{b})=\sum_{i=1}^{n} a_{i} \cdot b_{i}$
- Bob's output: \perp (nothing)
- Alice should be convinced that her output is correct

Example 3: E-voting

- n voters v_{i}, m candidates c_{j}
- Simple case: All voters cast v_{i} their ballots for some candidate $c_{j}, b_{i}=c_{j}$
- Ballots are sent to voting servers who output the tally: for each $j \in\{1, \ldots, m\}$,

$$
T_{j}=\left|\left\{i \in[n]: b_{i}=c_{j}\right\}\right|
$$

- Everybody should learn $\left\{T_{j}: j \in\{1, \ldots, m\}\right\}$
- Nobody should learn anything else
- Voters should be convinced the result is correct

Definitions of Security

- Will be postponed - we will first see some natural protocols
- Semihonest model: parties behave honestly, but are curious
- Security = privacy (in semihonest model)
- Malicious model: parties behave adversarially
- Security $=$ privacy + correctness
- Will study later

Efficient Protocols Based on Algebra

- Many efficient protocols are based on algebraic structures
- Common example: a finite cyclic group (\mathbb{G}, \circ) where the exponentiation $\phi: \mathbb{Z}_{q} \rightarrow \mathbb{G}$ is both one-way (hard to invert) and an isomorphism:

$$
g^{0}=1, \quad g^{-a}=1 / g^{a}, \quad g^{a} g^{b} \equiv g^{a+b}
$$

- One-way exponentiation makes it possible to design very efficient protocols for many problems.

Reminder: Groups

(\mathbb{G}, \circ) is a group if:

- \mathbb{G} is set, $\circ: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}$ is binary operation
- Associative: $g_{1} \circ\left(g_{2} \circ g_{3}\right)=\left(g_{1} \circ g_{2}\right) \circ g_{3}$
- Exists $1 \in \mathbb{G}$, s.t. for all $g, 1 \circ g=g \circ 1=g$
- $\forall g \exists g^{-1} \in \mathbb{G}$, s.t. $g \circ g^{-1}=g^{-1} \circ g=1$
(\mathbb{G}, \circ) is abelian if additionally $g_{1} \circ g_{2}=g_{2} \circ g_{1}$ for all g_{1}, g_{2}
- Multiplicative group: $\cdot, 1, g^{-1}$
- Additive group: $+, 0,-g$

Reminder: Cyclic groups

- Let (\mathbb{G}, \circ) be a group
- $g^{x}=g \cdot g \cdots \cdot g(x$ times $)$
- If $x=\sum 2^{i} x_{i}$ then $g^{x}=g^{\sum 2^{i} x_{i}}=\Pi\left(g^{2^{i}}\right)^{x_{i}}$
- $g^{-x}=g^{-1} \cdot g^{-1} \cdots \cdot g^{-1}$
- For $g \in \mathbb{G}$, let $\langle g\rangle:=\left\{g^{x}: x \in \mathbb{Z}\right\}$
- g is a generator of $\langle g\rangle$
- If $\mathbb{G}=\langle g\rangle$ then \mathbb{G} is cyclic
- Example:
- $(\mathbb{Z},+)$ is cyclic with generator 1
- $\left(\mathbb{Z}_{q}=\{0,1, \ldots, q-1\},+\right)$ is cyclic with gen. 1

Reminder: Group Order

- Element $g \in \mathbb{G}$ has order $q=\operatorname{ord}(g)$ if $g^{q}=1$ and $g^{i} \neq 1$ for $0<i<q$
- Group \mathbb{G} has order $q, q=\operatorname{ord}(\mathbb{G})$ if $q=\max _{g \in \mathbb{G}} \operatorname{ord}(g)$
- If \mathbb{G} is cyclic of order q, then for every generator $g, h \in \mathbb{G}$, there exists a unique $i \in \mathbb{Z}_{q}$, such that $h=g^{i}$
- Note that if $q=\operatorname{ord}(\mathbb{G})$, then
$\forall i: g^{i}=g^{i \bmod q}$

Reminder: Divisibility Etc

- For $a, b \in \mathbb{Z}, a \mid b$ if there exists $c \in \mathbb{Z}$ such that $b=c a$
- For $a, b>1, \operatorname{gcd}(a, b)$ is the greatest common divisor of a and b
- $\operatorname{gcd}(a, b)|a, \operatorname{gcd}(a, b)| b$
- If $c \mid a$ and $c \mid b$, then $c \leq \operatorname{gcd}(a, b)$
- If $\operatorname{gcd}(a, b)=1$, then a and b are coprime
- $\operatorname{gcd}(a, b)$ can be computed efficiently by using the Euclidean Algorithm

Instantiation 1 of

- For $n>1$,

$$
\mathbb{Z}_{n}^{*}:=\{i \in\{1, \ldots, n-1\}: \operatorname{gcd}(n, i)=1\}
$$

- Fact: i is reversible in $\left(\mathbb{Z}_{n}, \cdot\right)$ iff $\operatorname{gcd}(n, i)=1$
- $\left(\mathbb{Z}_{n}^{*}, \cdot\right)$ is group
- $\varphi(n):=\left|\mathbb{Z}_{n}^{*}\right|$ is Euler's totient function
- If p is prime, then $\varphi(p)=p-1$
- $\mathbb{Z}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\}$
- Lagrange's theorem: If \mathbb{G} is finite and $\mathbb{G}^{\prime} \subseteq \mathbb{G}$ is subgroup, then $\operatorname{ord}\left(\mathbb{G}^{\prime}\right) \mid \operatorname{ord}(\mathbb{G})$
- OTOH: If $q \mid p$ and \mathbb{G} is group of order p, then \mathbb{G} has subgroup of order q

Instantiation 1 of

Example

Let p, q be two large primes s.t. $q \mid(p-1)$. Let \mathbb{G} be the unique subgroup of $\mathbb{Z}_{p^{*}}$ of order q. Let g be the generator of \mathbb{G}.

Explanation: $\left|\mathbb{Z}_{p}^{*}\right|=p-1$, thus there exists (unique) subgroup \mathbb{G} of \mathbb{Z}_{p}^{*} of order q. In practical instantiations, $\log _{2} p \approx 1536$ and $\log _{2} q \approx 160$. We need 1536 bits to represent an element of \mathbb{G}. Exponentiation in \mathbb{G} takes up to 160 multiplications.

Instantiation 2 of

The most popular alternative involves elliptic curve groups, where $\log _{2} q=160$ and \mathbb{G} can be represented by using $\approx \log _{2} q$ bits. Much more efficient than the previous case, though also much more complicated mathematics.
Fineprint: The elliptic curve groups must be chosen carefully. For example, in some e.c. groups, one can efficiently solve DDH problem. But such groups are useful otherwise.

Abstracting

In the next, we will abstract away the concrete group and assume that \mathbb{G} is a multiplicative cyclic group of order q (with some hardness assumptions).

Second Lecture: Elgamal

See [Elgamal, 1985] for original paper on Elgamal cryptosystem.

Reminder: group isomorphisms

- Let $\left(\mathbb{G}_{1},+\right)$ and $\left(\mathbb{G}_{2}, \cdot\right)$ be groups
- Function $f: \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$ is group isomorphism, if
- $f\left(g_{1}+g_{2}\right)=f\left(g_{1}\right) \cdot f\left(g_{2}\right)$
- $f(0)=1$
- $f(-g)=f(g)^{-1}$

Discrete Logarithm Problem

- Let \mathbb{G} be cyclic group of prime order q
- Efficiently computable isomorphism $f(a): \mathbb{Z}_{q} \rightarrow \mathbb{G}$: given a generator g, $a \mapsto g^{a}=: f(a)$.
- f is an isomorphism:

$$
\begin{aligned}
& f(a) \cdot f(b)=g^{a} g^{b}=g^{a+b}=f(a+b), \\
& f(0)=g^{0}=1, f(-a)=g^{-a}=1 / g^{a}=f(a)^{-1}
\end{aligned}
$$

- Discrete Logarithm Assumption: f^{-1} is intractable to compute. I.e., given $\left(g, g^{a}\right)$, it is difficult to find a.

Reminder: Basic Complexity Theory

- Parameter: input size κ
- poly $(\kappa)=\kappa^{O(1)}$: polynomial in κ, exists polynomial f such that $|p o l y(\kappa)| \leq|f(\kappa)|$
- neg $/(\kappa)=\kappa^{-\omega(1)}$: negligible in κ, for every polynomial $f,|p o l y(\kappa)|<\left|f^{-1}(\kappa)\right|$
- "Efficient" algorithm: works in time poly (κ)
- Probabilistic algorithm can use a random string
- Non-uniform algorithm: construction of algorithm for concrete input size can be inefficient

DL Assumption, More Formally

Let \mathbb{G} be a cyclic group of prime order q. Fix generator $g \in \mathbb{G}$. Let

$$
\operatorname{Adv} v_{\mathbb{G}}^{d \prime}(\mathcal{A}):=\operatorname{Pr}\left[a \leftarrow \mathbb{Z}_{q}: \mathcal{A}\left(g, g^{a}\right)=a\right]
$$

We say that \mathbb{G} is (τ, ε)-DL group if for any non-uniform probabilistic adversary \mathcal{A} that works in time $\leq \tau, A d v_{\mathbb{G}}^{d \prime}(\mathcal{A}) \leq \varepsilon$.
We say \mathbb{G} is DL group if it is $(p o l y(\kappa), n e g /(\kappa))$-DL group.

Assumption:

- Sampleability: it is easy to pick a random element from \mathbb{G}
- Follows from isomorphism: sample $a \leftarrow \mathbb{Z}_{q}$ (easy) and compute $b \leftarrow g^{a}$; since a is a random element of \mathbb{Z}_{q}, then b is a random element of \mathbb{G}

Diffie-Hellman Key Exchange Protocol I

- Alice and Bob have both secret keys $s k_{a}$ and $s k_{b}$ and public keys $p k_{a}$ and $p k_{b}$
- Only Alice knows sk ${ }_{a}$, while everybody knows $p k_{a}$. Same for Bob
- Alice and Bob generate a new common secret key x such that only Alice and Bob know it
- x is later used to encrypt other messages
- We assume that all messages are sent on authenticated channels
- Alice's/Bob's messages are known to come from Alice/Bob

Diffie-Hellman Key Exchange Protocol II

- Fix prime q,
s.t. $\log _{2} q \approx 2 \cdot \kappa$, and cyclic group \mathbb{G} of order q.
Let g be generator of \mathbb{G}
- Protocol is on the right
- $x_{a}=\left(g^{s k_{b}}\right)^{5 k_{a}}=g^{s k_{a} \cdot s k_{b}}$
$=\left(g^{s k_{a}}\right)^{s k_{b}}=x_{b}$ and Alice and Bob have established
a secret key

Security of DH Key Exchange

- Goal of adversary: given $\left(g, g^{s k_{a}}, g^{s k_{b}}\right)$ for random $\mathrm{sk}_{a}, \mathrm{sk}_{b} \leftarrow \mathbb{Z}_{q}$, output $x=g^{\mathrm{sk}_{a} \cdot \mathrm{sk}_{b}}$
- This is not known to be hard under DL assumption, and thus there is separate assumption (CDH) for this problem
- Computational Diffie-Hellman
- If CDH is hard, then clearly DL is hard
- There are some contrived groups where DL is hard but CDH is not

CDH Assumption, Formally

Let \mathbb{G} be a cyclic group of prime order q. Fix generator $g \in \mathbb{Z}_{q}^{*}$. Let

$$
A d v_{\mathbb{G}}^{c d h}(\mathcal{A}):=\operatorname{Pr}\left[a, b \leftarrow \mathbb{Z}_{q}: \mathcal{A}\left(g, g^{a}, g^{b}\right)=g^{a b}\right]
$$

We say that \mathbb{G} is (τ, ε)-CDH group if for any non-uniform probabilistic adversary \mathcal{A} that works in time $\leq \tau, \operatorname{Adv} v_{\mathbb{G}}^{c d h}(\mathcal{A}) \leq \varepsilon$.
We say \mathbb{G} is CDH group if it is
(poly (κ), neg/(κ))-CDH group.

Security of DH Key Exchange, II

- Goal of adversary: given $\left(g, g^{\text {sk }}, g^{\text {sk }}\right.$) for random $\mathrm{sk}_{a}, \mathrm{sk}_{b} \leftarrow \mathbb{Z}_{q}$, output $x \leftarrow g^{\text {sk } \mathrm{s}_{a} \cdot \mathrm{sk}}{ }_{b}$
- Not sufficient!
- Adversary should not get to know anything about x, i.e., x should look to her completely random
- Not known to be hard under CDH assumption, and thus there is separate assumption for this problem
- Decisional Diffie-Hellman
- There are well-known CDH groups that are not DDH groups

DDH Assumption, Formally

Let \mathbb{G} be cyclic, prime order q. Fix gen. $g \in \mathbb{Z}_{q}^{*}$.

Experiment 1

Set $(a, b) \leftarrow \mathbb{Z}_{q} \times \mathbb{Z}_{q}$.
Set $\vec{g} \leftarrow\left(g, g^{a}, g^{b}, g^{a b}\right)$.

Experiment 2

Set $(a, b, c) \leftarrow \mathbb{Z}_{q} \times \mathbb{Z}_{q} \times \mathbb{Z}_{q}$.
Set $\vec{g} \leftarrow\left(g, g^{a}, g^{b}, g^{c}\right)$.
$\operatorname{Adv}_{\mathbb{G}}^{d d h}(\mathcal{A}):=|\operatorname{Pr}[\operatorname{Exp} 1: \mathcal{A}(\vec{g})=1]-\operatorname{Pr}[\operatorname{Exp} 2: \mathcal{A}(\vec{g})=1]|$.
\mathbb{G} is (τ, ε)-DDH group if for any non-uniform probabilistic adversary \mathcal{A} that works in time $\leq \tau$, $A d v_{\mathbb{G}}^{d d h}(\mathcal{A}) \leq \varepsilon$.
\mathbb{G} is DDH group $\Leftrightarrow(\operatorname{poly}(\kappa)$, negl $(\kappa))$-DDH group.

Public-Key Encryption

Public-key cryptosystem is triple of efficient algorithms $\Pi=(G, E, D)$, such that

- κ is security parameter (e.g., key length)
- (sk, pk) $\leftarrow G\left(1^{\kappa}\right)$ is key generation algorithm
- $E_{\mathrm{pk}}(m ; r)=c$ is randomized encryption algorithm
- $D_{\text {sk }}(c)=m$ is decryption algorithm
and
Correctness: $D_{\mathrm{sk}}\left(E_{\mathrm{pk}}(m ; r)\right)=m$ for all m, r and

$$
(\mathrm{sk}, \mathrm{pk}) \in G\left(1^{\kappa}\right)
$$

Homomorphic Encryption

A public-key cryptosystem is multiplicatively homomorphic if:

- The plaintext set (\mathcal{M}, \cdot) is multiplicative group, the randomizer set (\mathcal{R}, \circ) is group, and the ciphertext set (\mathcal{C}, \cdot) is multiplicative group.
- All three sets can depend on (sk, pk).
- $E_{\mathrm{pk}}\left(m_{1} ; r_{1}\right) \cdot E_{\mathrm{pk}}\left(m_{2} ; r_{2}\right)=E_{\mathrm{pk}}\left(m_{1} \cdot m_{2} ; r_{1} \circ r_{2}\right)$
- Thus $D_{\mathrm{sk}}\left(E_{\mathrm{pk}}\left(m_{1} ; r_{1}\right) \cdot E_{\mathrm{pk}}\left(m_{2} ; r_{2}\right)\right)=m_{1} \cdot m_{2}$ for every $m_{1}, m_{2}, r_{1}, r_{2}$.
- Discrete logarithm problem is hard in group \mathcal{M}

Hom. Encryption: Basic Properties

- $D_{\mathrm{sk}}\left(E_{\mathrm{pk}}\left(m_{1} ; r_{1}\right) \cdot E_{\mathrm{pk}}\left(m_{2} ; r_{2}\right)\right)=m_{1} \cdot m_{2}$
- Computation of encryption of $m_{1} \cdot m_{2}$ does not need knowledge of m_{1} or m_{2}
- For $m \in \mathcal{M}$ and $\alpha \in \mathbb{Z}_{|\mathcal{M}|}$, $D_{\mathrm{sk}}\left(E_{\mathrm{pk}}(m ; r)^{\alpha}\right)=m^{\alpha}$ (by def. of exp.)
- Given x and $\left\{E_{\mathrm{pk}}\left(g^{f_{i}}\right)\right\}$ for $i \in\{0, \ldots, t\}$, one can compute

$$
E_{\mathrm{pk}}\left(g^{f(x)}\right)=\prod_{i=0}^{t} E_{\mathrm{pk}}\left(g^{f_{i}}\right)^{x^{i}}
$$

where $f(X):=\sum_{i=0}^{t} f_{i} X^{i}$

Elgamal Encryption

Assume a cyclic group $\mathbb{G}=\langle g\rangle$ of prime order q.

- $G\left(1^{\kappa}\right)$: let $s k \leftarrow \mathbb{Z}_{q}$ and $p k \leftarrow h=g^{\text {sk }}$.
- Encryption of $m \in \mathbb{G}$: generate random $r \leftarrow \mathbb{Z}_{q}$. Compute $E_{\mathrm{pk}}(m ; r) \leftarrow\left(m h^{r}, g^{r}\right)$
- Decryption of $c=\left(c_{1}, c_{2}\right) \in \mathbb{G}^{2}$: set $D_{\text {sk }}\left(c_{1}, c_{2}\right) \leftarrow c_{1} / c_{2}^{\text {sk }}$.
Correctness:

$$
\begin{aligned}
D_{\mathrm{sk}}\left(E_{\mathrm{pk}}(m ; r)\right) & =D_{\mathrm{sk}}\left(m h^{r}, g^{r}\right)=m \cdot h^{r} /\left(g^{r}\right)^{\mathrm{sk}} \\
& =m \cdot\left(g^{\mathrm{sk}}\right)^{r} /\left(g^{\mathrm{sk}}\right)^{r}=m .
\end{aligned}
$$

Elgamal Encryption is Homomorphic

Homomorphism in cyclic group \mathbb{G} of order q, where DL is assumed to be hard. Ciphertext group is \mathbb{G}^{2} with $\left(g_{1}, g_{1}^{\prime}\right) \cdot\left(g_{2}, g_{2}^{\prime}\right)=\left(g_{1} g_{2}, g_{1}^{\prime} g_{2}^{\prime}\right)$

$$
\begin{aligned}
E_{\mathrm{pk}}\left(m_{1} ; r_{1}\right) \cdot E_{\mathrm{pk}}\left(m_{2} ; r_{2}\right) & =\left(m_{1} m_{2} h^{r_{1}+r_{2}}, g^{r_{1}+r_{2}}\right) \\
& =E_{\mathrm{pk}}\left(m_{1} \cdot m_{2} ; r_{1}+r_{2}\right) .
\end{aligned}
$$

Also, for known α,

$$
E_{\mathrm{pk}}(m ; r)^{\alpha}=\left(m^{\alpha} h^{\alpha r}, g^{\alpha r}\right)=E_{\mathrm{pk}}\left(m^{\alpha} ; \alpha r\right) .
$$

Example Protocol: Asymmetric Veto

- Alice learns if
$a \wedge b=1$, Bob learns nothing
- Comp. DL is easy
- In semihonest model, Alice learns nothing except $a \wedge b$, if
Elgamal is secure
Alice (a)

$(\mathrm{sk}, \mathrm{pk}) \leftarrow G\left(1^{k}\right)$,
$r \leftarrow \mathcal{R}$

(pk, $\left.E_{\mathrm{pk}}\left(g^{\mathrm{a}} ; r\right)\right)$

$$
\underset{\substack{\operatorname{mLD} \\
=D L\left(g^{a b}\right)=a b}}{\stackrel{c}{c} \quad \begin{array}{l}
\left.c \leftarrow E_{\text {pk }}\left(g^{a} ; r\right)^{b}\right) \\
=E_{p k}\left(g^{a b} ; b r\right)
\end{array}}
$$

IND-CPA Security

Assume $\Pi=(G, E, D)$. Let \mathcal{A} be efficient adversary.

Experiment 1

Set (sk, pk) $\leftarrow G\left(1^{\kappa}\right)$.
Obtain $\left(m_{1}, m_{2}\right) \leftarrow \mathcal{A}(\mathrm{pk})$.
Output $E_{\mathrm{pk}}\left(m_{1} ; r\right)$ for $r \leftarrow \mathcal{R}$.

Experiment 2

Set (sk, pk) $\leftarrow G\left(1^{\kappa}\right)$.
Obtain $\left(m_{1}, m_{2}\right) \leftarrow \mathcal{A}(\mathrm{pk})$.
Output $E_{\mathrm{pk}}\left(m_{2} ; r\right)$ for $r \leftarrow \mathcal{R}$.
$A d v_{\Pi}^{c p a}(\mathcal{A}):=|\operatorname{Pr}[\operatorname{Exp} 1: \mathcal{A}=1]-\operatorname{Pr}[\operatorname{Exp} 2: \mathcal{A}=1]|$.
Π is IND-CPA secure if no efficient \mathcal{A} has non-negligible $A d v_{\Pi}^{\text {cpa }}(\mathcal{A})$.

Elgamal Is IND-CPA Secure

Theorem

Assume that \mathbb{G} is DDH-group. Then Elgamal is

 IND-CPA secure.For proof, we note that if $\left(g_{1}, g_{2}, g_{3}, g_{4}\right)=\left(g, g^{a}, g^{b}, g^{a b}\right)$ then $\left(g_{4}, g_{3}\right)=\left(g^{a b}, g^{b}\right)$ is encryption of 1 under public key $\mathrm{pk}=g_{2}=g^{\text {a }}$.
OTOH, if $\left(g_{1}, g_{2}, g_{3}, g_{4}\right)=\left(g, g^{a}, g^{b}, g^{c}\right)$ for random c, then $\left(g_{4}, g_{3}\right)=\left(g^{c}, g^{b}\right)=\left(g^{c-a b} g^{a b}, g^{b}\right)$ is encryption of random plaintext $g^{c-a b}$ under public key $\mathrm{pk}=g_{2}=g^{a}$.

Elgamal Is IND-CPA Secure: Proof II

Assume that \mathcal{A} can break IND-CPA security with probability ε. Construct the next DDH distinguisher \mathcal{D}. (This shows that if DDH is hard, then Elgamal is IND-CPA secure.)

Elgamal Is IND-CPA Secure: Proof II I

Main idea of the proof: \mathcal{D} participates in DDH "game" with challenger. Since \mathcal{A} can break IND-CPA of Elgamal, \mathcal{D} can use "help" from \mathcal{A}. Help consists in interacting with \mathcal{A} in conversation that looks like IND-CPA game to \mathcal{A}. Thus, \mathcal{A} will "break" IND-CPA of Elgamal inside that game with probability ε.

Elgamal Is IND-CPA Secure: Proof II II

Challenger

$$
\begin{aligned}
& b_{d d h} \leftarrow\{1,2\}, \\
& g_{1} \leftarrow \mathbb{G},(a, b, c) \leftarrow \mathbb{Z}_{q}^{3}, \\
& g_{2} \leftarrow g_{1}^{a}, g_{3} \leftarrow g_{1}^{b}, \\
& g_{4} \leftarrow\left(b_{d d h}=1\right) ? g_{1}^{a b}: g_{1}^{c}
\end{aligned}
$$

Elgamal Is IND-CPA Secure: Proof IV

$$
\mathcal{D}\left(g_{1}, g_{2}, g_{3}, g_{4}\right)
$$

$$
\begin{gathered}
\stackrel{g \leftarrow g_{1}, \mathrm{pk} \leftarrow g_{2}}{\left(m_{1}, m_{2}\right)} \leftarrow \mathcal{A}(g, \mathrm{pk}) \\
b_{c p a} \leftarrow\{1,2\}, \\
\left(c_{1}, c_{2}\right) \leftarrow\left(m_{b_{c p a}} \cdot g_{4}, g_{3}\right)\left(c_{1}, c_{2}\right) \\
\\
\\
\\
b_{\text {ddh }=\left(b_{c p a}^{\prime}=b_{c p a}\right) ? 1: 2}^{\longleftrightarrow}
\end{gathered}
$$

Elgamal is IND-CPA Secure: Proof V

$$
\begin{aligned}
\operatorname{Pr} & {[\mathcal{D} \text { is correct }]=\operatorname{Pr}\left[b_{d d h}^{\prime}=b_{d d h}\right] } \\
= & \operatorname{Pr}\left[b_{d d h}^{\prime}=1: b_{d d h}=1\right] \operatorname{Pr}\left[b_{d d h}=1\right]+ \\
& \operatorname{Pr}\left[b_{d d h}^{\prime}=2: b_{d d h}=2\right] \operatorname{Pr}\left[b_{d d h}=2\right] \\
= & \frac{1}{2} \cdot \operatorname{Pr}\left[b_{c p a}^{\prime}=b_{c p a}: b_{d d h}=1\right]+\frac{1}{2} \cdot \operatorname{Pr}\left[b_{c p a}^{\prime} \neq b_{c p a}: b_{d d h}=2\right] \\
= & \frac{1}{2} \cdot \varepsilon+\frac{1}{2} \cdot \frac{1}{2}=\frac{\varepsilon}{2}+\frac{1}{4} .
\end{aligned}
$$

Thus if \mathcal{A} is successful, then \mathcal{D} is successful with approximately same time and success probability. QED

Third Lecture: MH Protocols. Security

Homomorphic Encryption: Blinding

- Let $E_{\mathrm{pk}}(m ; \mathcal{R})$ be distribution that one gets by first choosing $r \leftarrow \mathcal{R}$ and then outputting $E_{\mathrm{pk}}(m ; r)$
- Rerandomization/blinding: For any $m \in \mathcal{M}$ and $r \in \mathcal{R}$,

$$
E_{\mathrm{pk}}(m ; r) \cdot E_{\mathrm{pk}}(1 ; \mathcal{R})=E_{\mathrm{pk}}(m ; \mathcal{R})
$$

- Holds since \mathcal{R} is cyclic, sampleable group
- Used in situations where revealing r might compromise privacy

Example Protocol: Scalar Product I

- Alice has $\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}_{q}^{t}$
- Bob has $\left(b_{1}, \ldots, b_{t}\right) \in \mathbb{Z}_{q}^{t}$
- Alice learns $\sum_{i=1}^{t} a_{i} b_{i} \bmod q \in \mathbb{Z}_{q}$
- Privacy in semihonest model:
- Alice learns nothing else, Bob learns nothing

Example Protocol: Scalar Product II

- Comp. DL is easy if a_{i}, b_{i} are
Boolean (Alice's output is $\leq t$)
- r is used for blinding: c is a random encryption of g^{m}

$$
\text { Alice }\left(a_{1}, \ldots, a_{t}\right)
$$

$$
\operatorname{Bob}\left(b_{1}, \ldots, b_{t}\right)
$$

$$
(\text { sk, pk }) \leftarrow G\left(1^{\kappa}\right)
$$

$$
\left(r_{1}, \ldots, r_{t}\right) \leftarrow \mathcal{R}^{t}
$$

$$
c_{i} \leftarrow E_{p k}\left(g^{a_{i}} ; r_{i}\right)
$$

$$
\xrightarrow{\left(\mathrm{pk},\left(c_{1}, \ldots, c_{t}\right)\right)}
$$

$$
r \leftarrow \mathcal{R},
$$

$$
c \leftarrow \prod_{i=1}^{t} c_{i}^{b_{i}} \cdot E_{\mathrm{pk}}(1 ; r)
$$

c
$m \leftarrow \log _{g}\left(D_{s k}(c)\right)$

Correctness: Scalar Product Protocol

Recall $c_{i}=E_{\mathrm{pk}}\left(g^{a_{i}} ; r_{i}\right)$. Clearly,

$$
\begin{aligned}
c & =\prod_{i=1}^{t} c_{i}^{b_{i}} \cdot E_{\mathrm{pk}}(1 ; r)=\prod_{i=1}^{t} E_{\mathrm{pk}}\left(g^{a_{i}} ; r_{i}\right)^{b_{i}} \cdot E_{\mathrm{pk}}(1 ; r) \\
& =E_{\mathrm{pk}}\left(g^{\sum_{i=1}^{t} a_{i} b_{i}} ; \sum_{i=1}^{t} b_{i} r_{i}+r\right) .
\end{aligned}
$$

and thus
$m=\log _{g}\left(D_{s k}(c)\right)=\log _{g}\left(g^{\sum_{i=1}^{t} a_{i} b_{i}}\right)=\sum_{i=1}^{t} a_{i} b_{i}$

Example Protocol: Hamming Distance I

- Alice has $\vec{a}:=\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}_{2}^{t}$
- Bob has $\vec{b}:=\left(b_{1}, \ldots, b_{t}\right) \in \mathbb{Z}_{2}^{t}$
- Define $w_{h}(\vec{a}, \vec{b}):=\left|\left\{i \in\{1, \ldots, t\}: a_{i} \neq b_{i}\right\}\right|$
- Alice learns $w_{h}(\vec{a}, \vec{b})$
- Privacy in semihonest model:
- Alice learns nothing else, Bob learns nothing
- Clearly $w_{h}(\vec{a}, \vec{b}):=\sum_{i=1}^{t}\left(a_{i} \oplus b_{i}\right)=$
$\sum_{i=1}^{t}\left(b_{i}+(-1)^{b_{i}} a_{i}\right):$
- $0+(-1)^{0} a_{i}=a_{i}=a_{i} \oplus 0$
- $1+(-1)^{1} a_{i}=1-a_{i}=a_{i} \oplus 1$

Example Protocol: Hamming Distance II

Alice $\left(a_{1}, \ldots, a_{t}\right)$

$$
\begin{aligned}
& (\mathrm{sk}, \mathrm{pk}) \leftarrow G\left(1^{\kappa}\right), \\
& \left(r_{1}, \ldots, r_{t}\right) \leftarrow \mathcal{R}^{t}, \\
& c_{i} \leftarrow E_{p k}\left(g^{a_{i}} ; r_{i}\right)
\end{aligned}
$$

$\left(\mathrm{pk},\left(c_{1}, \ldots, c_{t}\right)\right)$

$$
\begin{aligned}
& r \leftarrow \mathcal{R}, \\
& c \leftarrow \prod_{i=1}^{t}\left(E_{\mathrm{pk}}\left(g^{b_{i}} ; 0\right) \cdot c_{i}^{(-1)^{b_{i}}}\right) \cdot E_{\mathrm{pk}}(1 ; r)
\end{aligned}
$$

$$
m \leftarrow \log _{g}\left(D_{s k}(c)\right)
$$

Correctness: Hamming Distance Protocol

Recall $c_{i}=E_{\mathrm{pk}}\left(g^{a_{i}} ; r_{i}\right)$. Clearly,

$$
\begin{aligned}
c & =\prod_{i=1}^{t}\left(E_{\rho k}\left(g^{b_{i}} ; 0\right) \cdot c_{i}^{(-1)^{b_{i}}}\right) \cdot E_{\mathrm{pk}}(1 ; r) \\
& =E_{\mathrm{pk}}\left(g^{\sum_{i=1}^{t}\left(b_{i}+(-1)^{b_{i}} a_{i}\right)} ; \sum_{i=1}^{t}(-1)^{b_{i}} r_{i}+r\right)=E_{\mathrm{pk}}\left(g^{w_{h}(\vec{a}, \vec{b})} ; \ldots\right) .
\end{aligned}
$$

and thus $m=\log _{g}\left(D_{s k}(c)\right)=\log _{g}\left(g^{w_{h}(\vec{a}, \vec{b}}\right)=w_{h}(\vec{a}, \vec{b})$

2-Message Protocols I

- 2-pessage protocol is IND-CPA secure if Bob cannot distinguish between Alice's message, corresponding to Alice's input a_{1}, from Alice's message, corresponding to a_{2}

$$
(\mathfrak{q}, \text { state }) \leftarrow \operatorname{Query}\left(1^{\kappa}, a\right)
$$

$\mathfrak{a}=\operatorname{Answer}\left(1^{\kappa}, a\right.$, state, $\left.\mathfrak{r}\right)$

- Similar definition to IND-CPA of PKC

IND-CPA Security of -Message Protocols

Assume $\Gamma=($ Query, Reply, Answer). Let \mathcal{A} be efficient adversary.

Experiment 1

Obtain $\left(a_{1}, a_{2}\right) \leftarrow \mathcal{A}\left(1^{\kappa}\right)$.
Output \mathfrak{q} where $(\mathfrak{q}$, state $) \leftarrow$ Query $\left(a_{1}\right)$.

Experiment 2

Obtain $\left(a_{1}, a_{2}\right) \leftarrow \mathcal{A}\left(1^{\kappa}\right)$.
Output \mathfrak{q} where $(\mathfrak{q}$, state $) \leftarrow \operatorname{Query}\left(a_{2}\right)$.
$A d v_{\Gamma}^{c p a}(\mathcal{A}):=|\operatorname{Pr}[\operatorname{Exp} 1: \mathcal{A}=1]-\operatorname{Pr}[\operatorname{Exp} 2: \mathcal{A}=1]|$.
Γ is IND-CPA secure if no efficient \mathcal{A} has non-negligible $A d v_{\Gamma}^{\text {cpa }}(\mathcal{A})$.

2-Message Homomorphic Protocols

- a - anything
(e.g., a real value)
- $m_{i} \in \mathcal{M}$ are functions of a
- $m_{i}=m_{i}(a)$

Alice (a)

$(\mathrm{sk}, \mathrm{pk}) \leftarrow G\left(1^{\kappa}\right)$,
For $i \in\{1, \ldots, t\}$,
$c_{i} \leftarrow E_{\mathrm{pk}}\left(m_{i}, r_{i}\right)$
$\xrightarrow{\left(\mathrm{pk} ; c_{1}, \ldots, c_{t}\right)}$ $\mathfrak{r} \leftarrow \operatorname{Reply}\left(1^{\kappa}, b, \mathrm{pk}, c_{1}, \ldots, c_{t}\right)$

$\mathfrak{a}=\operatorname{Answer}\left(1^{\kappa}, a, \mathrm{sk}, \mathrm{pk}, \mathrm{r}\right)$

Metatheorem: 2MHP are IND-CPA Secure

Theorem

Assume $\Pi=(G, E, D)$ is IND-CPA secure. Then $\Gamma=($ Query, Reply, Answer) is IND-CPA secure.

Proof: 2MHP are IND-CPA Secure I

Assume \mathcal{A} can break 「 with time τ and probability ε. Construct adversary \mathcal{B} that breaks Π with same probability and time $\tau+2 t \tau_{\exp }+$ small as follows. ($\tau_{\text {exp }}$ is time for one exp.)

Proof: 2MHP are IND-CPA Secure II

$(\mathrm{sk}, \mathrm{pk}) \leftarrow G\left(1^{\kappa}\right) \quad \mathrm{pk}$
$\left(g^{0}, g^{1}\right)$
$b_{\Pi} \leftarrow\{1,2\}, r \leftarrow \mathcal{R}$, $c \leftarrow E_{\mathrm{pk}}\left(g^{b_{n}-1} ; r\right)$

Proof: 2MHP are IND-CPA Secure III

- \mathcal{A} first gives $\left(a_{1}, a_{2}\right)$ to \mathcal{B}
- Assume that if \mathcal{B} 's input to Γ is $a_{b_{\Pi}}$, then the values encrypted in Γ are $\left(f_{1}\left(a_{b_{\Pi}}\right), \ldots, f_{t}\left(a_{b_{\Pi}}\right)\right)$
- In Hamming distance protocol, $f_{i}(\vec{a})=a_{i}$
- Bob does not know $b_{\Pi} \in\{1,2\}$ but he knows $E_{\mathrm{pk}}\left(g^{b_{n}} ; r\right)$ and $\left(f_{j}\left(a_{1}\right), f_{j}\left(a_{2}\right)\right)$
- Clearly,

$$
\begin{aligned}
f_{j}\left(a_{b_{\Pi}}\right) & =\left(2-b_{\Pi}\right) f_{j}\left(a_{1}\right)+\left(b_{\Pi}-1\right) f_{j}\left(a_{2}\right) \\
\bullet \quad b_{\Pi} & =1:(2-1) f_{j}\left(a_{1}\right)+(1-1) f_{j}\left(a_{2}\right)=f_{j}\left(a_{1}\right) \\
\bullet \quad b_{\Pi} & =2:(2-2) f_{j}\left(a_{1}\right)+(2-1) f_{j}\left(a_{2}\right)=f_{j}\left(a_{2}\right)
\end{aligned}
$$

Proof: 2MHP are IND-CPA Secure IV

- $f_{j}\left(a_{b_{\Pi}}\right)=\left(2-b_{\Pi}\right) f_{j}\left(a_{1}\right)+\left(b_{\Pi}-1\right) f_{j}\left(a_{2}\right)$
- $c=E_{\text {pk }}\left(g^{b_{n}} ; r\right)$
- Thus $\left(E_{\mathrm{pk}}\left(g^{2} ; 0\right) / c\right)^{f_{j}\left(a_{1}\right)} \cdot\left(c / E_{\mathrm{pk}}(g ; 0)\right)^{f_{j}\left(a_{2}\right)}=$ $\underbrace{(\underbrace{\left(E_{p k}\left(g^{2} ; 0\right)\right.}_{E_{p}\left(g^{2} b_{\Pi}\right.} / E_{\mathrm{p}}\left(g^{b_{\Pi}} ; r\right))}_{E_{\mathrm{pk}}\left(g^{\left(2-b_{\Pi}\right) f_{j}\left(a_{1}\right)} ;-r r_{j}\left(a_{1}\right)\right)})^{f_{j}\left(a_{1}\right)} \cdot \underbrace{\left(E_{\mathrm{pk}}\left(g^{b_{\Pi}} ; r\right) / E_{\mathrm{pk}}(g ; 0)\right)^{f_{j}\left(a_{2}\right)}}_{E_{\mathrm{pk}}\left(g^{\left(b_{\Pi}-1\right) f_{j}\left(a_{2}\right)} ; r_{j}\left(a_{2}\right)\right)}$
$E_{\text {pk }}\left(g^{\left.\left(2-b_{\Pi}\right) f_{j}\left(a_{1}\right)+\left(b_{\Pi}-1\right) f_{f}\left(a_{2}\right) ; r\left(f_{j}\left(a_{2}\right)-f_{j}\left(a_{1}\right)\right)\right)=E_{\text {pk }}\left(g^{f_{j}\left(a_{b_{n}}\right)} ; r\left(f_{j}\left(a_{2}\right)-f_{j}\left(a_{1}\right)\right)\right)}\right.$
- \mathcal{B} can compute encryption of $g^{f_{j}\left(a b_{\square}\right)}$ without knowing b_{\square} !

Proof: 2MHP are IND-CPA Secure V

$$
\mathcal{B}\left(a_{1}, a_{2}, \mathrm{pk}, c\right)
$$

For $j \in\{1, \ldots, t\}$:
$c_{j} \leftarrow\left(E_{\mathrm{pk}}\left(g^{2} ; 0\right) / c\right)^{f_{j}\left(a_{1}\right)} \cdot\left(c / E_{\mathrm{pk}}(g ; 0)\right)^{f_{j}\left(a_{2}\right)} \cdot E_{\mathrm{pk}}(1 ; \mathcal{R})$
(pk; c_{1}, \ldots, c_{t})

$$
b_{\Gamma \leftarrow \mathcal{A}\left(\mathrm{pk} ; c_{1}, \ldots, c_{t}\right)}^{\prime}
$$

b_{Γ}^{\prime}

$$
b_{\Pi \leftarrow b_{\Gamma}^{\prime}}^{\prime}
$$

Proof: 2MHP are IND-CPA Secure VI

By previous discussion, \mathcal{B} 's input to Γ is equal to his honest input corresponding to $a_{b_{\Pi}}$ even if he does not know b_{\square}.
Assume \mathcal{A} is successful with probability ε. Then \mathcal{B} is successful with probability

$$
\operatorname{Pr}\left[b_{\Pi}^{\prime}=b_{\Pi}\right]=\operatorname{Pr}\left[b_{\Gamma}^{\prime}=b_{\Gamma}\right]=\varepsilon .
$$

\mathcal{B} 's time is dominated by the execution of \mathcal{A} and $2 t$ exponentiations. QED

Conclusions

- All homomorphic protocols are IND-CPA secure given PKC is IND-CPA secure
- We can always cite this metatheorem!
- E.g.: if PKC is IND-CPA secure, then Hamming distance protocol is IND-CPA secure
- No significant security loss in ε or τ
- Surprising: we intuitively expect that since attacker of Γ sees more than 1 ciphertext, he gains more advantage than when seeing just one
- Proof uses same homomorphic properties of $П$
- We will deal with server's security later

Different Homomorphism: E-Voting

- Two candidates, 0,1
- Assume voter $v_{i}, i \in\{1, \ldots, V\}$, votes for candidate $c_{i} \in\{0,1\}$
- Voter v_{i} encrypts his ballot as $C_{i} \leftarrow E_{\mathrm{pk}}\left(g^{c_{i}} ; r_{i}\right)$, sends it to vote collector
- At the end, vote collector "sums" all ballots as $C \leftarrow \prod_{i=1}^{V} C_{i}=E_{\mathrm{pk}}\left(g^{\sum_{i=1}^{V} c_{i}} ; \sum_{i=1}^{V} r_{i}\right)$ $=E_{\mathrm{pk}}\left(g^{\left|\left\{i: c_{i}=1\right\}\right|} ; \sum_{i=1}^{V} r_{i}\right)$

Different Homomorphism: E-Voting II

- Vote collector does not know sk, it is only known by separate tallier
- Vote collector sends $C \cdot E_{\mathrm{pk}}(1 ; \mathcal{R})$ to tallier
- By decrypting the result and taking discrete logarithm of it, tallier finds $\left|\left\{i: c_{i}=1\right\}\right|$, and declares 1 as winner exactly if that value is $>50 \%$ of voters
- Computation is efficient if number of voters is "small"
- DL of number from $\left\{0, \ldots, 2^{n}-1\right\}$ can be done in time $2^{n / 2}=\sqrt{2^{n}}$ by standard algorithms

Different Homomorphism: E-Voting III

- Viable say for $n \leq 80$ - and number of voters is smaller than 2^{80} !
- World population: $<2^{33}$

Multiple-Candidate Elections

- γ candidates mapped to $\{0, \ldots, \gamma-1\}$
- Voter v_{i} prefers candidate c_{i}. His ballot is $C_{i} \leftarrow E_{\mathrm{pk}}\left(g^{(V+1)^{c_{i}}} ; r_{i}\right)$
- Denote $T_{k}=\left|\left\{i: c_{i}=k\right\}\right|$ - number of voters who voted for k
- "Sum": $\prod_{i=1}^{V} C_{i}=E_{\mathrm{pk}}\left(g^{\sum_{i=1}^{V}(V+1)^{C_{i}}} ; \sum_{i=1}^{V} r_{i}\right)$
- Intuition:
- All voters who vote for k contribute $g^{V^{k}}$ to sum
- Thus sum is $g^{\sum_{i=0}^{\gamma-1} T_{i}(V+1)^{i}}$

Multiple-Candidate Elections II

- Basis $V+1$ was chosen here so that there are no overflows: $T_{i}<V+1$ and thus

$$
T_{i}(V+1)^{i}<(V+1)^{i+1}
$$

- Tallier takes discrete logarithm of sum, obtains $\sum_{i=0}^{\gamma-1} T_{i}(V+1)^{i}$
- Tallier looks at this as number in $(V+1)$-ary number system, where i th "digit" is equal to T_{i}
- Tallier extracts all digits $\left(T_{0}, \ldots, T_{\gamma-1}\right)$

See [Cramer et al., 1997, Damgård and Jurik, 2001]

Problems with MC Elections

- Maximum value for "sum" may be just slightly smaller than $g^{(V+1)^{\gamma}}$
- Assume $V=2^{20}-1$ (appr million), $\gamma=2^{3}=8$ (usual Estonian parliamentary election, voting for parties)
- $g^{(V+1)^{\gamma}}=g^{160}$, and computing DLs of this $\left(2^{80}\right.$ steps) is intractable!

Fourth Lecture: Additively Homomorphic Encryption

What Went Wrong?

- We always utilized multiplicatively homomorphic PKC (Elgamal) as additively homomorphic PKC in exponents, but at the end, one party had to compute DL
- By assumption if MH PKC, then DL is hard!
- Thus MH PKC is mostly only useful for applications where the final result comes from small (or well-structured) set

Lifted Elgamal

- Define lifted Elgamal (G, E, D) as follows
- Let \mathbb{G} be cyclic multiplicative group of prime order q, generator $g \in \mathbb{G}$
- Key generation: choose sk $\leftarrow \mathbb{Z}_{q}$, $\mathrm{pk}=h \leftarrow g^{\text {sk }}$
- Encryption: set $r \leftarrow \mathbb{Z}_{q}$, $c=\left(c_{1}, c_{2}\right)=E_{\mathrm{pk}}(m ; r):=\left(g^{m} h^{r}, g^{r}\right)$
- Decryption: set $D_{\mathrm{pk}}(c)=\log _{g}\left(c_{1} / c_{2}^{\mathrm{sk}}\right)$
- Correctness: $D_{\mathrm{pk}}\left(E_{\mathrm{pk}}(m ; r)\right)=$
$\log _{g}\left(g^{m} h^{r} /\left(g^{r}\right)^{\text {sk }}\right)=\log _{g} g^{m}=m$

Lifted Elgamal

- Additive homomorphism:

$$
\begin{aligned}
& E_{\mathrm{pk}}\left(m_{1} ; r_{1}\right) \cdot E_{\mathrm{pk}}\left(m_{2} ; r_{2}\right)=\left(g^{m_{1}+m_{2}} h^{r_{1}+r_{2}}, g^{r_{1}+r_{2}}\right) \\
& =E_{\mathrm{pk}}\left(m_{1}+m_{2} ; r_{1}+r_{2}\right)
\end{aligned}
$$

- All previous protocols can be rewritten in terms of lifted Elgamal, with small modifications
- $E_{\mathrm{pk}}\left(g^{a} ; r\right) \rightarrow E_{\mathrm{pk}}(a ; r)$ and $E_{\mathrm{pk}}(a ; r) \rightarrow E_{\mathrm{pk}}\left(\log _{g} a ; r\right)$
- $\log _{g} D_{\text {sk }}(c) \rightarrow D_{\text {sk }}(c)$ and $D_{\text {sk }}(c) \rightarrow g^{D_{\text {sk }}(c)}$
- All previous protocols and security results work
- Decryption is inefficient unless in a small plaintext space

Hamming Distance with Lifted Elgamal

Alice $\left(a_{1}, \ldots, a_{t}\right)$
$\operatorname{Bob}\left(b_{1}, \ldots, b_{t}\right)$

$$
\begin{aligned}
& (\mathrm{sk}, \mathrm{pk}) \leftarrow G\left(1^{\kappa}\right), \\
& \left(r_{1}, \ldots, r_{t}\right) \leftarrow \mathcal{R}^{t}, \\
& c_{i} \leftarrow E_{p k}\left(a_{i} ; r_{i}\right)
\end{aligned}
$$

$$
\left(\mathrm{pk},\left(c_{1}, \ldots, c_{t}\right)\right)
$$

$$
\begin{aligned}
& r \leftarrow \mathcal{R}, \\
& c \leftarrow \prod_{i=1}^{t}\left(E_{\mathrm{pk}}\left(b_{i} ; 0\right) \cdot c_{i}^{(-1)^{b_{i}}}\right) \cdot E_{\mathrm{pk}}(0 ; r)
\end{aligned}
$$

c

$$
m \leftarrow D_{s k}(c)
$$

Efficiency

- While efficiency of cryptographic protocols is very important, we have not talked about it much
- Several measures:
- Communication complexity
- Computational complexity (of Alice/Bob)
- Round complexity
- Up to now all protocols have had 2 messages

Efficiency of HD Protocol with L. Elgamal

- Communication complexity: $1 \mathrm{PK}+$ t ciphertexts $=2 t+1$ group elements
- 1 elliptic curve group element is 160 bits, thus $320 t+160$ bits
- Alice's computation (dominated by): $t \mathrm{enc}+1 \mathrm{dec}=2 t+1 \mathrm{exp}+1 \mathrm{DL}$
- Bob's computation (dom by): $\leq t$ inversions ($\approx t$ mults) and $t+\overline{1}$ mult
- $E_{\mathrm{pk}}\left(b_{i} ; 0\right)=\left(g^{b_{i}}, g\right)$ can be precomputed for $b_{i} \in\{0,1\}$ (costless - no exps)
- $E_{\mathrm{pk}}(0 ; r)=\left(h^{r}, g^{r}\right)(2 \operatorname{exps})$
- $c_{i}^{(-1)^{b_{i}}}$ is either c_{i} or c_{i}^{-1} (no $\left.\exp \right)$
- $1 \exp \approx 1.5 \log q=240$ mults, 1 DL $\approx 2^{t / 2}$ mults

Alice $\left(a_{1}, \ldots, a_{t}\right)$
Bob $\left(b_{1}, \ldots, b_{t}\right)$

- Alice: $\approx 480 t+120+2^{t / 2}$ mults

$$
\begin{aligned}
& (\mathrm{sk}, \mathrm{pk}) \leftarrow G\left(1^{\kappa}\right), \\
& \left(r_{1}, \ldots, r_{t}\right) \leftarrow \mathcal{R}^{t}, \\
& c_{i} \leftarrow E_{p k}\left(a_{i} ; r_{i}\right) \\
& \quad \begin{array}{l}
\left(\mathrm{pk},\left(c_{1}, \ldots, c_{t}\right)\right) \\
\\
\quad r \leftarrow \mathcal{R}, \\
c \leftarrow \prod_{i=1}^{t}\left(E_{\mathrm{pk}}\left(b_{i} ; 0\right) \cdot c_{i}^{\left.(-1)^{b_{i}}\right) \cdot E_{\mathrm{pk}}(0 ; r)}\right.
\end{array}
\end{aligned}
$$

- DL time dominates for $t \geq 28$

$$
m \leftarrow D_{s k}(c)
$$

() Bob: $\leq 2 t+1$ mults

Efficiency w (L.) Elgamal: General

- Alice:
- To encrypt t plaintexts, Alice encrypts t times $2 t \exp =3 t \log q$ mults
- Alice decrypts/computes DL say s times $s\left(1.5 \log q+2^{n / 2}\right)$ mults for some n
- Total: $3 t \log q+s\left(1.5 \log q+2^{n / 2}\right)$ mults
- Plus may be some additional ops
- Inherit lower bound
- Goal of protocol designer is to minimize t, s and n
- Bob's efficiency can vary

Additively Homomorphic Cryptosystems

- PKC (G, E, D) with

$$
E_{\mathrm{pk}}\left(m_{1} ; r_{1}\right) \cdot E_{\mathrm{pk}}^{\prime}\left(m_{2} ; r_{2}\right)=E_{\mathrm{pk}}\left(m_{1}+m_{2} ; r_{1} \circ r_{2}\right)
$$

- With efficient decryption - no need to compute DL!
- Lifted Elgamal: AH for small plaintext group
- Need AH PKC with large plaintext group
- Paillier [Paillier, 1999]: \mathbb{Z}_{n} with $n>2^{1536}$
- Damgård-Jurik [Damgård and Jurik, 2001]: \mathbb{Z}_{n}^{s} with $n>2^{1536}$ and integer $s \geq 1$

Background: Factoring Assumption

Let $\ell=\ell(\kappa)$ some bitlength, and $\mathcal{A}=\mathcal{A}_{\ell}$ be a non-uniform adversary. Let \mathfrak{P}_{ℓ} be the set of all ℓ-bit primes. Define
$A d v_{\ell}^{\text {fact }}(\mathcal{A}):=\operatorname{Pr}\left[p, q \leftarrow \mathfrak{P}_{\ell}, n \leftarrow p \cdot q: \mathcal{A}(n)=(p, q)\right]$
Factoring 2ℓ-bit RSA moduli is hard if for any non-uniform probabilistic adversary $\mathcal{A}=\mathcal{A}_{\ell}$ that works in time $\leq \tau, A d v_{\ell}^{\text {fact }}(\mathcal{A}) \leq \varepsilon$.
Best factorization algorithm (GNFS) works in time $e^{(\sqrt[3]{64 / 9}+o(1))(\log n)^{1 / 3}(\log \log n)^{2 / 3}}$ for integer n

Corollaries of Factoring Assumption I

- If factoring is hard, then computing $\varphi(n)$ for random RSA modulus n is hard
- $\varphi(n)=\varphi(p q)=(p-1)(q-1)=p q-p-q+1$
- If one knows both n and $\varphi(n)$, one also knows
$s=n-\varphi(n)+1=p+q$
- $n=p q=p(s-p)=s p-p^{2}$, thus
$p^{2}-s p+n=0-$ quadratic equation
- One can recover $p \leftarrow\left(s \pm \sqrt{s^{2}-4 n}\right) / 2$
- Example: $n=4347803203, \varphi(n)=4347671328$
- Thus $s=131876$, and $p=65809$ or $p=66067$. In fact, $65809 \cdot 66067=4347803203$

Corollaries of Factoring Assumption II

- Since $\phi(n)=\left|\mathbb{Z}_{n}^{*}\right|$, if $y=x^{e} \bmod n$ then $x=y^{e^{-1}} \bmod \phi(n) \bmod n$. Finding e^{-1} $\bmod \phi(n)$ is hard without knowing how to factor n
- A lot of other things are hard if factoring is hard

Background: Binomial Theorem and DL

- $(a+b)^{c}=\sum_{i=0}^{c}\binom{c}{i} a^{i} b^{c-i}$
- For example:
- $(n+1)^{c}=\sum_{i=0}^{c}\binom{c}{i} n^{i}=$
$1+c n+\binom{c}{2} n^{2}+$ higher powers of n
- $(n+1)^{c} \equiv c n+1\left(\bmod n^{2}\right)$
- Can compute certain discrete logarithms easily:
- If $y=(n+1)^{x} \bmod n^{2}$, then $y=x n+1 \bmod n^{2}$
- Thus $x=(y-1) / n \bmod n^{2}$
- Denote $L(y):=\frac{y-1}{n}$ (quotient of integer division)
- Thus: $L\left((n+1)^{x} \bmod n^{2}\right)=x$

Background: Basic Number Theory

- $\operatorname{Icm}(a, b)$ - least common multiplier
- a|lcm(a, b), b||cm(a,b)
- If $a \mid c$ and $b \mid c$, then $b \leq c$
- $a \cdot b=\operatorname{gcd}(a, b) \cdot \operatorname{Icm}(a, b)$
- Example: $a=4, b=6$
- $\operatorname{gcd}(4,6)=2, \operatorname{lcm}(4,6)=12$
- $4 \cdot 6=24=2 \cdot 12$

Background: Carmichael Function

- Def: for positive integer n, smallest positive integer $\lambda(n)=m$ such that $a^{m} \equiv 1(\bmod n)$ for every integer a coprime to n.
- $\lambda\left(p^{k}\right)=p^{k-1}(p-1)$ if $p \geq 3$ or $k \leq 2$ $\left(=\varphi\left(p^{k}\right)\right)$,
$\lambda\left(2^{k}\right)=2^{k-2}$ for $k \geq 3$, and
$\lambda\left(p_{1}^{k_{1}} \ldots p_{t}^{k_{t}}\right)=\operatorname{lcm}\left(\lambda\left(p_{1}^{k_{1}}\right), \ldots, \lambda\left(p_{t}^{k_{t}}\right)\right)$
Theorem (Carmichael Theorem)
If $\operatorname{gcd}(a, n)=1$ then $a^{\lambda(n)} \equiv 1(\bmod n)$.
Full proof is $6+$ pages.

Paillier's Cryptosystem: Key Generation

- Generate two independent random large prime numbers p and $q / /$ both ≥ 768 bits
- Let $n \leftarrow p \cdot q$
- Let $\lambda \leftarrow \lambda(n)=\operatorname{lcm}(p-1, q-1)$
- Let $\mu \leftarrow \lambda^{-1} \bmod n$.
- The public key is $\mathrm{pk}=n$, the private key is sk $=(\lambda, \mu)$

Paillier's Cryptosystem

- Encryption of $m \in \mathbb{Z}_{n}$ with $\mathrm{pk}=n$: Select random $r \leftarrow \mathbb{Z}_{n}^{*}$. Compute

$$
c \leftarrow(n+1)^{m} r^{n} \bmod n^{2}
$$

Note: $c=(m n+1) r^{n} \bmod n^{2}$
r has order $\varphi(n)=(p-1)(q-1)$.

- Decryption of $c \in \mathbb{Z}_{n^{2}}^{*}$ with $s k=(\lambda, \mu)$:
$m \leftarrow L\left(c^{\lambda} \bmod n^{2}\right) \cdot \mu \bmod n$

Correctness of Paillier Decryption

For sk $=(\lambda, \mu)$ and $\mathrm{pk}=n$,

$$
\begin{aligned}
D_{\mathrm{sk}}\left(E_{\mathrm{pk}}(m ; r)\right) & \equiv D_{\mathrm{sk}}\left((n+1)^{m} r^{n} \bmod n^{2}\right) \\
& \equiv L\left((n+1)^{\lambda m} r^{\lambda n} \bmod n^{2}\right) \cdot \mu \\
& \equiv L\left((\lambda m n+1) r^{\lambda n} \bmod n^{2}\right) \cdot \mu(\bmod n)
\end{aligned}
$$

We have to get rid of $r^{\lambda n}$

Correctness of Paillier Decryption

Now, $\lambda\left(n^{2}\right)=\lambda\left(p^{2} q^{2}\right)=\operatorname{Icm}\left(\lambda\left(p^{2}\right), \lambda\left(q^{2}\right)\right)=$ $\operatorname{lcm}(p(p-1), q(q-1))=p q \cdot \operatorname{lcm}(p-1, q-1)=\lambda n$. By Carmichael theorem, $r^{\lambda n} \equiv r^{\lambda\left(n^{2}\right)} \equiv 1 \bmod n^{2}$. Thus

$$
\begin{aligned}
D_{\mathrm{sk}}\left(E_{\mathrm{pk}}(m ; r)\right) & \equiv L(\lambda m n+1) \cdot \mu \\
& \equiv \lambda m \cdot \lambda^{-1} \\
& \equiv \frac{\lambda m}{\lambda} \equiv m(\bmod n) .
\end{aligned}
$$

Paillier: Homomorphism

Clearly,

$$
\begin{aligned}
& E_{\mathrm{pk}}\left(m_{1} ; r_{1}\right) \cdot E_{\mathrm{pk}}\left(m_{2} ; r_{2}\right) \equiv(n+1)^{m_{1}} r_{1}{ }^{n} \cdot(n+1)^{m_{2}} \cdot r_{2}{ }^{n} \\
& \equiv(n+1)^{m_{1}+m_{2}}\left(r_{1} r_{2}\right)^{n} \\
& \equiv E_{\mathrm{pk}}\left(m_{1}+m_{2} ; r_{1} \cdot r_{2}\right)\left(\bmod n^{2}\right)
\end{aligned}
$$

Thus the Paillier cryptosystem is homomorphic in $\mathcal{M}=\mathbb{Z}_{n}$.

Security of Paillier

x is n-th residue modulo n^{2} iff there exists y such that $y^{n} \equiv x\left(\bmod n^{2}\right)$

Definition

Decisional Composite Residuosity Assumption:

 Distinguish a random n-th residue from a random n-th non-residue modulo n^{2}.Equivalent (with small error): Distinguish a random n-th residue from a random element of $\mathcal{C}=\mathbb{Z}_{n^{2}}$. Fact: If factoring is easy, then DCRA is easy. Opposite is not known.

Homomorphic Protocols: Beginning Semisimulatability ++

Security of Paillier

Theorem

Assume that DCRA is true. Then Paillier is IND-CPA secure.

Sketch.

Idea: random encryption of 0 is a random n-th residue; random encryption of a random element in \mathcal{M} is a random element of \mathcal{C}. Proof goes along the same lines as the security proof of Elgamal.

Efficiency of Paillier

- $\log n \geq 1536$ (need hardness of factoring)
- Encryption: dom. by 1 1536-bit exp $-\approx 2304$ 3072-bit multiplications
- Less efficient than lifted Elgamal on elliptic curve groups (10x more mults, bitlength 20x longer)
- Decryption: dom. by 1 3072-bit exp - ≈ 2304 3072-bit multiplications
- Significantly more efficient than lifted Elgamal: polynomial instead of exponential - thus can decrypt much larger plaintexts
- Ciphertext: 3072 bits

2-Message AH Protocols

- a - anything
(e.g., a real value)
- $m_{i} \in \mathcal{M}$ are functions of a
- $m_{i}=m_{i}(a)$

Except this sentence,

 this is copy of previous slide!
Alice (a)

$(\mathrm{sk}, \mathrm{pk}) \leftarrow G\left(1^{\kappa}\right)$,
For $i \in\{1, \ldots, t\}$,
$c_{i} \leftarrow E_{\mathrm{pk}}\left(m_{i}, r_{i}\right)$

$\mathfrak{r} \leftarrow \operatorname{Reply}\left(1^{\kappa}, b, \mathrm{pk}, c_{1}, \ldots, c_{t}\right)$

$\mathfrak{a}=\operatorname{Answer}\left(1^{\kappa}, a, \mathrm{sk}, \mathrm{pk}, \mathfrak{r}\right)$

Efficiency of HD Protocol with Paillier

- Communication complexity: $1 \mathrm{PK}+$ t ciphertexts $=n$ and $2 t$ integers modulo $n^{2}$$1536+6144 t$ bits
- Alice's computation (dominated by): t enc $+1 \mathrm{dec}=t+1 \exp$
- Bob's computation (dom by): $\leq t$ inversions $(\approx t$ mults $)$ and $t+1$ mult
- $1 \exp \approx 1.5 \log n=2304$ mults
- Alice: $\approx 2304 t+2304$ mults
() Bob: $\approx 2 t+1$ mults
- Here: 3072-bit mult, in Elgamal -160-bit mult (much faster)

Alice $\left(a_{1}, \ldots, a_{t}\right)$
$(\mathrm{sk}, \mathrm{pk}) \leftarrow G\left(1^{\kappa}\right)$,
$\left(r_{1}, \ldots, r_{t}\right) \leftarrow \mathcal{R}^{t}$,
$c_{i} \leftarrow E_{p k}\left(a_{i} ; r_{i}\right)$

$r \leftarrow \mathcal{R}$,
$c \leftarrow \prod_{i=1}^{t}\left(E_{\mathrm{pk}}\left(b_{i} ; 0\right) \cdot c_{i}^{(-1)^{b_{i}}}\right) \cdot E_{\mathrm{pk}}(0 ; r)$ c

$$
m \leftarrow D_{s k}(c)
$$

Bob $\left(b_{1}, \ldots, b_{t}\right)$

Elgamal or Paillier

- If decrypted values not too big (DL efficient), use (lifted) Elgamal
- If decrypted values of average size, depends
- Alice's ops are 10x faster but Bob's ops 50x slower - what is more important?
- E.g.: homomorphic e-voting
- If decrypted values are large (DL intractable), use Paillier

Metatheorem: 2AHP are IND-CPA Secure

Theorem

Assume additively homomorphic $\Pi=(G, E, D)$ is IND-CPA secure. Then 「 = (Query, Reply, Answer) is IND-CPA secure.

Proof.

Simple modification of MH case. Replace plaintexts g^{x} with plaintexts x.

Fifth Lecture. Semisimulatability

For original definition of semisimulatability, see [Naor and Pinkas, 1999].
For our (me and Sven Laur) paper on DIE/CDS, see [Laur and Lipmaa, 2007]

Recap: 2-Message AH Protocols

- a - anything (e.g., a real value)
- $a_{i}(a) \in \mathcal{M}$ are functions of a
- Alice's privacy follows from IND-CPA of PKC

Alice (a)

$(\mathrm{sk}, \mathrm{pk}) \leftarrow G\left(1^{\kappa}\right)$, For $i \in\{1, \ldots, t\}$,

$$
c_{i} \leftarrow E_{\mathrm{pk}}\left(a_{i}, r_{i}\right)
$$

$$
\left(\mathrm{pk} ; c_{1}, \ldots, c_{t}\right)
$$

$\mathfrak{r} \leftarrow \operatorname{Reply}\left(1^{\kappa}, b, \mathrm{pk}, c_{1}, \ldots, c_{t}\right)$

$\mathfrak{a}=\operatorname{Answer}\left(1^{\kappa}, a, \mathrm{sk}, \mathrm{pk}, \mathfrak{r}\right)$

Recap: What Can Be Done with 2AH/2MH?

- Alice can encrypt arbitrary functions a_{i} of a - See m-c elections, Hamming distance protocol
- Bob can compute affine functions of encrypted values for some functions b_{i}, b^{\prime} of b :
$\mathrm{MH}: \prod_{i} E_{\mathrm{pk}}\left(g^{a_{i}} ; r_{i}\right)^{b_{i}} \cdot E_{\mathrm{pk}}\left(g^{b^{\prime}} ; r^{\prime}\right)=$
$E_{\mathrm{pk}}\left(g^{\sum_{i} b_{i} a_{i}+b^{\prime}} ; \cdot\right)$
$\mathrm{AH}: \prod_{i} E_{\mathrm{pk}}\left(a_{i} ; r_{i}\right)^{b_{i}} \cdot E_{\mathrm{pk}}\left(b^{\prime} ; r^{\prime}\right)=$ $E_{\mathrm{pk}}\left(\sum_{i} b_{i} a_{i}+b^{\prime} ; \cdot\right)$
- Quite limited - most freedom is in choosing a_{i}, b_{i}, b^{\prime}

Can We Do More?

- Functionality:
- Are there any non-algebraic things we can do?
- More algebraic freedom - compute quadratic equations, . . .?
- Many rounds - will it help?
- Many parties - will it help?
- Security:
- Previous protocols guaranteed only Alice's privacy - can we do more?

This Lecture

- Functionality:
- Are there any non-algebraic things we can do?
- More algebraic freedom - compute quadratic equations, . . .?
- Many rounds - will it help?
- Many parties - will it help?
- Security:
- Previous protocols guaranteed only Alice's privacy - can we do more?

Security in Malicious Model

- Alice:
- Privacy: Bob does not learn Alice's input -IND-CPA security, we dealt with it
- Security: Alice gets back correct answer - future lectures
- Bob:
- Privacy: Alice does not learn more about Bob's input than necessary
- Security: Bob gets back correct answer - easy

Recap: (Boolean) Scalar Product

- Alice has $\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}_{2}^{t}$
- Bob has $\left(b_{1}, \ldots, b_{t}\right) \in \mathbb{Z}_{2}^{t}$
- Alice learns $\sum_{i=1}^{t} a_{i} b_{i} \bmod q \in \mathbb{Z}_{q}$
- Privacy in semihonest model:
- Alice learns nothing else, Bob learns nothing
- What about privacy in malicious model?
- Bob still learns nothing, what about Alice?

Within this lecture we use Elgamal \& corresponding notation

Cheating the Scalar Product

- Alice obtains
$\sum_{i=1}^{t} a_{i} b_{i} \bmod q$
- Malicious Alice
sets $a_{i} \leftarrow 2^{i}$
- $\begin{aligned} & \sum_{i=1}^{t} a_{i} b_{i}= \\ & \sum_{i=1}^{t} 2^{i} b_{i} \bmod q\end{aligned}$
- Alice recovers Bob's whole input!

$$
\text { Alice }\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}_{2}^{t} \quad \operatorname{Bob}\left(b_{1}, \ldots, b_{t}\right) \in \mathbb{Z}_{2}^{t}
$$

$$
(\mathrm{sk}, \mathrm{pk}) \leftarrow G\left(1^{\kappa}\right),
$$

$$
\left(r_{1}, \ldots, r_{t}\right) \leftarrow \mathcal{R}^{t}
$$

$$
c_{i} \leftarrow E_{p k}\left(g^{a_{i}} ; r_{i}\right)
$$

$$
\left(\mathrm{pk},\left(c_{1}, \ldots, c_{t}\right)\right)
$$

$$
r \leftarrow \mathcal{R},
$$

$$
c \leftarrow \prod_{i=1}^{t} c_{i}^{b_{i}} \cdot E_{\mathrm{pk}}(1 ; r)
$$

$$
m \leftarrow \log _{g} D_{s k}(c)
$$

Getting Bob's Privacy. First Idea

- Malicious Alice can only attack SSP by encrypting values out of range
- Make it so that if Alice encrypts wrong values then Alice gets back garbage!

Randomizing Elgamal Plaintexts

- Plaintext group \mathcal{M} is cyclic of prime order q. Let g be generator
- For fixed $y=g^{x} \in \mathcal{M}$, and random $r \leftarrow \mathbb{Z}_{q}$,

$$
y^{r}=g^{x r}= \begin{cases}g, & x=0 \\ \text { random element of } \mathbb{G}, & \text { otherwise }\end{cases}
$$

- Latter holds since if $x \neq 0$ and r is random, then $x r \bmod q$ is a random element of \mathbb{Z}_{q}
- Thus $E_{\mathrm{pk}}(m ; s)^{r}$ for random r encrypts 1 if $m=1$, and encrypts random plaintext if $m \neq 1$

More Than Just Algebra

- Alice can encrypt arbitrary functions a_{i} of a
- See multi-candidate elections, Hamming distance protocols
- Bob can compute affine functions of encrypted values, $\prod_{i} E_{\mathrm{pk}}\left(g^{a_{i}} ; r_{i}\right)^{b_{i}} \cdot E_{\mathrm{pk}}\left(g^{b^{\prime}} ; \mathcal{R}\right)=$ $E_{\mathrm{pk}}\left(g^{\sum_{i} b_{i} a_{i}+b^{\prime}} ; \mathcal{R}\right)$
- Bob can conditionally randomize plaint-s: $\left(\prod_{i} E_{\mathrm{pk}}\left(g^{a_{i}} ; r_{i}\right)^{b_{i}} \cdot E_{\mathrm{pk}}\left(g^{b^{\prime}} ; 0\right)\right)^{\mathbb{Z}_{q}} \cdot E_{\mathrm{pk}}\left(g^{b^{\prime \prime}} ; \mathcal{R}\right)$ encrypts $g^{b^{\prime \prime}}$ if $\sum_{i} b_{i} a_{i}+b^{\prime}=0$, and a random value otherwise

Disclose-if-Equal Protocol with Elgamal

- Alice's input is $a \in \mathbb{Z}_{q}$
- Bob's input is $b \in \mathbb{Z}_{q}, b^{\prime} \in \mathcal{M}$
- Alice obtains b^{\prime} if $a=b$ and random value if $a \neq b$
- Note: one could also choose $a, b \in \mathbb{G}$
- In this application, using MH cryptosystem does not mean that one has to compute discrete logarithm!
- However since we use DIE mostly to secure other protocols, we use g^{a} / g^{b} instead of a / b
- We however use $b^{\prime} \in \mathcal{M}$

Disclose-if-Equal Protocol with Elgamal

Alice $a \in \mathbb{Z}_{q}$
Bob $b \in \mathbb{Z}_{q}, b^{\prime} \in \mathcal{M}$
$(\mathrm{sk}, \mathrm{pk}) \leftarrow G\left(1^{\kappa}\right)$,
$r_{a} \leftarrow \mathcal{R}$,
$c \leftarrow E_{p k}\left(g^{a} ; r_{a}\right)$
(pk, c)

$$
\begin{aligned}
& r_{b} \leftarrow \mathbb{Z}_{q}, r_{b}^{\prime} \leftarrow \mathcal{R}, \\
& c^{\prime} \leftarrow\left(c \cdot E_{\mathrm{pk}}\left(g^{-b} ; 0\right)\right)^{r_{b}} \cdot E_{\mathrm{pk}}\left(b^{\prime} ; r_{b}^{\prime}\right)
\end{aligned}
$$

\qquad
$m \leftarrow D_{s k}\left(c^{\prime}\right) / / N o D L!$

Correctness of DIE Protocol

Recall $c=E_{\mathrm{pk}}\left(g^{a} ; r_{a}\right)$. Then

$$
c^{\prime}=\underbrace{\underbrace{\underbrace{\left(c \cdot E_{\mathrm{p}}\left(g^{-b} ; 0\right) r^{r_{b}}\right.}_{E_{\mathrm{pk}}\left(g^{a-b} ; r_{a}\right)}}_{E_{\mathrm{pk}}\left(g^{\left.(a-b) r_{b} ; r_{a} r_{b}\right)}\right.} \cdot E_{\mathrm{pk}}\left(b^{\prime} ; r_{b}^{\prime}\right)}_{E_{\mathrm{pk}}\left(g^{\left.(a-b) r_{b} \cdot b^{\prime} ; r_{a} r_{b}+r_{b}^{\prime}\right)}\right.}
$$

Since $r_{b}^{\prime} \leftarrow \mathbb{Z}_{q}$ is random, c^{\prime} is random encryption of $g^{(a-b) r_{b}} \cdot b^{\prime}$. Since r_{b} is random, then $D_{\mathrm{sk}}\left(c^{\prime}\right)=b^{\prime}$ if $a=b$ and random if $a \neq b$.

Bob's Privacy in DIE

- As we showed, Alice obtains random encryption of b^{\prime} if $a=b$ and random encryption of random plaintext if $a \neq b$
- The latter contains no information about b
- Intuitively, thus the protocol is private for Bob
- How to formalize?

Simulation |

- Want: Bob's second message \mathfrak{r} gives Alice no extra information compared to what she would have given her input a, first message \mathfrak{q}, and rightful output $\mathfrak{a}=f(a, b)$ of protocol
- Instead of a we take a^{*}, set of plaintexts encrypted by Alice in \mathfrak{q}
- Reasoning: malicious Alice has no well-defined input. It only matters what she did send to Bob
- If Alice can construct \mathfrak{r} herself, given $(a, \mathfrak{q}, \mathfrak{a})$, she gains no more information from \mathfrak{r}

Simulation II

- We construct simulator that, given $(a, \mathfrak{q}, \mathfrak{a})$, constructs simulated second message \mathfrak{r}^{*}
- Required: $(a, \mathfrak{q}, \mathfrak{r}, \mathfrak{a})$ and $\left(a, \mathfrak{q}, \mathfrak{r}^{*}, \mathfrak{a}\right)$ are indistinguishable - come from (almost) same distributions

Recap: DIE Protocol

- Input $a^{*}\left(=g^{a}\right.$ if Alice is honest)
- $\mathfrak{a}=b^{\prime}$ if $a^{*}=g^{b}$,
$\mathfrak{a}=\mathcal{M}$ if $a^{*} \neq g^{b}$
- $\mathfrak{q}=(\mathrm{pk}, \mathrm{c})$
- $\mathfrak{r}=\left(c^{\prime}=E_{\mathrm{pk}}(\mathfrak{a} ; \mathcal{R})\right)$

Alice $a \in \mathbb{Z}_{q}$
Bob $b \in \mathbb{Z}_{q}, b^{\prime} \in \mathcal{M}$
$\left(\right.$ sk, pk) $\leftarrow G\left(1^{\kappa}\right)$,
$r_{a} \leftarrow \mathcal{R}$,
$c \leftarrow E_{p k}\left(g^{a} ; r\right)$

$$
\begin{aligned}
& r_{b} \leftarrow \mathbb{Z}_{q}, r_{b}^{\prime} \leftarrow \mathcal{R}, \\
& c^{\prime} \leftarrow\left(c \cdot E_{\mathrm{pk}}\left(g^{-b} ; 0\right)\right)^{r_{b}} \cdot E_{\mathrm{pk}}\left(b^{\prime} ; r_{b}^{\prime}\right) \\
& \longleftarrow
\end{aligned}
$$

$$
\mathfrak{a} \leftarrow D_{s k}(c)
$$

Simulator for DIE Protocol

- Simulator gets $\left(a^{*}, \mathfrak{q}=(\mathrm{pk}, c), \mathfrak{a}\right)$ where

$$
\mathfrak{a}= \begin{cases}b^{\prime}, & a^{*}=g^{b} \\ \mathcal{M}, & a^{*} \neq g^{b}\end{cases}
$$

- Simulator returns

$$
\mathfrak{r}^{*}:=E_{\mathrm{pk}}(\mathfrak{a} ; \mathcal{R})= \begin{cases}E_{\mathrm{pk}}\left(b^{\prime} ; \mathcal{R}\right), & a^{*}=g^{b} \\ E_{\mathrm{pk}}(\mathcal{M} ; \mathcal{R}), & a^{*} \neq g^{b}\end{cases}
$$

without knowing $\left(b, b^{\prime}\right)$

- Clearly $\mathfrak{r}^{*}=\mathfrak{r}$ as a distribution

Semisimulatability

- 2-message protocol is semisimulatable if:
- Alice's privacy is guaranteed by IND-CPA security
- Bob's privacy is guaranteed by above definition of simulatibility
- Simulatability is stronger than IND-CPA security
- It expresses what we want from protocol
- Simulatable protocols are usually much less efficient
- Fully simulatable security - future lectures

Terminology: Semisimulatable $=$ half-simulatable $=$ relaxed secure

DIE Protocol Is Semisimulatable

Theorem
DIE protocol is semisimulatable.

Proof.

IND-CPA security follows from earlier metatheorem. We just showed Bob's privacy.

Constructing Semisimulatable Protocols

- Construct 2-message homomorphic protocol
- Make it Bob-private by using CDS - suitable generalization of DIE protocol
- Conditional Disclosure of Secrets: Alice obtains Bob's answer iff Alice's encrypted inputs belong to some public set \mathcal{S} of valid inputs. Otherwise Alice obtains random value [Aiello et al., 2001, Laur and Lipmaa, 2007]

Reminder: Scalar Product Protocol

- Alice obtains
$\sum_{i=1}^{t} a_{i} b_{i} \bmod q$
- Valid inputs: $a_{i} \in\{0,1\}$ for $t \in\{1, \ldots, t\}$
- Boolean formula for valid inputs:
$\bigwedge_{i=1}^{t}\left(a_{i}=0 \vee a_{i}=\right.$ 1)

$$
\text { Alice }\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}_{2}^{t} \quad \operatorname{Bob}\left(b_{1}, \ldots, b_{t}\right) \in \mathbb{Z}_{2}^{t}
$$

$$
(\mathrm{sk}, \mathrm{pk}) \leftarrow G\left(1^{\kappa}\right)
$$

$$
\left(r_{1}, \ldots, r_{t}\right) \leftarrow \mathcal{R}^{t}
$$

$$
c_{i} \leftarrow E_{p k}\left(g^{a_{i}} ; r_{i}\right)
$$

$$
\xrightarrow{\left(\mathrm{pk},\left(c_{1}, \ldots, c_{t}\right)\right)}
$$

$r \leftarrow \mathcal{R}$,
$c \leftarrow \prod_{i=1}^{t} c_{i}^{b_{i}} \cdot E_{\mathrm{pk}}(1 ; r)$

$m \leftarrow \log _{g} D_{s k}(c)$

Semisim. SSP: Idea

- Idea:
- Alice obtains secret s_{i} if $a_{i}=0$ or $a_{i}=1$
- Alice obtains $s=\sum_{i=1}^{t} s_{i}$ if he knows all values s_{i}
- Alice obtains $\sum a_{i} b_{i}+s$. Thus Alice obtains
$\sum a_{i} b_{i}$ only if $a_{i} \in\{0,1\}$ for all i

Semisimulatable SSP

Alice $\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}_{2}^{t}$
$\operatorname{Bob}\left(b_{1}, \ldots, b_{t}\right) \in \mathbb{Z}_{2}^{t}$

$$
\begin{aligned}
& (\text { sk, pk }) \leftarrow G\left(1^{\kappa}\right), \\
& \left(r_{1}, \ldots, r_{t}\right) \leftarrow \mathcal{R}^{t}, \\
& c_{i} \leftarrow E_{p k}\left(g^{a_{i}} ; r_{i}\right)
\end{aligned}
$$

$\mathfrak{q} \leftarrow\left(\mathrm{pk},\left(c_{1}, \ldots, c_{t}\right)\right)$
If $\mathfrak{q} \notin \mathbb{G}^{2 t+1}$, then halt.
$r, s_{1}, \ldots, s_{t},\left(r_{i j}^{\prime}, r_{i j}^{\prime \prime}\right)_{i \in\{1, \ldots, t\}, j \in\{0,1\}} \leftarrow \mathbb{Z}_{q}$,
For $i \in\{1, \ldots, t\}$ and $j \in\{0,1\}$
$c_{i j}^{\prime} \leftarrow\left(c_{i} / E_{\mathrm{pk}}\left(g^{j} ; 0\right)\right)^{r_{i j}^{\prime}} \cdot E_{\mathrm{pk}}\left(g^{s_{i}} ; r_{i j}^{\prime \prime}\right)$
$c \leftarrow \prod_{i=1}^{t} c_{i}^{b_{i}} \cdot E_{\mathrm{pk}}\left(g^{\sum_{i=1}^{t} s_{i}} ; r\right)$

For $i \in\{1, \ldots, t\}: w_{i} \leftarrow D_{\text {sk }}\left(c_{i, a_{i}}^{\prime}\right)$
$\mathfrak{a} \leftarrow \log _{g}\left(D_{s k}(c) / \prod_{i=1}^{t} w_{i}\right)$

Semisimulatable SSP: Correctness I

Recall $c_{i}=E_{\mathrm{pk}}\left(g^{a_{i}} ; r_{i}\right)$ for some a_{i}, r_{i}. Then
$c=\prod_{i=1}^{t} E_{\mathrm{pk}}\left(g^{a_{i}} ; r_{i}\right)^{b_{i}} \cdot E_{\mathrm{pk}}\left(g^{\sum_{i=1}^{t} s_{i}} ; r\right)=$ $E_{\mathrm{pk}}\left(g^{\sum_{i=1}^{t} a_{i} b_{i}+\sum_{i=1}^{t} s_{i}} ; \sum_{i=1}^{t} r_{i} b_{i}+r\right)$ and

$$
\begin{aligned}
& C_{i j}^{\prime}=\underbrace{(\underbrace{c_{i} / E_{\mathrm{pk}}\left(g^{j} ; 0\right)})^{r_{i j}^{\prime}} \cdot E_{\mathrm{pk}}\left(g^{s_{i}} ; r_{i j}^{\prime \prime}\right)}_{E_{\mathrm{pk}}\left(g^{a_{i}-j} ; r_{i}\right)} \\
& E_{\mathrm{pk}}\left(g^{\left(a_{i}-j\right) \cdot r_{i j}^{\prime}} ; r_{i} r_{i j}^{\prime}\right) \\
& E_{\mathrm{pk}}\left(g^{\left(a_{i}-j\right) \cdot r_{i j}^{\prime}+s_{i}} ; r_{i} r_{i j}^{\prime}+r_{i j}^{\prime \prime}\right)
\end{aligned}
$$

Semisimulatable SSP: Correctness ||

Since $r_{i j}^{\prime}, r_{i j}^{\prime \prime}$ are random,

$$
c_{i j}^{\prime}= \begin{cases}E_{\mathrm{pk}}\left(g^{s_{i}} ; \mathcal{R}\right), & a_{i}=j \\ E_{\mathrm{pk}}(\mathcal{M} ; \mathcal{R}), & a_{i} \neq j\end{cases}
$$

Thus $w_{i} \leftarrow g^{s_{i}}$, if Alice is honest. If Alice is malicious, $w_{i} \leftarrow \mathcal{M}$ (random). Thus if Alice is honest then $m=\log _{2}\left(g^{\sum a_{i} b_{i}}\right)=\sum a_{i} b_{i}$, otherwise $g^{\mathfrak{a}}$ is a random element of \mathbb{G} (and computing DL is hard!)

Remarks: CDS with Paillier

- One can substitute Elgamal with Paillier, but it's more complex then
- $\mathcal{M}=\mathbb{Z}_{n}$ with $n=p q$ has nontrivial subgroups. If $a_{i} \neq 0$ belongs to some such subgroup \mathcal{M}_{1}, then $a_{i} \cdot \mathcal{M}=\mathcal{M}_{1}$, not $a_{i} \cdot \mathcal{M}=\mathcal{M}$
- If malicious Alice encrypts say p, then $D_{\text {sk }}\left(E_{\mathrm{pk}}(p ; \cdot)^{\mathcal{M}}\right)$ divides by p and thus does not hide perfectly
- See [Laur and Lipmaa, 2007] for simple solution

Remarks

- One can generalize SSP example to CDS for arbitrary efficiently computable set \mathcal{S}
- Write down circuit that computes \mathcal{S}. Handle AND/OR gates as in SSP case. For NOT gates, see [Laur and Lipmaa, 2007] (easy)
- Example. Assume that valid value of a_{i} is $a_{i} \in\{0, \ldots, 255\}$
- Simplistic approach: distribute $g^{s_{i}}$ iff
$a_{i}=0 \vee a_{i}=1 \vee \cdots \vee a_{i}=255$ - requires 256
ciphertexts
- More efficient: encrypt bits $a_{i j}$ of a_{i} separately.

Distribute $g^{s_{i j}}$ if $a_{i j}=0 \vee a_{i j}=1$. Write $s_{i}=\sum_{j} s_{i j}$
—requires $2 \cdot 8=16$ ciphertexts

