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Today'’s literature

e [DHROO] Yevgeniy Dodis, Shai Halevi and Tal Rabin, "A Cryptographic
Solution to a Game Theoretic Problem” , CRYPTO 2000.

http://www.tml.hut.fi/"helger/teaching/crypto-gametheory/
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Game Theory Reminder

e \We have a couple of selfish, rational, players, following some proba-
bilistic strategies s;(-), SO as to get maximum payoffs.

e Equilibria = A tuple of strategies, where assuming other people are fol-
lowing their strategies, no participant has incentive to change strategy.

e Nash equilibria: strategies are independent. Easiest to implement!

e Correlated equilibria: strategies are not independent. Potentially better
payoffs.
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Correlated equilibria

e Implemented classically by using mediator, a trusted third party, who
recommends some actions A; to players.

e After recommendation Aajice, Alice knows conditional distributions
salice(*|Aalice) Over the actions of the other player, but nothing more.

e Since we have an equilibria and a trusted third party, Alice should have
no incentive to deviate from the recommendation.
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“Chicken” game

Alice\Bob | Chicken | Dare
Chicken (4,4) (1,5)

Dare (5,1) (0,0)
e Nash equilibria: sl =(Chicken,Dare) — payoff (1,5),
s2 =(Dare,Chicken) — payoff (5,1), s3 = 2X(Chicken,Dare)+

5(Dare,Chicken) — fair payoff (2.5,2.5).

e Correlated equilibrium; %((Chicken,Chicken) + (Chicken,Dare) 4
(Dare,Chicken)), fair payoff (3.5,3.5).
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Removing the Mediator: Payoffs

e \We assume that the players are computationally bounded and can
communicate prior to playing the game.

e The players get an external input (security parameter k); their compu-
tational capabilities are assumed to be polynomial in k.

e More precisely, the players work in probabilistic polynomial time (PPT),
w.r.t. the length of their first argument 1%.

Tik-110.505 Interplay between Cryptography and Game Theory
6



Extended games

e First, A and B involve in a two party protocol, where they have two
common inputs: 1% and the strategy profile (57, 55).

e —- the profile is also PPT-computable!
e The protocol outputs suggestions Aajice and Agqp, to Alice and Bob.
e This is also the only information they get to know!

e Thereafter, A(1%, Apjice) and B(1%, Agyp) output moves.
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Reminder: Punishment for Deviation

The standard minmax methodology of game theory:

e The game has to go on, even if one player cheats during the or does
not finish the initial zero-knowledge protocol.

e Honest player chooses a strategy that gives the least payoff to the
deviator when the deviator chooses his best strategy.

e It can hurt the honest player, but since it also hurts another player, it
makes everybody reluctant to not to follow the protocol.

e This works, since everybody is selfish!
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Goal of Cryptographic Protocol

e To replace the mediator! What did the mediator do?

* Given a strategy profile (a distribution on strategies), sample it: i.e.,
choose a pair of actions (Aajices Agob ), according to it.

* Output Apice to Alice only, Agp to Bob only.

e — Protocol has to sample a random pair from the profile, given the
probability distribution, and output the first coordinate of it to Alice and
the second coordinate to Bob.

e Nothing about the other player's recommendation would be revealed
to Alice and Bob. (A zero-knowledge/witness-hiding protocol.)
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Goals, more precisely

e The strategy profile is computable in the PPT time.

e In (at least simplest of the) two-player games, the profile can be de-
scribed as a relatively short list of pairs {(A1, A>)}, where more prob-
able pairs are replicated.

e The strategy is to randomly choose a pair from this list.

e Formal definition of the goal: given a list {(a;, b;)}, pick jointly a ran-
dom pair (a;, b;), distribute a; to Alice and b, to Bob.
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Cryptographic tools: public key encryption

e (Probabilistic) public key encryption scheme is a triple (G, E, D),
where G(1%) produces the pair of (pk, sk).

e Given (pk, sk) — G(1%), Dy (Ep(m, 7)) = m, Vm,r

e 7 IS random component (nonce), necessary to achieve nice properties
like semantic security.

e Also necessary for the next definition.
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Blindable encryption

Add two algorithms, Blind and Combine, s.t.

e For any message m/' and ciphertext ¢ = Ep(m), Blindy (e, m’)
produces a random encryption of m + m/, s.t. the distribution of
Blind,,i (¢, m) is equal to that of E,, (m +m') (under all possible ran-
dom choices).

® Blindk(Blindp(c, m1; r1), mo; r2) = Blind,; (¢, m1 4+ mo; Combine(ry, r2))
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Blindable encryption: examples

Modified ElGamal: E, (m,r) = (¢g™h", g"). Here, Blind, ((y,z), m') =
(g"™'y, x) and Combine(ry,70) = r1 + 7o

Blindyi ((9™h", "), m’) = ("t h", ") .
Paillier: E,(m,r) = g™r"™ mod n?, here Blindpk(y,m’) = gm'y and

Combine(rl, 7“2) — Tr17ro.

Okamoto-Uchiyama: Ep(m,r) = g™h" mod p2q, here
Blind i (v, m') = gm/y and Combine(ry,72) = r1 + 7.
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Semantic security

Ciphertexts corresponding to two different messages mqg and mq are in-
distinguishable. More precisely, for any PPT algorithm A and polynomial
p, there exists a kg, S.t.

Pr[(pk, sk) — G(1%), (mg, m1) — A(1%,pk),b — {0, 1} :
A(1F, pk, By (myp)) = b] < 1/p(k)

whenever k > k.

More generally, it means that given a ciphertext, A cannot extract any use-
ful information about the plaintext.

In what follows we have a semantically secure blindable encryption
scheme.
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Easy protocol: players are honest-but-curious

A and B have as common input the list L = {(a;, b;)}. Alice generates a
key pair (pk, sk) and sends pk to Bob.

Common input{(a;, b;)},7 € [1,n]
Alice generates key palipk, sk) and sendgk to Bob

Alice Bob

T Sn

(CZ', dl) = (Epk(aﬂ(i)), Epk(bw(i))) {(Ci; dz)}

£, [1a n]
Select a random

(e, f) (e, f) = (Blindpk(er, 0), Blindpk (de, 7))

&, f) = (Du(e), Du(f)) F

Apiice := €’ is Alice’s output

Apgop := f' — ris Bob’s output
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Honest-but-curious: analysis

e Since the scheme is semantically secure, Bob obtains no information
on the used permutation and hence on Axjice €xcept that which fol-
lows from knowledge of Aggp,.

e Since r is random, Alice obtains no information on Agyp €xcept that
which follows from knowledge of A jce-

e Bob has incentive to pick ¢ randomly (otherwise Alice would be able to
trick him), hence also the distribution is correct.
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Dishonest players?

Add zero-knowledge proofs that every step is performed correctly!

Common input{(a;, b;)},7 € [1,n]
Alice generates key palipk, sk) and sendgk to Bob
Alice Bob
T Sn {(Cia dz)}
(ci, di) = (Eok(ar)), Eok(brgiy))  [F¢  {(ci, di) } = {(Bpk(ax)) s Box(briy)}]

¢ —p [1, TL]
(e, f) Select a random
13¢: (e, f) = (Blindp(cr), Blindp(dr))] (e, f) = (Blindpi(ce, 0), Blindpi (de, 7))

f/
(¢, f) = (Ds«(e), Da(f)) [f" = Du(f)]

Anpiice := €’ is Alice’s output

Agob := f’ — ris Bob’s output
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Proof of proper decryption

Alice has to prove, given (y, m), that D (y) = m.
e Proof does not have to be zero-knowledge!
e Alice does not know r (otherwise she could just reveal it).
o Alice sends {b,(;),7r;)}s St {dr(i)} = {Epk(br(i)s T (i) }-
e Bob verifies that dy = FE,(by, ¢).

Bob will get to know {b,.(;)}, but this does not give him any information on

ar(;) that he does not have by knowing b, ;) alone!
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Encrypted list correspondence

Alice and Bob know two lists {a;} and {c;}. Alice has to prove that she
knows a permutation 7 and nonces {r;}, s.t. ¢; = Blind, (a,;y, 0; ;).

Intuition behind the proof (Fig. 3 in the paper):

e Alice generates random permutation p and random nonces {s;}, and
depending on Bob’s challenge € {0, 1}, reveals either (p,{s;}) or

(o p, {Combine(rp(i), si)}).
e Since p and {s;} are random, Bob gains no knowledge of = or {r;}.

e Alice’s best strategy in cheating is to guess Bob’s challenge (probabil-
ity 1/2.
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= constant-error three-round ZK proof. All such protocols can be trans-
formed to constant-round negligible-error ZKP’s.
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Proof that (¢, d") is correct

Bob needs to prove that (¢/,d’) is a blinded version of some (cy, d,) for
some ¢, without revealing /.

He can use the previous protocol, by first picking a random permutation 7
and then letting £ = 7(1).
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Conclusions

More details in the paper.

Do you want to sometimes go through the general constructions of
negligible-error ZKP’s?

Next few times: auctions + game theory.
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