
Tik-110.505

Methods of Cryptography:
”Interplay between Cryptography and Game Theory”

Lecture 2: A Cryptographic Solution to a Game-Theoretic Problem

Helger Lipmaa
Helsinki University of Technology

helger@tml.hut.fi

February 14, 2001

Tik-110.505 Interplay between Cryptography and Game Theory

1



Today’s literature

• [DHR00] Yevgeniy Dodis, Shai Halevi and Tal Rabin, ”A Cryptographic
Solution to a Game Theoretic Problem” , CRYPTO 2000.

http://www.tml.hut.fi/˜helger/teaching/crypto-gametheory/
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Game Theory Reminder

• We have a couple of selfish, rational, players, following some proba-
bilistic strategies si(·), so as to get maximum payoffs.

• Equilibria = A tuple of strategies, where assuming other people are fol-
lowing their strategies, no participant has incentive to change strategy.

• Nash equilibria: strategies are independent. Easiest to implement!

• Correlated equilibria: strategies are not independent. Potentially better
payoffs.
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Correlated equilibria

• Implemented classically by using mediator, a trusted third party, who
recommends some actions Ai to players.

• After recommendation AAlice, Alice knows conditional distributions
sAlice(·|AAlice) over the actions of the other player, but nothing more.

• Since we have an equilibria and a trusted third party, Alice should have
no incentive to deviate from the recommendation.
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“Chicken” game

Alice\Bob Chicken Dare
Chicken (4,4) (1,5)

Dare (5,1) (0,0)

• Nash equilibria: s1 =(Chicken,Dare) — payoff (1,5),
s2 =(Dare,Chicken) — payoff (5,1), s3 = 1

2(Chicken,Dare)+
1
2(Dare,Chicken) — fair payoff (2.5,2.5).

• Correlated equilibrium: 1
3((Chicken,Chicken) + (Chicken,Dare) +

(Dare,Chicken)), fair payoff (3.5,3.5).
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Removing the Mediator: Payoffs

• We assume that the players are computationally bounded and can
communicate prior to playing the game.

• The players get an external input (security parameter k); their compu-
tational capabilities are assumed to be polynomial in k.

• More precisely, the players work in probabilistic polynomial time (PPT),
w.r.t. the length of their first argument 1k.
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Extended games

• First, A and B involve in a two party protocol, where they have two
common inputs: 1k and the strategy profile (s∗1, s

∗
2).

• ⇒ the profile is also PPT-computable!

• The protocol outputs suggestions AAlice and ABob, to Alice and Bob.

• This is also the only information they get to know!

• Thereafter, A(1k, AAlice) and B(1k, ABob) output moves.
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Reminder: Punishment for Deviation

The standard minmax methodology of game theory:

• The game has to go on, even if one player cheats during the or does
not finish the initial zero-knowledge protocol.

• Honest player chooses a strategy that gives the least payoff to the
deviator when the deviator chooses his best strategy.

• It can hurt the honest player, but since it also hurts another player, it
makes everybody reluctant to not to follow the protocol.

• This works, since everybody is selfish!
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Goal of Cryptographic Protocol

• To replace the mediator! What did the mediator do?

? Given a strategy profile (a distribution on strategies), sample it: i.e.,
choose a pair of actions (AAlice, ABob), according to it.

? Output AAlice to Alice only, ABob to Bob only.

• ⇒ Protocol has to sample a random pair from the profile, given the
probability distribution, and output the first coordinate of it to Alice and
the second coordinate to Bob.

• Nothing about the other player’s recommendation would be revealed
to Alice and Bob. (A zero-knowledge/witness-hiding protocol.)
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Goals, more precisely

• The strategy profile is computable in the PPT time.

• In (at least simplest of the) two-player games, the profile can be de-
scribed as a relatively short list of pairs {(A1, A2)}, where more prob-
able pairs are replicated.

• The strategy is to randomly choose a pair from this list.

• Formal definition of the goal: given a list {(ai, bi)}, pick jointly a ran-
dom pair (ai, bi), distribute ai to Alice and bi to Bob.
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Cryptographic tools: public key encryption

• (Probablistic) public key encryption scheme is a triple (G,E,D),
where G(1k) produces the pair of (pk, sk).

• Given (pk, sk)← G(1k), Dsk(Epk(m, r)) = m, ∀m, r

• r is random component (nonce), necessary to achieve nice properties
like semantic security.

• Also necessary for the next definition.
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Blindable encryption

Add two algorithms, Blind and Combine, s.t.

• For any message m′ and ciphertext c = Epk(m), Blindpk(c,m′)
produces a random encryption of m + m′, s.t. the distribution of
Blindpk(c,m′) is equal to that of Epk(m+m′) (under all possible ran-
dom choices).

• Blindpk(Blindpk(c,m1; r1),m2; r2) = Blindpk(c,m1 +m2; Combine(r1, r2))
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Blindable encryption: examples

Modified ElGamal: Epk(m, r) = (gmhr, gr). Here, Blindpk((y, x),m′) =

(gm
′
y, x) and Combine(r1, r2) = r1 + r2:

Blindpk((gmhr, gr),m′) = (gm+m′hr, gr) .

Paillier: Epk(m, r) = gmrn mod n2, here Blindpk(y,m′) = gm
′
y and

Combine(r1, r2) = r1r2.

Okamoto-Uchiyama: Epk(m, r) = gmhr mod p2q, here

Blindpk(y,m′) = gm
′
y and Combine(r1, r2) = r1 + r2.

...
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Semantic security

Ciphertexts corresponding to two different messages m0 and m1 are in-
distinguishable. More precisely, for any PPT algorithm A and polynomial
p, there exists a k0, s.t.

Pr[(pk, sk)← G(1k), (m0,m1)← A(1k, pk), b← {0,1} :

A(1k, pk, Epk(mb)) = b] < 1/p(k)

whenever k > k0.

More generally, it means that given a ciphertext, A cannot extract any use-
ful information about the plaintext.

In what follows we have a semantically secure blindable encryption
scheme.
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Easy protocol: players are honest-but-curious

A and B have as common input the list L = {(ai, bi)}. Alice generates a
key pair (pk, sk) and sends pk to Bob.

Alice generates key pair(pk, sk) and sendspk to Bob

{(ci, di)}
π ←r Sn

(ci, di) = (Epk(aπ(i)), Epk(bπ(i)))

`←r [1, n]

Select a randomr

(e, f) = (Blindpk(c`,0),Blindpk(d`, r))(e, f)

f ′(e′, f ′) = (Dsk(e), Dsk(f))

AAlice := e′ is Alice´s output

Alice Bob

ABob := f ′ − r is Bob´s output

Common input:{(ai, bi)}, i ∈ [1, n]
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Honest-but-curious: analysis

• Since the scheme is semantically secure, Bob obtains no information
on the used permutation and hence on AAlice except that which fol-
lows from knowledge of ABob.

• Since r is random, Alice obtains no information on ABob except that
which follows from knowledge of AAlice.

• Bob has incentive to pick ` randomly (otherwise Alice would be able to
trick him), hence also the distribution is correct.

Tik-110.505 Interplay between Cryptography and Game Theory

16



Dishonest players?

Add zero-knowledge proofs that every step is performed correctly!

π ←r Sn
(ci, di) = (Epk(aπ(i)), Epk(bπ(i)))

(e′, f ′) = (Dsk(e), Dsk(f))

AAlice := e′ is Alice´s output

Alice

`←r [1, n]

Select a randomr

(e, f) = (Blindpk(c`,0),Blindpk(d`, r))

ABob := f ′ − r is Bob´s output

f ′

(e, f)

[∃φ : {(ci, di)} = {(Epk(aπ(i)), Epk(bπ(i))}]
{(ci, di)}

Bob

Alice generates key pair(pk, sk) and sendspk to Bob

Common input:{(ai, bi)}, i ∈ [1, n]

[∃` : (e, f) = (Blindpk(c`),Blindpk(d`))]

[f ′ = Dsk(f)]
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Proof of proper decryption

Alice has to prove, given (y,m), that Dsk(y) = m.

• Proof does not have to be zero-knowledge!

• Alice does not know r (otherwise she could just reveal it).

• Alice sends {bπ(i), rπ(i)}, s.t. {dπ(i)} = {Epk(bπ(i), rπ(i))}.

• Bob verifies that d` = Epk(b`, r`).

Bob will get to know {bπ(i)}, but this does not give him any information on
aπ(i) that he does not have by knowing bπ(i) alone!
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Encrypted list correspondence

Alice and Bob know two lists {ai} and {ci}. Alice has to prove that she
knows a permutation π and nonces {ri}, s.t. ci = Blindpk(aπ(i),0; ri).

Intuition behind the proof (Fig. 3 in the paper):

• Alice generates random permutation ρ and random nonces {si}, and
depending on Bob’s challenge ∈ {0,1}, reveals either (ρ, {si}) or
(π ◦ ρ, {Combine(rρ(i), si)}).

• Since ρ and {si} are random, Bob gains no knowledge of π or {ri}.

• Alice’s best strategy in cheating is to guess Bob’s challenge (probabil-
ity 1/2.
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⇒ constant-error three-round ZK proof. All such protocols can be trans-
formed to constant-round negligible-error ZKP’s.
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Proof that (c′, d′) is correct

Bob needs to prove that (c′, d′) is a blinded version of some (c`, d`) for
some `, without revealing `.

He can use the previous protocol, by first picking a random permutation τ
and then letting ` = τ(1).
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Conclusions

More details in the paper.

Do you want to sometimes go through the general constructions of
negligible-error ZKP’s?

Next few times: auctions + game theory.
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