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Implementation Theory and Bargaining Problems

Based on Chapters 6 (Extensive Games with Perfect Information), 7 (Bargaining
Games), 10 (Implementation Theory), and 15 (The Nash Solution) in Osborne and
Rubinstein. A Course in Game Theory. The MIT Press, 1994.

In this talk:

e Introduction to implementation theory: basic definitions, Nash implementation,

and subgame perfect equilibrium implementation.

e Bargaining problems and their implementation.
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Extensive games

Let’s first recall some concepts from extensive games. Here, an extensive game will
always be an extensive game with perfect information.
Definition 1. An extensive game (with perfect information) (N, H, P, (7=;))

consists of

e A nonempty finite set NV (the players).
e A set H of (finite or infinite) sequences satisfying the following properties.

— The empty sequence € € H.
— If (a*) € H, every proper prefix of (a*) belongs to H.

— If an infinite sequence (a®)$_, satisfies (a*)%_, € H foreach L € Z*
then (a®)°., € H.
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Each member of H is a history; each component of a history is an action taken
by a player. A history 33 € H is terminal if it is infinite, or if it is finite and
there is no a such that A@\f a) € H. The set of terminal histories is denoted
by Z.

e Aplayer function P: H \ Z — N (P(h) is the player who takes an action
after the history h).

e For each player ¢ € N, a preference relation N@ on /.

If each member of H is finite, the game is said to have finite horizon.

After each nonterminal history h, player wgv chooses an action from the set

A(h) ={a| (h,a) € H}.
There is a straightforward generalization that allows chance moves.
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Strategies

Definition 2. A strategy of player ¢ € N in an extensive game (N, H, P, (7=;)) is
a function that assign to each h € H \ Z for which P(h) = i an action in A(h).

For each strategy profile s = ($;);cn, the outcome O(s) of s is the terminal

history that results when each player follows its strategy s;.

Definition 3. A Nash equilibrium of the extensive game (N, H, P, (7;)) is a
strategy profile s* such that for each player z € N,

QAm*Ii v QA S_iS V

for every strategy s; of 7.
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Subgame perfect equilibrium

Definition 4. The subgame of the extensive game I' = (N, H, P, (=;)) that
follows h is the extensive game I'(h) = (N, H|p, P|n, (Z;|n)), where

o Hlp ={h"| (h,}h') € H},
e P|y(h') = P(h,h')forall h’ € H|p, and

o I =iln b <= (h,}')=; (h,h").

A strategy s; for I" induces a strategy s; |, for I'(h): s;|n(h") = s;(h, h'). Finally,

we let Oy, denote the outcome function of I'(h).
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Definition 5. A subgame perfect equilibrium of an extensive game
' = (N, H, P,(=;)) is a strategy profile s* such that for each player ¢ € IN and
every h € H \ Z for which P(h) = 1, we have

On(sZ;ln, 87 |n) Ziln On(sZ;|n, 84)

for every strategy s; of player 7 in the subgame I'(h).

That is, s*|}, is a Nash equilibrium of the subgame I'(h) foreach h € H \ Z.
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The following result will be needed later.

Lemma 6 (The one deviation property). Let I’ be a finite horizon extensive game
with or without chance moves. The strategy profile s* is a subgame perfect
equilibrium of I if and only if for every player ¢ € N and history h € H for which
P(h) = i we have

On(sZ;ln, 87 |n) Ziln On(sZ;|n, 8:)

for every strategy s; of player ¢ in I'(h) that differs from s} |, only in the action it

prescribes after the initial history of I'(h).
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Implementation theory

In implementation theory, we fix a set of outcomes and look for a game that yields

that set of outcomes as equilibria.

The model we consider is the following. A planner starts with a description of the
outcomes she wants to associate with each possible preference profile, and looks

for a game that “implements” this correspondence.

As an example, consider a planner that wants to assign an object to one of two
individuals. Assume that she wishes to give the object to the individual that values it

the most, but she doesn’'t know which one this is.

Her problem is then to design a game form such that for each pair of valuations, the
outcome according to some solution concept is that the object is given to the

individual who value it the most.
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Implementation theory more formall y

Definition 7. Let [NV be a set of individuals, C' a set of feasible outcomes, and P a
set of preference profiles over C'. A choice rule is a function that assigns a subset of

(' to each profile in P. A singleton-valued choice rule is called a choice function.
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Definition 8. A strategic game form with consequences in C'is a triple

(N, (A;),g), where A; is the set of actions available to player ¢ € N, and

g: 11, eN A; — C'is an outcome function that associate an outcome with each
action profile. A strategic game form (N, (A;), g) and a preference profile

(7=:) € P induce a strategic game (N, (4;), (2=%)), where

aZib <= gla) Zi g(b).

Similarly, an extensive game form with consequences in C'is a tuple (N, H, P, g),
where H is the set of histories, P: H \ Z — N is the player function, and

g: Z — ('is an outcome function (Z is the set of terminal histories). An extensive

game form and a preference profile induce an extensive game.
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Definition 9. An environment (N, C, P, G) consists of

e Afinite set IV of players, with |[IV| > 2.
e A set C of outcomes.
e A set P of preference profiles over C.

e A set G of (strategic or extensive) game forms with consequences in C.

A solution concept for the environment (I, C, P, G) is a set valued function S with
domain G x P. If the members of G are strategic game forms, S takes values in
the set of action profiles. If the members of G are extensive game forms, S takes

values on the set of terminal histories.
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Definition 10. Let (N, C, P, G) be an environment, and let S be a solution
concept. The game form GG € G with outcome function g is said to S-implement
the choice rule f: P — C, if for each preference profile (7~;) € P, we have

9(S(G, (Z4))) = F((Ze))-
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Definition 11. Let (N, C, P, G) be an environment in which G is a set of strategic
game forms for which the set of actions of each player ¢ € N is a set P of
preference profiles. Let S be a solution concept. The strategic game form
G = (N, (A4;),g) € G is said to truthfully S-implement the choice rule
f: P — C,if for each preference profile (2~;) € P, we have

e 0 €S(G, (7

~ul

)), where af = (77;) for each i € IN (every player reporting

the true preference profile is a solution).

e g(a*) € f((7z;)) (if every player reports the true preference profile, the

outcome is a member of f((2=;))).
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This notation of implementation differs in in several ways form the “normal”

implementation concept:

® The set of actions of each player is a set of preference profiles, and “truth

telling” is always a solution.

e Non-truth telling solutions may yield outcomes that are inconsistent with the

choice rule.

® There can be preference profiles for which not every outcome prescribed by the

choice rule corresponds to a solution of the game.
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Nash implementation

We now consider the case where the planner uses strategic game forms, and for
each preference profile, the outcome of the game may be in any of its Nash

equilibria.

The first result is a version of the relevation principle. The result shows that for any

Nash-implementable choice rule, there is a game form in which

1. Each player has to announce a preference profile.

2. For any preference profile, truth telling is a Nash equilibrium.

The precise statement is as follows.
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Proposition 12 (Relevation principle for Nash implementation). Let
(N, C,P,G) be an environment in which G is a set of strategic game forms. If a
choice rule is Nash-implementable in the environment, it is truthfully

Nash-implementable.

Proof. Let G = (N, (A;), g) be a game form that implements the choice rule
f: P — C,andforeach =€ P, let (a;(7)) be a Nash equilibrium of the game
(G, Z)-

Let G* = (N, (A}),g*), where A = P foreachi € N and
g*(p) = g((ai(p;))) foreach p € [, 5 A7 (Note that each p; is a preference

profile and that p is a profile of profiles).

The profile p* such that p; = 7~ for each ¢ € N is clearly a Nash equilibrium of
(G, Z),and g"(p*) € f(Z). O
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The following result gives necessary conditions for a choice rule to be Nash
implementable.

Definition 13. A choice rule f: P — C'is monotonic if whenever ¢ € f((2;))
and c & f((z%)), there is a player ¢ € IN and some outcome b € C such that
cz;bandb > c.

Proposition 14. Let (N, C, P, G) be an environment in which G is a set of
strategic game forms. If a choice rule is Nash-implementable in the environment, it

IS monotonic.

Proof. Suppose that the choice rule f: P — C'is Nash implemented by the game
form G = (N, (4;),9),c € f((=:)),andc & f((==})). Then there is an action
profile a such that g(a) = ¢, and a is a Nash equilibrium of the game (G, (=;)),

Y

but not of (G, (2Z})). Thus, there is a player j and action a’; € A;, such that
9(a—j,a3) =5 g(a) and g(a) Z; g(a—j, aj). O
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Example 15 (Solomon’ s predicament). This is a classical example based on

some biblical story.

Each of two women, 1 and 2, claims a baby. Each of them knows who is the true
mother, but neither can prove her motherhood. Solomon tries to find the true mother
by threatening to cut the baby in two relying on the fact (?) that the true mother
prefers to give the baby away to see it cut in two, while the false mother rather sees
the baby cut in two than gives the baby to the true mother. Solomon can give the

baby to either mother, or order its execution.

Formally, let a be the outcome that the baby is given to mother 1, b that it is given to

2, and d that it is cut in two. There are two possible preference profiles:

0:a>1b>=1dandb =9 d =5 a [listhe real mother]

0':a>-1d>=]bandb =, a =5 d [2is the real mother]
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The choice rule f defined by f(6) = {a} and f(6') = {b} is not Nash
implementable, since it is not monotonic: a € f(6) and a ¢ f(6'), but there is no

player ¢ and outcome y such that a 7~; y and y Ym a.

Obviously, Solomon (or the women) didn’t participate in game theory seminars.
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Subgame perfect equilibrium implementation

Next, we will consider the case where the planner uses extensive game forms, and
for each preference profile, the outcome of the game may be in any subgame
perfect equilibria (SPE). We will restrict ourself to an illustrative example.

Example 16. The planner wants to divide an object of monetary value between two
players, 1 and 2. One of the players is the legitim owner of the object, but the
planner does not know which one. Suppose that the planner can give the object to
any of the players, or neither of them, and that she also may impose fines on the

players.

The set of outcomes is the set of triples (z, M1, m2 ), where = 0 (neither player
gets the object) or z € {1, 2} (player x gets the object), and m; is a fine imposed

on player 1.

Player 7's payoff if he gets the object is vy — m; if we is the legitim owner of the
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object, and v;, — m; if he is not, where v > vy, > 0. If player 7 does not get the

object, his payoff is —m,;.

There are two possible preference profiles, N in which player 1 is the legitim owner,

and ~~’ in which player 2 is.

The planner wants to implement the choice rule f for which f(7-) = (1,0,0) and
f(Z') =(2,0,0).

This is implemented by the following extensive game form.

mine mine

1 2 (2,¢, M)

his his

(2,0,0) (1,0,0)
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First player 1 is asked whether the object is his. If he says, “no”, the object is given
to player 2. If he says “yes”, player 2 is asked if he is the owner. If player 2 answers
“no”, the object is given to player 1. Otherwise, player 2 gets the object and he must

pay a fine M, vy, < M < v while player 1 has to pay a small fine € > 0.

It is easy to see that for each preference profile, the game has a unique SPE with
outcome (%, 0, 0), where 1 is the legitim owner. Thus, this game form

SPE-implements the choice rule f.

The idea behind the game form is that in each SPE, player 2 is forced to choose
truthfully. Given that player 2 always chooses truthfully, player 1 is also forced to

choose truthfully in each SPE.
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Bargaining problems revisited

Forpe [0,1] CR,weletp-x @ (1 — p) - y denote the (discrete) probability
distribution that gives x with probability p and y with probability 1 — p. Furthermore,
we let p - = denote the distribution p - & (1 — p) - D (D is defined below).

Definition 17. A bargaining problem (X, D, 71, 7o) consists of

e A compact set X in a metric space (the set of agreements).
e Anelement D € X (the disagreement outcome).

e Two preference relations N? Ym on the set of probability distributions over X
satisfying x N@ D for all z € X. The preference relations are represented by
continuous utility functions u; : X — [0, 00) C R such that u;(D) = 0 and
zZiy < Elui(z)] = Elui(y)].
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e The problem is non-degenerate in the sense that there is an £ € X such that
x>=1Dandz =9 D.

e (Convexity). Forany z,y € X and p € [0, 1], there is an z € X such that
zryprx®(1—p)-yfori=1,2

e (Non-redundancy). If z € X, thereisnoz’ € X, x’ # x suchthatz ~; =’
forts =1, 2.
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The Nash solution

Definition 18. A bargaining solution is a function that assigns to every bargaining
problem (X, D, 71, 7~2) a unique element in X .

Definition 19. The Nash solution is a bargaining solution that assigns to the
bargaining problem (X, D, =1, 7 9) anx* € X such that

p-x=z,pel0l,re X =p-z*7;x,jFi.
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Proposition 20. Let (X, D, 1, 7o) be a bargaining problem. Then z* € X is a

Nash solution of the problem if and only if

ur(z*)uz(z”) > ui(x)uz(z), vz € X.
Furthermore, the Nash solution is well-defined.

Proof. Suppose first that uy (z*)ug(x*) > uq(z)ug(x) forall z € X. Then
ui(x*) > 0fori = 1, 2 (since the problem is non-degenerate). If

pui(x) > u;(z*) for some p € [0,1] and x € X, then

pu;(x)wj(x*) > wi(x*)uj(x*) > ui(z)u;(x). Thus, pu,(z*) > u;(x). That
is,p-z > " =p-z* ;T
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Conversely, suppose that £* is a Nash solution. By definition, we must have
u;(x*) > 0fori = 1,2. Letz € X be such that u;(z) > 0fori = 1,2, and
u;(x) > u;(z*) for some 4 (for all other values of x, we obviously have
up(x®)uz(x*) > ur(x)uz(x)). 1fp > u;(z*) /u;(x) for some p € [0, 1], we
have pu;(x*) > wu;(z) (since * is a Nash solution). Hence

wi(x*)uj(x*)/ui(x) > u;(z) and thus u; (x*)u;(x*) > ui(z)u;(x).

Finally, to show that the Nash solution is well-defined, let

U = {(u1(x),uz(x)) | * € X}. Note that z* is a Nash solution if and only if
(v1,v2) = (uq(z*), uz(x*)) maximizes v vy over U. Since U is compact

(w1, uo are continuous), this problem has a solution. Since the function v vs is
strictly quasi-concave on the interior of %w and U is convex, the solution is unique.
Finally, by the non-redundancy there is a unique * € X that yields the pair of

maximizing utilities. ]
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Implementation of the Nash solution

Proposition 21. Fix aset X and an event D € X. For all pairs (7-1, 72) for
which AN D Yf 79 v IS a bargaining problem, the following extensive game form

(with perfect information and chance moves) SPE-implements the Nash solution.

1. Player 1 chooses y € X.
2. Player 2 chooses € X and p € [0, 1].

3. With probability 1 — p the game ends with outcome D). With probability p it

continues.

4. Player 1 chooses either x or p - y. This choice is the outcome.
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Proof. Let * be the (unique) Nash solution of the bargaining problem. We claim
that each SPE of the game is essentially equivalent to the following simple strategy

profile.
e Step 1: Player 1 chooses y = x™.

e Step 2: Player 2 chooses x = x* and p = inf{p | u1(z*) > pui(y)}.

e Step 4: Player 1 chooses max(u1(x), pu1(y)).

Using the one deviation property, we can easily show that this is an SPE of the

game. Clearly, its outcome is x*.

It remains to show that the SPE is unique. To this end, consider any SPE of the

game.
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In the last step, Player 1 is clearly forced to choose (with some abuse of notation)

max(u(x), pui(y)).
In step 2, Player 2 is forced to choose x and p such that

pus(max(u1(x), pui(y)))

IS maximized. In step 1, Player 1 is forced to choose ¥y such that

uy (max pup (max(u (z), pua(y))))

IS maximized.

Thus, the SPE is unique ignoring ties in the max operations. By the restrictions put

on 41 and uso, there can be no relevant ties. ]
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Concluding remarks

From a cryptographic point of view, the previous implementation is unsatisfactory,
since it gives no method to compute the SPE unless both parties know the other
party’s utility function. If both parties know w1 and us, they can independently

compute £* € X such that uq (z*)us(z*) is maximized without any fancy game.

Thus, it is still an open problem to designs a protocol that allows the two parties to
find the value =™ without giving any non-trivial information about u; to party 7. (This

iIs where | ran out of time . . . )

Or course, this could be done using secure function evaluation, but is this efficient

enough?
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