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Goals of The Course

Introduction to modern cryptography

For people who are oriented towards

Academic career
Industrial career: position where one must understand what
does it mean to be secure, is able to choose secure
primitives/protocols, verify their security and possible design
new secure ones

Emphasis on proofs: how to prove that something is secure

Emphasis on provably secure primitives/protocols: not on the
ones in standards

More precisely, provably secure and efficient

After course, you should be able to follow modern academic
literature on subject
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What Is Modern Cryptography?

(Old) cryptography: building secure codes for encryption

(Old) Security objective: confidentiality (not well-defined)

(Old) Security: a code is secure until nobody has broken it

Cryptography (modern): building provably secure protocols
for securing arbitrary operations on Internet

Security objective (modern): many different, precisely defined

confidentiality, authenticity, integrity, robustness, . . .

Security (modern): provable security

Modern cryptography: science of designing provably secure
cryptographic protocols
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Security: Classical World

For more than 2000 years, mostly governments used
cryptography for secure information exchange with their spies,
diplomats, . . . , but also with other governments

Lifes and colossal wealth depended upon security of used
codes

. . . yet most of codes were broken sometimes centuries before
their use ended
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Security: Classical World

Codes themselves were kept secret

Security by obscurity: it is arguably more difficult to break
code you don’t know
If your code actually is more secure, you don’t want your
adversaries to start using it

Attacks were kept secret

You want your adversary to keep using code you have already
broken
You don’t want your adversary to break your own codes by
using your own attack methods
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Birth of Modern Cryptography: Kerckhoffs

Auguste Kerckhoffs [1883] made some important comments that
are all relevant even now:

The system should be, if not theoretically unbreakable,
unbreakable in practice

“Computational security” — (practically) all contemporary
systems are computationally secure

The design of a system should not require secrecy and
compromise of the system should not inconvenience the
correspondents (Kerckhoffs’ principle)

Very important: a protocol should stay secure even if the
adversary knows it

(To be continued)
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Birth of Modern Cryptography: Kerckhoffs

(continued)

The key should be memorable without notes and should be
easily changeable

Current translation: keys should be short enough to fit into
secure hardware

The cryptograms should be transmittable by telegraph

Current translation: they should be (short) bitstrings ,

The apparatus or documents should be portable and operable
by a single person

Current translation: it should be easy to implement and
operate cryptographic software by a layman
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Birth of Modern Cryptography: WW2

WW2 and the concurrent tense political situation stimulated
new research in cryptography

Breaking the German/Japanese codes helped the allies to won
the World War II a few years earlier

Cryptographic research was top secret for the same reasons it
had already been

Breaking of Enigma was made public only 40 years later!
Up to then, previous British colonies happily used war-time
Enigmas, assuming that they are secure. . .
The first computer — Colossus — was specifically built to
decrypt German codes. After the war it was dismantled, and
even its existence was made top secret

One important published paper: [Shannon, 1949]
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Birth of Modern Cryptography: Shannon’s work

Shannon studied the properties of ciphers, that are used to
encrypt plaintexts by using some keys

He made some fundamental observations:

Theorem 1. One-time pad is secure
Theorem 2. You cannot build anything more efficient than
one-time pad that is (as) secure

Security here is information-theoretical: nothing will leak even
to omnipotent adversaries
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Birth of Modern Cryptography: Shannon’s work

Recall that one-time pad needs one to use one-time keys, and
the total bitlength of keys is the same as the total bitlength of
encrypted messages

To overcome Theorem 2, Shannon also studied computational
security, proposing some basic ideas (confusion, diffusion,
product ciphers) that are even used nowadays in the design of
ciphers

Shannon did not define computational security: this had to
wait for the birth of the complexity theory in 60s/70s
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Birth of Modern Cryptography: Sixties

(Re)invention of computers in later 40s, their decrease in size
and the increase of their availability also meant that one now
needed cryptography to protect also commercial data, not
only military data

Because there’s a lot of more commercial data — and most of
it is secret but not top secret —, cryptographic research was
ready to go public
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Birth of Modern Cryptography: Seventies

Public competition to design a standard cipher for
nonclassified data — won by DES

Discovery of public-key cryptography in the academic
community: [Diffie and Hellman, 1976, Rivest et al., 1978]

PKC was independently and slightly before discovered in the
secret agencies. This was published 20 years later, and many
details are still missing

However, none of the first schemes are secure according to the
contemporary definitions
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Why Is RSA Not Secure?

Recall that in RSA, the ciphertext is computed as
y = xe (mod n) for plaintext x , public key e

RSA has the homomorphic property: xe
1 · xe

2 ≡ (x1x2)
e mod n

Thus, adversary can compute a ciphertext of x1x2 by herself

RSA is malleable: knowing a ciphertext of some plaintext, one
can generate a ciphertext of a related plaintext

Example: given a ciphertext of “Yes”, compute a ciphertext
of “Not”, and vice versa

Example: given opponent’s secret bid x on auction, compute
bid of x + 1

Note: homomorphic properties are highly desired in some
applications
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Modern Cryptography: 1982+

Modern cryptography is ripe discipline dealing with secure
communications

Personal opinion: symmetric cryptography (block ciphers,
stream ciphers, . . . ) is not ripe, and thus we will not deal with
it in this course

MC enforces strict discipline when you construct secure
solution for cryptographic problem:

Study problem. Define security in this setting
Design a protocol
Prove that this protocol is secure according to definition

Often, first secure protocol is inefficient but it demonstrates
feasibility

End goal is to design something that is both efficient, and
secure with respect to strongest reasonable security definition
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Secret-Key Cryptosystems: Syntactic Definition

Secret-key cryptosystem is a triple of three algorithms:

Key generation G (k) that outputs a k-bit random string

Encryption E : K ×M→ C
Decryption D : K × C →M

We require that Dsk(Esk(m)) = m for every sk,m
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Secret-Key Cryptosystems: Bad Examples

Variant 1. A cryptosystem is secure if, given ciphertext, we
cannot find key

But then Esk(m) := m is a secure cipher!

Variant 2. A cryptosystem is secure if, given ciphertext, we
cannot find plaintext

But what if we are only interested in finding the first byte of
the plaintext (“Yes” vs “Not”)?

Variant 3. A cryptosystem is secure if, given ciphertext, we
cannot find a single bit of plaintext

But if we know that the plaintext is either “Yes” or ”Not”
then XOR of two bits may reveal which one was encrypted

General idea of correct definition: adversary knows that
ciphertext encrypts one of two messages. Let her guess which
one was encrypted
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Game-Based Security

We define similar security notions by using games
Game is interactive protocol between challenger and adversary
Challenger has access to internals of cryptographic protocol:

He generates random keys
. . . and performs all operations that require secret information

Adversary:
Obtains public information from challenger
Has black-box access to primitive by making game-dependent
queries to challenger

At some point in game, adversary receives challenge
She wins when at end, she answers correctly to the challenge
We say the protocol is (τ, ε)-secure wrt this game if no τ -time
adversary wins the game with probability
≥ Pr[winning without participating in game] + ε
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Security Notion = Adversarial Goal + Adversarial
Capabilities

Protocol is secure if adversary does not “break” the game

Game = adversarial goal

Defined by the challenge, and by what it means to answer
correctly

Adversarial capabilities:

Qualitative: what kind of access the adversary has to the
system
Quantitative: time, number of queries, success probability
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Secret-Key Cryptosystems: IND-KPA Security

IND-KPA (indistinguishable against known plaintext attacks) game:

1 Setup phase: Challenger generates random key sk← G (k)
2 Challenge phase:

Adversary choses two messages (m∗
0 ,m

∗
1) of the same length,

and sends them to challenger
Challenger choses a random bit b ← {0, 1}. She sends
c∗ ← Esk(m

∗
b ; ) to adversary

3 Guessing phase: Adversary outputs a bit b∗. She wins if
b∗ = b

We say that a secret-key cryptosystem is (τ, ε)-IND-KPA secure if
Pr[Adversary wins] < 1

2 + ε for any adversary that works in time τ
Goal: IND, quantitative capability: (τ, ε), qualitative capability: KPA.
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Recall: One-Time Pad

Recall from Crypto I. One-time pad is defined as follows:

G (k) returns a k-bit string.

E : {0, 1}k × {0, 1}k → {0, 1}k returns Esk(m) := sk⊕m.

D : {0, 1}k × {0, 1}k → {0, 1}k returns Dsk(c) := sk⊕ c .

Fact [Shannon, 1949]. OTP is secure.
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One-Time Pad Is IND-KPA Secure

Theorem

One-time pad is (∞, 0)-IND-KPA secure.

Note: Every adversary has success probability at least 1
2 . Thus this

theorem claims all adversaries have success probability exactly 1
2 .
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One-Time Pad Is IND-KPA Secure

Proof.

During game, challenger creates sk← {0, 1}k . Adversary sends
m∗

0,m
∗
1 ∈ {0, 1}k to challenger, who replies with m∗

b ⊕ sk for
random b ← {0, 1}. Adversary has to guess b. For any bitstring c∗

that adversary sees, and for both i ,

Pr
sk

[m∗
i = c∗ ⊕ sk] = Pr

sk
[sk = m∗

i ⊕ c∗︸ ︷︷ ︸
Constant

] = 2−k .

Thus, Prsk[c
∗ ⊕ sk = m∗

0|c∗ ⊕ sk = m∗
0 ∨ c∗ ⊕ sk = m∗

1] = 1
2 .

Thus the best strategy for even an omnipotent adversary is to
output a random b∗ ← {0, 1}. Thus Pr[Adversary wins] = 1

2 .
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Dealing With A Priori Information

In addition, we also want to avoid the next type of attacks:

Adversary has seen an encryption of “Yes” before. Or
She has seen an encryption of a plaintexts beginning with
“Yes”. Or
She has seen a number of encryptions, of plaintexts, possibly
all chosen by herself

Formalised by allowing the adversary to access encryption
oracles

In particular, cryptosystem has to be randomised
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Secret-Key Cryptosystems: Syntactic Definition (2)

Definition

Secret-key cryptosystem is a triple of three algorithms:

Key generation G (k) that outputs a k-bit random string

Encryption E : K ×M×R→ C
Decryption D : K × C ×R →M

We require additionally that Dsk(Esk(m; r)) = m for every sk,m, r .
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Secret-Key Cryptosystems: IND-CPA Security

IND-CPA (indistinguishable against chosen plaintext attacks) game:

1 Challenger generates random key sk← G (k)
2 Query phase 1:

For i = 1 to γ do:
Adversary A sends to challenger query mi

Challenger replies with ci ← Esk(mi ; ri ) for fresh random ri

3 Challenge phase:
A chooses two messages (m∗

0 ,m
∗
1) of equal length, and sends

them to challenger
Challenger chooses random bit b ← {0, 1} and fresh random
string r∗. She sends c∗ ← Esk(m

∗
b ; r∗) to adversary

4 Query phase 2: As query phase 1, but for γ2 queries

5 Guessing phase: A outputs bit b∗. She wins if b∗ = b
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Secret-Key Cryptosystems: IND-CPA Security

Definition

We say that a secret-key cryptosystem is
(τ, ε, µ1, γ1, µ2, γ2)-IND-CPA secure if Pr[Adversary wins] < 1

2 + ε
for any adversary A that works in time τ and makes up to γi

queries in phase i , and messages in query phase having max total
length µi .

Goal: IND, quantitative: (τ, ε, µ1, γ1, µ2, γ2), qualitative: CPA.

Helger Lipmaa COMPGA4 Crypto II, 2008

Lecture 1
Lecture 2
Lecture 3
Lecture 4
Lecture 5

Intro to Intro
Secret-key cryptosystems
Game-Based Security
IND-KPA, IND-CPA, IND-CCA Security
Reduction
f -OTP

Secret-Key Cryptosystems: Insufficiency of IND-CPA

There are situation where security against CPA is insufficient

In many situations, one can force receiver to decrypt
ciphertext of her choice, and observe output

For example

IPSec, where all packets have fixed-length header
Adversary can try to change few bytes of ciphertext,
corresponding to packet number/sender
If modified ciphertext does not encrypt valid plaintext, receiver
returns error
Adversary may get extra information

Another example: auctions, where given encrypted bid Esk(x)
you may be able to compute Esk(x + 1)
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IND-CCA Security

IND-CCA (indistinguishable against chosen ciphertext attacks) game:

1 Challenger generates random key sk← G (k)
2 Query phase 1:

A has adaptive access to encryption and decryption oracles
3 Challenge phase:

A chooses two messages (m∗
0 ,m

∗
1) of equal length, and sends

them to challenger
Challenger chooses random bit b ← {0, 1} and fresh random
string r∗. She sends c∗ ← Esk(m

∗
b ; r∗) to adversary

4 Query phase 2:
A has adaptive access to encryption and decryption oracles
. . . except she is not allow to query Dsk(·) on input c∗!

5 Guessing phase: A outputs bit b∗. She wins if b∗ = b
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Secret-Key Cryptosystems: IND-CCA Security

Definition

We say that a secret-key cryptosystem is
(τ, ε, µ1, γ1, µ2, γ2)-IND-CCA secure if Pr[Adversary wins] < 1

2 + ε
for any adversary A that works in time τ and makes up to γi

queries in phase i , and messages in query phase having max total
length µi .

Goal: IND, quantitative: (τ, ε, µ1, γ1, µ2, γ2), qualitative: CCA.
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Mystical World of Security Definitions

There are many security definitions even for SKCs

Goal: IND (indistinguishability), NM (nonmalleability),. . .
Abilities: CPA, CCA1, CCA2 (=CCA), . . .

Some security definitions, though looking different, result in
the same notion

Example: IND-CCA2=NM-CCA2 [Bellare et al., 1998]

We will discuss how to construct IND-CPA/IND-CCA secure
SKCs in a later lecture
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Mystical World of Security Definitions

It is extremely important to choose
definition that suits your real-life
situation. You must understand the
situation to choose definition. You
must understand definition to choose
it
Plus: given concrete definition, you
must be able to prove your solution is
secure.
(Arguably, the most important lesson from this course.)
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Game-Based Security: View Based On Environment

ChallengerAttacker

DKEK

G
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Game-Based Security: View Based On Environment

Environment=Actual Challenger

AttackerG̃ Chal̃lenger

D̃KẼK
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Reduction

One-time pad is one of very few unconditionally secure
protocols

There’s unconditional authentication, secret sharing schemes,
. . .
In the case of encryption, OTP = most efficient
unconditionally secure scheme

Security of 99.9999% cryptographic primitives is conditional
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Reduction

Typical theorem. Assume X is (τX , εX )-secure in game GX.
Then Y is (τY , εY )-secure in game GY.

If X is (τX , εX ) GX-secure then Y is (τY , εY ) GY-secure
If Y is not (τY , εY ) GY-secure then X is not (τX , εX ) GY-secure
Given adversary AX who (τX , εX ) GX-breaks X, we construct
adversary AY who (τY , εY ) GY-breaks Y
Adversary AY simulates game GX to AX , by inputting some
values to AX and observing the outputs
Because AY executes AX , then trivially τY ≥ τX , and usually
εY ≤ εX
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Reductions: Sandbox view

Environment=Actual Challenger
Attacker for $\MATH{f}$−OTP

G̃

D̃KẼK

Chal̃lenge for f

Attacker for f - plays challenger for game f -OTP

Challenge for f -OTP
Attacker for f -OTP
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Some Simple Probability Facts

Fact 1. Pr[A = C ] ≤ Pr[A = B] + Pr[B = C ].
Let q be the input domain
Proof:

Pr[A = C ] =Pr[A = C |A = B] Pr[A = B] + Pr[A = C |A 6= B] Pr[A 6= B]

=Pr[B = C |A = B] Pr[A = B]+

Pr[A = C |A 6= B,B = C ] Pr[A 6= b,B = C ]+

Pr[A = C |A 6= B,B 6= C ] Pr[A 6= B,B 6= C ]

≤Pr[B = C ] + Pr[A = B|A 6= B,B = C ] + 0

≤Pr[B = C ] + Pr[A = B] .
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Some Simple Probability Facts

Fact 2. If Pr[A|F ] = Pr[B|F ] then |Pr[A]− Pr[B] ≤ Pr[F ].
Proof:
Assume Pr[A] ≥ Pr[B]. Now,

Pr[A]− Pr[B]Pr[A|F ] Pr[F ] + Pr[A|F ] Pr[F ]− Pr[B|F ] Pr[F ]− Pr[B|F ] Pr[F ]

=Pr[A|F ] Pr[F ]− Pr[B|F ] Pr[F ] ≤ Pr[A|F ] Pr[F ] ≤ Pr[A|F ] .

By Bayes’s theorem, Pr[A|F ] = Pr[F |A] Pr[A]/ Pr[F ]. Thus

. . . =Pr[F |A] Pr[A]/ Pr[F ]

≤Pr[F |A] Pr[A] ≤ Pr[F |A] Pr[A] + Pr[F |A] Pr[A] = Pr[F ] .

Intuition: If two things are similar unless something bad happens, they

can be indistinguished only when this bad happens.
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Computational Indistinguishability

Fix distributions D1,D2 as public parameters. Consider game
IND-KPA:

1 Challenge phase: Challenger picks random b ← {0, 1}. He
sends x ← Db to adversary

2 Guessing phase: Adversary outputs bit b∗

3 Adversary wins if b∗ = b

Definition

Two distributions D1,D2 are (τ, ε)-indistinguishable if for any
τ -time adversary A, probability that A wins is ≤ 1

2 + ε.
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Computational Indistinguishability: Example

Definition

Let Un be random distribution on n-bit strings.

Definition

A function f : {0, 1}k → {0, 1}` such that f (Uk),U` are
(τ, ε)-indistinguishable is (τ, ε)-key derivation function.
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Statistical Difference

Definition

D1,D2 are ε-indistinguishable if they are (∞, ε)-indistinguishable.
ε is statistical difference of two distributions.

Let S be set of input values on which some algorithm outputs 1,
then

ε =
1

2
·max

S
|Pr[D1 ∈ S ]− Pr[D2 ∈ S ]|

=
1

2

∑
x

|Pr[D1 = x ]− Pr[D2 = x ]| .

Clearly, if D1,D2 are ε-indistinguishable then they are
(τ, ε)-indistinguishable for any τ .
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Example: f -OTP

One-time pad is defined as follows:

G (k) returns a k-bit string.

E : {0, 1}k × {0, 1}k → {0, 1}k returns Esk(m) := sk⊕m.

D : {0, 1}k × {0, 1}k → {0, 1}k returns Dsk(c) := sk⊕ c .

Good: OTP is (∞, 0)-IND-KPA-secure.
Bad: one-time key is as long as message.
Define f -OTP for key derivation function f : {0, 1}k → {0, 1}`,
` ≥ k:

G (k) returns a k-bit string.

E : {0, 1}k × {0, 1}` → {0, 1}` returns Esk(m) := f (sk)⊕m.

D : {0, 1}k × {0, 1}` → {0, 1}` returns Dsk(c) := f (sk)⊕ c .
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Security Proofs By Game Chains

Security of complex protocols depends usually on many
conditional statements.

Common technique: game-hopping = a chain of several
games, every game takes care of one statement
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Security Proofs By Game Chains

We want to prove that protocol is Game0-secure

It is often difficult to do it directly, so instead:

One defines an environment/new challenger who may interact
differently with adversary

Let this be Game1

Let Wi be the event that A wins in Gamei

Let Di be the event that A can distinguish games Gamei and
Gamei+1

Clearly Pr[W0] ≤ Pr[W1] + Pr[D0]

Game chains: Often one defines chain of games
Game1, . . . ,Gamem, then W0 ≤Wm +

∑
Di

After that, one upperbounds values Wm and Di

See the next lecture!
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Simple Probability Fact: Pr[W0] ≤ Pr[D0] + Pr[W1]

Let Wi be event that adversary wins in game Gamei, Di be event
that some adversary distinguishes games Gamei and Gamei+1.
Why Pr[W0] ≤ Pr[D1] + Pr[W1]? Define “bad” event Fi , such
that: games Gamei and Gamei+1 differ only if Fi holds. Then:

Pr[W0] =Pr[W0|F 0] Pr[F 0] + Pr[W0|F0] Pr[F0]

=Pr[W1|F 0] Pr[F 0] + Pr[W0|F0] Pr[F0]

≤Pr[W1] + Pr[F0] .

But D0 is F0 in eyes of some efficient adversary. Thus if Pr[D0] is
probability that any efficient adversary can distinguish games then
Pr[W0] ≤ Pr[W1] + Pr[D0].
By induction, we can also prove that
Pr[W0] ≤ Pr[Wm] + Pr[D0] + Pr[D1] + · · ·+ Pr[Dm−1].

Helger Lipmaa COMPGA4 Crypto II, 2008

Lecture 1
Lecture 2
Lecture 3
Lecture 4
Lecture 5

Intro to Intro
Secret-key cryptosystems
Game-Based Security
IND-KPA, IND-CPA, IND-CCA Security
Reduction
f -OTP

f -OTP Is Computationally IND-KPA Secure

Define two games Game0, Game1

In Game0, challenger creates a random k-bit key sk, receives
`-bit messages m∗

0,m
∗
1 from adversary, returns

c∗ := m∗
b ⊕ f (sk) for a random bit b ← {0, 1}

This is the original game, we have to show that W0 is small

In Game1, challenger creates a random `-bit key sk′, receives
`-bit messages m∗

0,m
∗
1 from adversary, returns c† := m∗

b ⊕ sk′

for a random bit b ← {0, 1}
Game1 corresponds to OTP, thus W1 = 0 for arbitrary
adversary

Thus W0 ≤ D1, where D1 is probability adversary
distinguishes games Game0, Game1
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f -OTP Is Computationally IND-KPA Secure (Continued)

Equal to probability adversary distinguishes c∗ and c† for
unknown b

Because sk′ is random, c† is random

Thus W0 is upperbounded by probability that adversary
distinguishes c∗ from random

Because c∗ := m∗
b ⊕ f (sk), This is upperbounded by

probability that adversary distinguishes f (sk) from random
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f -OTP Is Computationally IND-KPA Secure: Formal
Statement

The previous argument was informal. But following it, we can
prove next theorem.

Theorem

If f : {0, 1}k → {0, 1}` is a (τ, ε)-key derivation function then
f -OTP is (τ − small value, ε)-IND-KPA secure.
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f -OTP Is Computationally IND-KPA Secure: Proof

Proof.

We only have to bound D1. Assume A can (τ∗, ε)-distinguisher between
games Game0 and Game1. Construct next B that distinguishes output
of f from random.
B gets `-bit input c , where c is random if b = 0 and c = f (x) for
random k-bit string x if b = 1.
B receives m∗ from A. She gives m∗ ⊕ c as challenge to A who outputs
b∗ = 0 if she thinks she is in Game0, and b∗ = 1 if she thinks she is in
Game1.

B outputs b∗. Clearly, if A guessed correctly then also B guesses

correctly. Moreover, B’s execution time is only slightly larger than A’s

time.
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Comments On f -OTP

Good: key is shorter than messages.

Bad: key can still only be used once.

Somewhat more complex construction is backbone of
CTR-mode and many modern streamciphers.

There, one can use single key to encrypt many messages

. . . under slightly more complex assumptions

See a later lecture.
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Simulation-Based Security

behaves nicely

Environment

Attacker

Environment

Simulator

For every attacker, there exists nicely behaving simulator, such
that environment does not distinguish whether he is
communicating with attacker or simulator
(We may talk about it during last lectures)
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Public-Key Cryptosystems: Syntactic Definition

All participants of encryption (Alice, Bobs, . . . ) have often
access to some common public parameters

Every party has secret key sk and public key pk.

If Alice sends a message to Bob, she first obtains Bob’s public
key pk, encrypts by using that

Bob decrypts the ciphertext using his secret key sk
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Public-Key Cryptosystems: Syntactic Definition

Definition

Public-key cryptosystem is a triple of three algorithms:

Key generation G (k) that outputs secret/public keys (sk, pk)

Randomised encryption Epk(m;V r) = c

Deterministic decryption Dsk(c) = m

We require additionally that Dsk(Epk(m;V r)) = m for every m,V r
and every (sk, pk) ∈ G (k).

We omit public parameters from most of the formal definitions,
algorithms however use them implicitly
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Hybrid And Usual PKCs

SKC-s encrypt arbitrary bitstrings.

Common PKC-s encrypt messages of some fixed size

RSA: elements modulo n
Many other schemes: elements of some finite group

“Non-hybrid PKC” or just “‘PKC”

PKC-s that encrypt arbitrary bitstrings are called hybrid
PKC-s.
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Security Definitions For PKC

Security definitions are similar to case of SKC

One major difference:

Because everybody knows public key, there is no need to
access encryption oracle!

Plus of course, encryption is done by using public-key
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Secret-Key Cryptosystems: IND-CPA Security

IND-CPA (indistinguishable against chosen plaintext attacks) game:

1 Challenger generates random key sk← G (k)
2 Query phase 1:

For i = 1 to γ1 do:
Adversary A sends to challenger query mi

Challenger replies with ci ← Esk(mi ; ri ) for fresh random ri

3 Challenge phase:
A chooses two messages (m∗

0 ,m
∗
1) of equal length, and sends

them to challenger
Challenger chooses random bit b ← {0, 1} and fresh random
string r∗. She sends c∗ ← Esk(m

∗
b ; r

∗) to adversary

4 Query phase 2: As query phase 1, but for γ2 queries

5 Guessing phase: A outputs bit b∗. She wins if b∗ = b
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Public-Key Cryptosystems: IND-CPA Security

No need for encryption oracles — adversary can encrypt herself
IND-CPA (indistinguishable against chosen plaintext attacks) game:

1 Challenger generates random key (sk, pk)← G (k)
2 Challenge phase:

A chooses two messages (m∗
0 ,m

∗
1) of equal length, and sends

them to challenger
Challenger chooses random bit b ← {0, 1} and fresh random
string r∗. She sends c∗ ← Epk(m

∗
b ; r

∗) to adversary

3 Guessing phase: A outputs bit b∗. She wins if b∗ = b

In fact, for PKC, IND-KPA = IND-CPA!
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Public-Key Cryptosystems: IND-CPA Security

Definition

We say that a public-key cryptosystem is (τ, ε)-IND-CPA secure if
Pr[Adversary wins] < 1

2 + ε for any adversary A that works in time
τ .

Goal: IND, quantitative: (τ, ε), qualitative: CPA.
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Reminder: Groups

Assume G is a group with operation ·
a(bc) = (ab)c for any a, b, c ∈ G— associativity
There exists 1 ∈ G such that 1a = a1 = a for any a ∈ G —
unit element
For any a ∈ G there exists a−1 ∈ G s.t. aa−1 = a−1a = 1 —
inverse

If additionally ab = ba for any a, b ∈ G then G is Abelian
group

Let ord(G) := |G| — order of group = number of elements
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Reminder: cyclic groups

Denote q := ord(G) and Zq := {0, 1, . . . , q − 1}
G is cyclic if: exists a generator g ∈ G such that
G = {g0, g1, g2, . . . , gq−1}

For any h ∈ G there exists unique i ∈ Zq such that h = g i

Write i = logg h — i is discrete logarithm of h on basis g

Fact: groups of prime order do not have nontrivial subgroups

Follows from Lagrange theorem

In following, we always assume G is has prime order, is cyclic,
Abelian.
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Reminder: Diffie-Hellman Key Exchange

Alice, Bob have secret keys ska, skb and public keys pka, pkb

They want to generate a common secret key

Idea: they share a cyclic finite group G with generator g

Public keys are defined as pka = g ska , pkb = g skb

Alice computes common secret key as
pkska

b = (g skb)ska = g skaskb

Bob computes common secret key as
pkskb

a = (g ska)skb = g skaskb

They use then g skaskb for symmetric or public-key encryption

Note: this protocol by itself is weak against meet-in-middle attacks
but we are not going to elaborate on that, nor give security
definitions for key exchange. See [Shoup, 1999] for definitions if
interested
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Discrete Logarithm Assumption

DL game:

1 Public parameters: G, g , q

2 Setup phase: challenger generates random sk← Zq, sends
h := g sk to adversary

3 Challenge phase: adversary returns x ∈ Zq

4 Adversary wins if h = g x

Definition

Group G is a (τ, ε)-DL group if for any τ -times adversary the
probability that adversary wins is ≤ 1

q + ε
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Example Groups

Those groups should be known from Crypto I.

Fix 1024-bit prime p and 160-bit prime q, such that q | p − 1.
Then Z∗

p has a unique subgroup of order q. Defined G to be
this subgroup.

A well-chosen elliptic curve group of prime size q ≈ 2160

In both cases, it is assumed that τ ≈ 280, ε ≈ 2−80

Fact (Crypto I). DL in any group of size ≈ 22k can be computed
in ≈ 2k steps by using several standard methods. (Standard
cycle-finding methods: baby-step-giant step etc)
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Elgamal Cryptosystem

Public parameters: group G with generator g and size q ≈ 22k

Key generation G (k): choose random sk← Zq. Set pk← g sk

Encryption E of a message m ∈ G: generate random r ← Zq,
set Epk(m; r) = (c1, c2) := (m · pkr , g r )

Decryption D of a ciphertext (c1, c2) ∈ G2: compute
m := c1/csk

2

Correctness: c1/csk
2 = m · pkr/(g r )sk = m(g sk)r/(g sk)r = m

Proposed in [Elgamal, 1985].
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Elgamal = DH Key Exchange + OTP

Elgamal can be seen as OTP, with key computed by using DH key
exchange

r is Alice’s temporary secret key, g r is Alice’s temporary
public key, pkr = g sk·r is common secret key.

Encryption = Alice’s one-time public key, plus mK , with K =
common one-time secret key

We defined OTP by using XOR, but multiplication in cyclic
group is as valid

(OTP can use any group, and any group operation)
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IND-CPA Security Of Elgamal: Assumptions

IND-CPA security of Elgamal follows from hardness of
computing the “Diffie-Hellman” common secret key, given
only both public keys

CDH assumption — computational Diffie-Hellman assumption

More precisely, because we need indistinguishability, common
secret key has to be indistinguishable from random

As in case of f -OTP, where secret key was f (x), we had to
assume output of f is indistinguishable from random

DDH assumption — Decisional Diffie-Hellman assumption
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IND-CPA Security Of Elgamal: Assumptions

Unfortunately, in a general group DDH assumption is stronger
than DL assumption

There exist groups were DDH assumption is wrong, but both
DL and CDH assumptions are believed to be true

Thus one assumes DDH explicitly in security proof. Also CDH
is usually a separate assumption
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CDH Assumption

CDH game:

1 Public parameters: G, g , q

2 Challenge phase: Challenger generates random x , y ← Zq.
He sends g x , g y to adversary. Adversary returns h ∈ G

3 Adversary wins if h = g xy

Definition

Group G is a (τ, ε)-CDH group if for any τ -times adversary the
probability that adversary wins is ≤ 1

q + ε

For simplicity, we define DH(g x , g y ) := g xy .
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DDH Assumption

DDH game:

1 Public parameters: G, g , q

2 Challenge phase: Challenger generates random x , y , z ← Zq

and b ← {0, 1}. Challenger sets h1 := g x , h2 := g y . If b = 0
then h3 := g z else h3 ← g xy . He sends h1, h2, h3 to adversary.
Adversary returns b∗ ∈ {0, 1}

3 Adversary wins if b∗ = b

Definition

Group G is a (τ, ε)-DDH group if for any τ -times adversary the
probability that adversary wins is ≤ 1

2 + ε
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DDH Tuples

Definition

We say (g , h1, h2, h3) is DDH tuple if (h1, h2, h3) = (g x , g y , g xy )
for some x , y .

Thus in DDH game, adversary has to distinguish random DDH
tuples from random group elements
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Home Problems

Problem

Show that if G is a (τ, ε)-CDH group then G is a
(τ − small value, ε)-DL group.

Problem

Show that if G is a (τ, ε)-DDH group then G is a
(τ − small value, ε)-CDH group.
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IND-CPA Security of Elgamal

Theorem

Assume G is a (τ, ε)-DDH group. Then Elgamal is
(τ − small value, ε/2)-IND-CPA secure.

In proof, common parameters: (G, g , q) — known by everybody.
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Proof of IND-CPA Security of Elgamal (1/5)

Assume τ∗-time A can break Elgamal with probability ε.
Construct adversary B that tries to break DDH.
Challenger generates random bβ ← {0, 1}, and challenge
(h1, h2, h3) as required by game: if bβ = 0 then h3 is random,
otherwise h3 = DH(h1, h2). B has to guess bβ.
Intuitive idea: B plays challenger for A, receives a guess b∗α from
A and then outputs his guess b∗β.
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Proof of IND-CPA Security of Elgamal (2/5)

Simulation of IND-CPA game between B and A:

Setup phase: B lets pkβ := h1, sends h1 to A. He does not
know secret key but it does not matter because A does not
see it, and public key has correct distribution.

Challenge phase: After receiving (m∗
0,m

∗
1) from A, B sets

c∗ = (c∗0 , c∗1 ) := (m∗
γ · h3, h2) for random γ ← {0, 1}. He

sends c∗ as challenge to A, and gets back A’s guess b∗α.

After this game B guesses b∗β := 1 if A guesses γ correctly, and
b∗β = 0 otherwise.
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Proof of IND-CPA Security of Elgamal (3/5)

Simulation of IND-CPA game between B and A:

Setup phase: B lets pkβ := h1, sends h1 to A. He does not
know secret key but it does not matter because A does not
see it, and public key has correct distribution.

Challenge phase: After receiving (m∗
0,m

∗
1) from A, B sets

c∗ = (c∗0 , c∗1 ) := (m∗
γ · h3, h2) for random γ ← {0, 1}. He

sends c∗ as challenge to A, and gets back A’s guess b∗α.

If bβ = 1 then c∗0 = m∗
γDH(h1, h2) is correct encryption of m∗

γ .

Thus A guesses γ correctly with probability 1
2 + ε and B returns

b∗β = 1 with probability Pr[b∗β = 1|bβ = 1] = 1
2 + ε.
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Proof of IND-CPA Security of Elgamal (4/5)

Simulation of IND-CPA game between B and A:

Setup phase: B lets pkβ := h1, sends h1 to A. He does not
know secret key but it does not matter because A does not
see it, and public key has correct distribution.

Challenge phase: After receiving (m∗
0,m

∗
1) from A, B sets

c∗ = (c∗0 , c∗1 ) := (m∗
γ · h3, h2) for random γ ← {0, 1}. He

sends c∗ as challenge to A, and gets back A’s guess b∗α.

If bβ = 0 then distribution of c∗ is independent of γ. Thus A
guesses γ correctly is 1

2 , and B returns b∗β = 1 with probability

Pr[b∗β = 1|bβ = 0] = 1
2 .
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Proof of IND-CPA Security of Elgamal (5/5)

But then probability B guesses correctly is

Pr[b∗β = bβ] =Pr[b∗β = bβ |bβ = 1] Pr[bβ = 1] + Pr[b∗β = bβ |bβ = 0] Pr[bβ = 0]

=
1

2
· Pr[b∗β = 1|bβ = 1] +

1

2
· Pr[b∗β = 0|bβ = 0]

=
1

2
· Pr[b∗β = 1|bβ = 1] +

1

2
· (1− Pr[b∗β = 1|bβ = 0])

=
1

2
· (1

2
+ ε) +

1

2
· (1− 1

2
) =

1

2
+ ε/2

.

Thus Pr[B wins] = ε/2.
Moreover, B only executes A once, computes one multiplication in
group and does some other small computation. QED
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If You Want, Read. . .

Course notes at
http://www-cse.ucsd.edu/users/mihir/cse207/ are good for
this lecture (though we do not follow them) — see pseudorandom
functions, symmetric encryption.
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What We Know?

How to define security by using games

How to prove security by using reductions

Sandboxing: given AX who breaks game GX, construct an
attacker AY that breaks game GY
AY plays challenger in game GX, and observers AX ’s
responses in this game

Definitions: IND-KPA, IND-CPA, IND-CCA

For SKC: OTP is IND-KPA secure, if f if KDF then f -OTP is
IND-KPA secure

For PKC: IND-KPA = IND-CPA, if DDH is difficult then
Elgamal is IND-CPA secure
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Few Words About τ and ε

τ and ε are dependent
Example: some problem may be (280, 1)-secure and (240, 2−40)
secure
If adversary has more time, she can break problem with higher
probability

There are conjectured τ, ε for which DL/CDH/DDH problems
seem to be hard

Exact reduction makes possible to specify how those values
“carry over” when we construct some protocol
In PKC, τ, ε depend on security parameter k — e.g., key size

Security of DDH depends on keys size ⇒ security of Elgamal
depends on key size

In SKC, ciphers are usually designed for fixed k, so we think
of k as being a constant
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More About Computational Indistinguishability

In practice, adversary often sees several elements from a
distribution.
Fix distributions D1,D2 as public parameters. Consider game:

1 Challenge phase: Challenger picks random b ← {0, 1}. He
sends x1, . . . , xµ ← Db to adversary

2 Guessing phase: Adversary outputs bit b∗

3 Adversary wins if b∗ = b

Definition

Two distributions D1,D2 are (τ, ε, µ)-indistinguishable if for any
τ -time adversary A that sees µ samples, probability that A wins is
≤ 1

2 + ε.
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Pseudorandom Generators

Assume for f : {0, 1}k → {0, 1}`, f (Uk),U` are
(τ, ε)-indistinguishable.

Then f is (τ, ε)-key derivation function.

If k > ` then f is called (τ, ε)-pseudorandom generator, PRG.

If k ≤ ` then KDF’s can be constructed without cryptographic
assumptions.

Fact. One can construct PRG given any one-way function.
One needs one-way functions to construct
PRG-s. [Impagliazzo et al., 1989]

The corresponding reductions are inefficient, thus PRGs based
on any OWFs are not used in practice.
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Home Problems

Assume f : {0, 1}k → {0, 1}k × {0, 1}k is PRG, f (x) = (y , z).
Figure out if the next functions are PRG-s for reasonable
quantitative parameters. (Prove or find attack.)

f1(x) = (z , y)

f2(x) = (z , y , z ⊕ y)

f3(x) = (0, x , y)

f4(x) = (f (x), f (y))

f5(x) = z

f6(x) = (x , y)

f7(x) = (x ⊕ z , y)
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Reminder: f -OTP

Define f -OTP for PRG f : {0, 1}k → {0, 1}`, ` ≥ k:

G (k) returns a k-bit string.

E : {0, 1}k × {0, 1}` → {0, 1}` returns Esk(m) := f (sk)⊕m.

D : {0, 1}k × {0, 1}` → {0, 1}` returns Dsk(c) := f (sk)⊕ c .

We proved that if f : {0, 1}k → {0, 1}` is a (τ, ε)-PRG then
f -OTP is (τ − small value, ε)-IND-KPA secure.
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Secret-Key Cryptosystems: IND-CPA Security (reminder)

IND-CPA (indistinguishable against chosen plaintext attacks) game:

1 Challenger generates random key sk← G (k)
2 Query phase 1:

For i = 1 to γ do:
Adversary A sends to challenger query mi

Challenger replies with ci ← Esk(mi ; ri ) for fresh random ri

3 Challenge phase:
A chooses two messages (m∗

0 ,m
∗
1) of equal length, and sends

them to challenger
Challenger chooses random bit b ← {0, 1} and fresh random
string r∗. She sends c∗ ← Esk(m

∗
b ; r∗) to adversary

4 Query phase 2: As query phase 1, but for γ2 queries

5 Guessing phase: A outputs bit b∗. She wins if b∗ = b
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IND-CPA Security Of Symmetric Cryptosystems

IND-CPA allows adversary to make extra queries to encryption
oracle

f -OTP is IND-KPA but not IND-CPA secure

It was not randomized: for every K ,m ciphertext was
deterministic
Adversary can query encryption oracle with same m0 she
submits as challenge
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Welcome To Counter Mode

Execute f on K and on extra bitstring N

We assume that knowing f (K ,N ′) for N ′ 6= N gives no
information on f (K ,N)

N is public, and shared by both guys who know secret key

First possibility: N is required to be unique — then honest
encrypter never uses same N with same key. We can then also
assume adversary cannot query oracle on same N that was
used while encryption

Because honest guys never uses the same N, adversary never
sees two messages encrypted with same N, thus cannot get
access to encryption oracle with same N
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Welcome To Counter Mode

Execute f on K and on extra bitstring N

We assume that knowing f (K ,N ′) for N ′ 6= N gives no
information on f (K ,N)

N is public, and shared by both guys who know secret key

Second possibility: N is always chosen randomly, and is
unpredictable. Thus in query phase 1, adversary does not
know N and thus can only guess it’s values randomly. In
query phase 2, she is forbidden to use the same N since that
would break cryptosystem trivially
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(Stateful) Counter Mode: Definition

Setup: choose random sk, set N ← 0

Assume f : K × {0, 1}k → {0, 1}k

Encryption (deterministic):

Let m = m0|| . . . ||mn−1, where |mi | = k
For i = 0 to n − 1 do:

Set ci := f (K , N)⊕mi

Set N := N + 1

Ciphertext is c = (c0, . . . , cn−1), store new value of N

If N gets close to 2k then generate new key
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(Stateful) Counter Mode: Definition

Setup: choose random sk, set N ← 0

Assume f : K × {0, 1}k → {0, 1}k

Decryption (deterministic):

Let c = c0|| . . . ||cn−1, where |ci | = k
For i = 0 to n − 1 do:

Set mi := f (K , N)⊕ ci

Set N := N + 1

Plaintext is (m0, . . . ,mn−1), store new value of N
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Counter Mode: Picture

N + 1N N + n − 2N + n − 1

m0

c0

m

c

mn−1

cn−1. . .

. . .

. . .

. . . fK (N)

fK fKfKfK
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Counter Mode: Statement Of Security

Theorem

If f : K × {0, 1}k → {0, 1}k is a (τ, ε)-pseudorandom permutation
family and nonces are never reused, then stateful f -CTR is a
(τ − O(µ), ε + 0.5µ2/2k , γ, µ)-IND-CPA secure symmetric
cryptosystem.

There is no security guarantee if nonces are reused!
First proof in [Bellare et al., 1997].
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Pseudorandom Function Families (Under CPA)

Assume f : K × {0, 1}k → {0, 1}k . The set fsk : {0, 1}k → {0, 1}k
is small subset of all functions Func : {0, 1}k → {0, 1}k .
PRF Game (under CPA):

1 Setup phase: Challenger picks random b ← {0, 1}. If b = 0
then he picks random function g ← Func, otherwise he picks
random sk← K and sets g ← fsk.

2 Query phase: Adversary makes up to γ queries mi to
challenger. Challenger responds with g(mi ).

3 Guessing phase: Adversary outputs b∗. She wins if b∗ = b.

In CCA game, adversary can also access decryption oracle. By
default we always uses CPA game
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Pseudorandom Function Family: Definition

Definition

We say that a function family f : K × {0, 1}k → {0, 1}k is
(τ, ε, γ)-PRF if Pr[Adversary wins] < 1

2 + ε for any adversary A
that works in time τ and sees γ samples.
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Pseudorandom Permutation Families (Under CPA)

Assume f : K × {0, 1}k → {0, 1}k . The set fsk : {0, 1}k → {0, 1}k
is small subset of all permutations Perm : {0, 1}k → {0, 1}k .
PRF Game (under CPA):

1 Setup phase: Challenger picks random b ← {0, 1}. If b = 0
then he picks random function g ← Perm, otherwise he picks
random sk← K and sets g ← fsk.

2 Query phase: Adversary makes up to γ queries mi to
challenger. Challenger responds with g(mi ).

3 Guessing phase: Adversary outputs b∗. She wins if b∗ = b

In CCA game, adversary can also access decryption oracle. By
default we always uses CPA game
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Pseudorandom Permutation Family: Definition

Definition

We say that a permutation family f : K × {0, 1}k → {0, 1}k is
(τ, ε, γ)-PRP if Pr[Adversary wins] < 1

2 + ε for any adversary A
that works in time τ and sees γ samples.
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How To Construct PRPs/PRFs?

Again: PRP = PRF = OWF (one exists iff others
exist) [Impagliazzo et al., 1989]

But known OWF’s are much slower than blockciphers
+ reductions are very loose and inefficient

Assumption: AES is PRP

In fact, PRPs were defined to model existing blockciphers and
constructions, based on them

Same constructions are often more efficient when based on
PRFs, but there are no such symmetric primitives that directly
work as PRFs

It is known how to efficiently construct PRFs from PRPs
. . . and PRPs from PRFs — Feistel’s construction used already
in DES, proven secure in [Luby and Rackoff, 1988]
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How To Handle Random Functions?

Assume f : {0, 1}k → {0, 1}` is random function

This means that:

f is function: if we have seen f (x) then the next time we see
f (x), it has same value
If we have not seen f (x) then for us, f (x) is totally random,
that is, a priori probability that Pr[f (x) = y ] is equal to 2−`

for any y
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How To Handle Random Functions?

One can construct a random function on the run by using that
knowledge:

Create empty database
If f (x) is queried then:

If (x , y) is in database for some y , return y
Otherwise, pick random y ← {0, 1}`, store (x , y) in database,
return y

Alternatively, one party can generate RF and then send its
description — 2k` bits — to partner

Main motivation of using PRF-s is to get much shorter
description without losing much in security

Fact: For any A,B there are |B||A| functions f : A→ B
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Random Oracle Model

Random oracle = random function accessed only as oracle

If security proof uses random oracle then proof is in ROM

Sometimes, proof in ROM can be extended to case without
random oracles — this is known as standard model

However, there are protocols that are secure in ROM and not
in standard model

There are even tasks that can be solved ROM and that have
no protocol whatsoever in standard model

Proof in ROM can only be seen as argument that protocol is
secure, it must always be followed by proof in standard model!
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Random Function Is Pseudorandom Permutation (1/3)

Lemma (PRP-PRF Switching Lemma)

For any µ > 0, Func is (∞, 0.5µ2/2k , µ)-PRP.

Intuition.

For f drawn randomly from either Func or PRP, the values f (m)
are random. Only difference is that in first case, f (m) are
completely random, while in second case, if m 6= m′ then
f (m) 6= f (m′). Thus optimal distinguisher makes µ queries f at
different locations and then returns 0 (“from Func”) if all values
are different, and 1 if two values are equal.

While intuition is clear, full proof is not trivial — original proof (though

not result) was found to be incorrect 5 years later.
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Random Function Is Pseudorandom Permutation (2/3)

Assume A is adversary playing the PRP vs PRF game

Let F be bad event that not all answers returned by oracle are
different

Let Fi be bad event that ith query returns repetitive answer

Clearly, adversary’s view of both games are same until F
happens

Thus her winning probability is bound by Pr[F ]

But Pr[F ] ≤
∑

Pr[Fi ]

(This is essentially birthday paradox.)
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Random Function Is Pseudorandom Permutation (3/3)

Before ith queries, adversary has seen at most i − 1 different
values f (x)

Thus Pr[Fi ] ≤ (i − 1)/2k

Thus Pr[F ] ≤
∑µ

i=1(i − 1)/2k = µ(µ− 1)/2k+1 ≤ 0.5µ2/2k

Note: if µ ≈ 2k/2 then ε ≈ 1, thus one must have µ� 2k/2 to get
any security.
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(Reminder) Counter Mode: Statement Of Security

Theorem

If f : K × {0, 1}k → {0, 1}k is a (τ, ε)-pseudorandom permutation
family, and nonces are never reused, then stateful f -CTR is a
(τ − O(µ), ε + 0.5µ2/2k , γ, µ)-IND-CPA secure symmetric
cryptosystem.

There is no security guarantee if nonces are reused!
First proof in [Bellare et al., 1997].
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Proof: CTR Mode Is Secure

Proof has three games

Game0 is original game

Game1 replaces f with random permutation (CTR-mode with
random permutation)

Game2 replaces f with random function (CTR-mode with
random function)
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Proof: CTR Mode Is Secure

We can bound Pr[D0] by using assumption

We can bound Pr[D1] by using PRP-PRF switching lemma

Thus we only need to bound Pr[W2]

But if we never reuse nonce then in Game2, message is
XOR-d with completely random string, thus Pr[W2] = 0

Thus
Pr[W0] ≤ Pr[D0] + Pr[D1] + Pr[W2] = ε + µ(µ− 1)/2k+1

Computing of attacking time is trivial
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Remarks On CTR Mode

IND-CPA definition was modified — security is only
guaranteed if nonce is nonrepeating

In practice, this means encrypter has to be stateful and
memorise the last version of N

We can only encrypt up to 2k/2 messages — up to 264 with
AES, up to 232 with DES because of birthday paradox

If we use PRF instead of PRP, we can encrypt 2k messages —
but there is no standard for PRF

CTR mode is very efficient: fK (N + i) can be precomputed,
thus after receiving message m, encryption = XOR

CTR mode can be done in parallel: every ciphertext only
depends on one plaintext

No decryption f −1
K — simpler implementations
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Cipher-Block Chaining Mode

Stateless CTR

Like stateful CTR, except counter N is every time chosen
randomly

No need for state

However, computing random numbers is expensive

Security is slightly degraded because of that

In particular, CTR with random function suffers from birthday
paradox
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CTR Mode With Random Nonce: Security Statement

Theorem

If f : K × {0, 1}k → {0, 1}k is a (τ, ε)-pseudorandom permutation
family, then f -CTR is a (τ − O(µ), ε + µ2/2k , γ, µ)-IND-CPA
secure symmetric cryptosystem.
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CTR Mode With Random Nonce: Security Proof

Follows the proof of stateful CTR

Only difference: CTR mode with random function, Pr[W2]

Pr[W2] is bound by probability Pr[F ] that two random N’s are
equal

As before, Pr[F ] ≤ 0.5µ2/2k

Pr[W0] ≤ Pr[D0] + Pr[D1] + Pr[W2] ≤ µ2/2k

Note: real proof as in cited course notes is of course much longer
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CBC Mode: History

CBC mode was one of four modes of operations for DES,
standardised in 70s

CTR mode was not one of them

In CBC, every subsequent ciphertext depends on all previous
plaintexts

No parallelisability

Error propagation: if ci gets modified then mj≥i get modified

In CTR mode, if ci is modified then only mi is modified

Currently this is said not to be cryptographic issue - use
error-correcting codes
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CBC Mode: Definition

Setup: choose random sk, set N ← 0

Assume f : K × {0, 1}k → {0, 1}k

Encryption:

Choose random N ← {0, 1}k , set N0 := N
Let m = m0|| . . . ||mn−1, where |mi | = k
For i = 0 to n − 1 do:

Set ci := f (K , mi ⊕ N)
Set Ni+1 := ci

Ciphertext is c = (N, c0, . . . , cn−1)
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CBC Mode: Picture

. . .

. . .

mn−1m0 m1 mn−2. . .

cn−1

cn−2

mn−2 m

. . . cn−1 cc0 c1

N
m1m0 mn−1

cn−2c1c0

N

c

m

fKfK fKfK

f −1
K f −1

Kf −1
K f −1

K

Helger Lipmaa COMPGA4 Crypto II, 2008

Lecture 1
Lecture 2
Lecture 3
Lecture 4
Lecture 5

IND-CPA Secret-Key Cryptosystems
Counter Mode
PRPs/PRFs
Proof: CTR Is Secure
Cipher-Block Chaining Mode

CBC Mode: Security Statement

Theorem

If f : K × {0, 1}k → {0, 1}k is a (τ, ε)-pseudorandom permutation
family, then f -CBC is a (τ − O(µ), ε + µ2/2k , γ, µ)-IND-CPA
secure symmetric cryptosystem.
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CBC: Security Proof

As in case of CTR mode, define three games

Game0 — CBC with PRP

Game1 — CBC with RP

Game2 — CBC with RF

As in CTR mode, we get Pr[W0] ≤ ε + 0.5µ2/2k + Pr[W2]

We only have to bound Pr[W2]
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CBC Mode: Security Proof

Consider CBC with random function

Let F be event that some N has repeated, let Fi be event
that Ni is first repeating nonce

Clearly if the values mi ⊕ Ni are all random and different then
c is completely random — OTP
Bound Fi :

For j < i , cj = Nj is new random, thus fK (mj ⊕ Nj) is
completely random
Thus Ni = ci−1 is completely random, and probability Pr[Fi ] it
is equal to some previous Nj is ≤ (i − 1)/2k

Because every Ni is new and random then fK (Ni ⊕mi ) is new
and random, thus under ¬F , CBC mode is secure

Thus Pr[W2] ≤ Pr[F ] ≤
∑µ

i=1 Pr[Fi ] ≤ 0, 5µ2/2k
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Motivation

CTR+PRP: can only encrypt 2k/2 messages, birthday paradox

CTR+PRF: no such problems

But: AES is “standard” PRP family, no standard PRF families

It would be desirable to construct efficient PRF families from
PRP families
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Motivation

Existing block ciphers like DES use Feistel construction

Gets us from round functions to permutation

What can be said about security?

Luby and Rackoff [Luby and Rackoff, 1988] answered
affirmatively: with four rounds, Feistel construction
transforms PRF to PRF
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Luby-Rackoff: Picture

R ′L′

RL

fK1

fK2

fK3

fK4
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Luby-Rackoff: Formal Definition

For functions fKi
: {0, 1}k → {0, 1}k , and parameter r > 1,

define permutation LR f
K : {0, 1}2k → {0, 1}2k :

Here, K = (K1, . . . ,Kr ), r independent keys

For m ∈ {0, 1}2k , let m = (L,R) for L = L0,R = R0 ∈ {0, 1}k

For i = 1 to r do:

If i is odd then Li := Li−1;Ri := Ri−1 ⊕ fKi (Li−1)
If i is even then Ri := Ri−1; Li := Li−1 ⊕ fKi (Ri−1)

Set c = (Rr , Lr )

Decryption is exactly the same with m, c interchanged
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Luby-Rackoff: Remarks

We are not going to prove security

Reason 1: too long

Reason 2: there are more efficient generic constructions

Problem

Show that LR is a permutation. Show that 3-round LR is not a
PRP family.
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Starting To Generalise

For x ∈ {0, 1}2k , denote x = (xL, xR)

Definition (Basic Feistel Permutation)

For function f : {0, 1}k → {0, 1}k , let f : {0, 1}kto{0, 1}k be
permutation defined as f (x) = (xR , xL ⊕ f (xR)).

Definition (Feistel Network)

Let f1, . . . , fr be functions from {0, 1}k to {0, 1}k . Denote by
LR(f1, . . . , fr ) permutation on {0, 1}2k defined as

LR(f1, . . . , fr ) = fr ◦ · · · ◦ f1 .
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Security Statement: Luby-Rackoff

Theorem (Luby-Rackoff)

Let F be a PRF family. Then {LR(f1, f2, f3, f4) : fi ∈ F} is a PRP
family.
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Universal Hash Functions

Definition

Let H = {HK} : D → G be family of functions, where G is Abelian
group. H is ε-almost strongly universal hash family if
Pr[x ← G, y ← G \ {x} : h(x) = a, h(y) = b] ≤ ε/|G| for any
a, b ∈ G.
If ε = 1/|G| then H is strongly universal.
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UH: Examples

Let Hc,d = cx + d mod p, where c , d ∈ Zp and c 6= 0. Then
H : Zp → Zp is strongly UH family.

Really: for any a, b ∈ Zp,
Prx ,y [cx + d = a, cy + d = b] = 1/|G|2

Exactly one pair x , y : x = (a− d)/c , y = (b − d)/c mod p

There exist more efficient UH families, but even this one shows we
can construct one without any cryptographic assumptions.
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XOR-Universal Hash Functions

Definition ([Krawczyk, 1994])

Let H : D → {0, 1}k be family of functions. H is
ε-almost-xor-universal hash family if for any x 6= y and any a,
Pr[h← H : h(x)⊕ h(y) = a] ≤ ε.

Known also as ε-AXU hash families.
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AXU Hash Families: Examples

Let pi belong to finite field GF (2k)

Then polynomial p(x) =
∑d

i=0 pixi has d zeros

For ~p = (pd , . . . , p0) ∈ GF (2k)) define Hx(~p) = p(x), i.e.,
Hx : GF (2k)d+1 → GF (2k)

Let H = {Hx} : x ∈ GF (2k) with Hx : GF (2k)d+1 → GF (2k)

Because
Hx(~p)⊕ Hx(~q)⊕ a = p(x)⊕ q(x)⊕ a = (p ⊕ q)(x)⊕ a is
another polynomial, it has also at most d zeros

Thus Pr[x ← GF (2k) : H~p(x)− H~p(x) = a] ≤ d/2k
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Patel-Ramzan-Sundaram Construction

Theorem ([Patel et al., 1999])

Let h1, h2 be ε-AXU hash functions that are also permutations,
and let f be random function. Then LR(h1, f , f , h2) is
(∞,O(µ2 − ε), µ)-PRP family.

We will not prove it. Note that as in any LR construction, key
length of LR is somewhat longer than ideal. However, two outer
rounds are much simpler than PRF, and two inner rounds may use
same key. Thus PRS has three independent keys, while
Luby-Rackoff has four.
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From PRP to PRF

Theorem

Assume P = Pk is PRP family. Then F , where
Fk1,k2(x) = Pk1(x)⊕ Px2(x) is a PRF family.

We will not prove it again. See [Lucks, 2000].
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General Idea

When sending message over Internet, it is not only important
to be sure message is secret, it is also important to know it
comes from correct party

Too many applications to even mention
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MAC — Secret-Key Authentication

Message was sent by one of possibly many parties who know
secret key sk — it is assumed such parties trust each other to
some extent

Studied from 60s, unconditional MACs are possible

but with long keys

Best MACs are often much more efficient than encryption

IND-CPA cryptosystem + MAC = IND-CCA2 cryptosystem
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Signature Schemes

Every party has secret key, others know her public key.
Signing by using secret key, verification by using public key.

Diffie and Hellman [Diffie and Hellman, 1976] proposed idea
but no implementations

[Rivest et al., 1978] proposed signature scheme, based on
RSA decryption

Not secure according to contemporary definitions

Contemporary secure signature schemes are about as efficient
as secure public-key cryptosystems, but slightly more
complicated
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Security Definitions

There exist many bad definitions

In case of good definitions, there is a certain hierarchy

Bad: after seeing tag, find secret key/message

Correct: existential unforgeability

After seeing MACs on messages, possibly chosen by yourself,
come up with (m, tag), s.t. verification succeeds and tag has
not been MAC oracle’s answer on query m

In actual definition, attacker can make γv ≥ 1 forgery
attempts and wins if she succeeds at least once

Reason: success probabilities depend nontrivially on γv
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MAC: Syntax

MAC consists of three algorithms:

Key generation G : G (k) usually picks random uniform key
sk from {0, 1}k

Tag generation T : Tsk(m) computes a tag for message m

Tag verification V : Vsk(m, tag) returns accept or reject

Of course, if Vsk(m,Tsk(m)) = accept

Note: Tsk can be randomised, or depend on unique
nonce/counter
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MAC: WUF-CMA Game

Let M be message space, T be tag space, Tsk :M→ T .
WUF-CMA (weak unforgeability under chosen message
attacks) game:

1 Setup phase: Challenger chooses random new key sk

2 Query phase: Adversary queries challenger with γs messages
mi . Challenger responds with tagi := Tsk(mi ).

3 Challenge phase: Adversary outputs γv forgery attempts
(m∗

j , tag
∗
j ) ∈M× T s.t. m∗

j 6∈ {mi}
4 Adversary wins if Vsk(m

∗
j , tag

∗
j ) = accept for some j
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MAC: SUF-CMA Game

Let M be message space, T be tag space, Tsk :M→ T .
SUF-CMA (strong unforgeability under chosen message
attacks) game:

1 Setup phase: Challenger chooses random new key sk

2 Query phase: Adversary queries challenger with γs messages
mi . Challenger responds with tagi := Tsk(mi ).

3 Challenge phase: Adversary outputs γv forgery attempts
(m∗

j , tag
∗
j ) ∈M× T , s.t.

:::::::::::::::::::::::::
(m∗

j , tag
∗
j ) 6∈ {(mi , tagi )}

4 Adversary wins if Vsk(m
∗
j , tag

∗
j ) = accept for some j
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MAC: WUF/SUF-CMA Security Definition

Definition

MAC is (τ, ε, γs , γv )-xUF-CMA secure if
Pr[Adversary wins in xUF-CMA game] ≤ ε for any τ -time
adversary that makes up to γs/γv queries to MAC/verification
oracle

In general WUF-CMA is a stronger requirement (more about it
when we talk about IND-CCA2-secure encryption).
Trivial adversary who outputs random tags wins with probability
1− (1− 1

|T |)
γv ; we are interested in higher probabilities.
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Every PRF Is MAC

Theorem

If f : {0, 1}` → {0, 1}k is (τ, ε, γs + γv )-PRF then f is
(τ − O(γ), 1− (1− 1

|T |)
γv + ε, γs , γv )-SUF-CMA secure MAC.
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Every PRF Is MAC

Let A be adversary who can break f as a MAC

Construct B who breaks f as PRF

B has an access to oracle g that is either PRF or RF

If A makes MAC query mi , B forwards it to oracle and returns
g(mi )

Then B asks A for γv forgery attempts (m∗
j , tag

∗
j ). B queries

g to check if A’s forgery was successful. If it was, B guesses g
is pseudorandom

Security follows from fact that random function is ideally
secure MAC: if g is RF then A 1− (1− 1

|T |)
γv -breaks g ,

otherwise A ε-breaks g
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MACs with Nonces

As in case of symmetric cryptosystems, efficient MACs are easier
to construct if they have nonces, Tsk(N,m) = tag and
Vsk(N,m,Tsk(N,m)) = accept. As in case of CTR, we assume
nonces are unique.
SUF-CMA game:

1 Setup phase: Challenger chooses random new key sk

2 Query phase: Adversary queries challenger with γs pairs
Ni ,mi , s.t. Ni 6= Nj for i 6= j . Challenger responds with
tagi := Tsk(Ni ,mi ).

3 Challenge phase: Adversary outputs γv forgery attempts
(N∗

j ,m∗
j , tag

∗
j ), s.t. (N∗

j ,m∗
j , tag

∗
j ) 6∈ {(Ni ,mi , tagi )}

4 Adversary wins if Vsk(N
∗
j ,m∗

j , tag
∗
j ) = accept for some j
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OTP

PRF is MAC but also RF is trivially MAC

OTP is MAC if key is used once

For `-bit secret key sk, define Tsk(m) = sk⊕m

Problem 1: key is too long

Problem 2: you can only use it once

Solution to problem 1: “hash” message to shorter message

Solution to problem 2: instead of XORing with random new
string, XOR with PRF at new point
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Wegman-Carter MAC with OTP (Solving Problem 1)

Let H = {Hκ} : {0, 1}` → {0, 1}k be ε-AXU hash family

For (k + log |H|)-bit secret key (sk, κ), define
Tsk,κ(m) = sk⊕ Hκ(m)

Verification: Vsk,κ(m, c) returns accept iff c = sk⊕ Hκ(m)

Theorem

If H is ε-AXU hash family then WC is (∞, ε, 1, 1)-SUF-CMA
secure.

⇒ Efficient one-time MAC without cryptographic assumptions.
Defined in [Wegman and Carter, 1981] for SU hash, redefined
in [Krawczyk, 1994] for AXU hash.
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Wegman-Carter + OTP: Security Proof

1 query, thus adversary sees pair (m, tag), s.t.
sk⊕ Hκ(m) = tag (and nothing else)

Adversary has to construct (m∗, tag∗) for m∗ 6= m,
s.t. sk⊕ Hκ(m∗) = tag∗

Given what she knows, this is equivalent to constructing
(m∗, tag∗), s.t. Hκ(m)⊕ Hκ(m∗) = tag ⊕ tag∗

But for any m∗ 6= m, this probability is upperbound by ε

Because she has no additional information, ε is also
upperbound on her success
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Example

Assume k | `
Let H be the polynomial hash, Hκ(m) =

∑n−1
i=0 miκ

i in
GF (2k)

Select secret k-bit key κ

For concrete message m = (m0, . . . ,mn−1),
Tκ(m) := sk⊕

⊕n−1
i=0 miκ

i

Recall here ε = (n − 1)/2k

One-time key κ can be short, it only influences the value ε

Take say k = 80, then for even n = 240, this scheme is
reasonably secure

We can still only authenticate one (even if very long) message
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Wegman-Carter MAC with f -OTP

Let H = {Hκ} : {0, 1}` → {0, 1}` be AXU hash family

Let f : {0, 1}k → {0, 1}k be PRP family

For (k + log |H|)-bit secret key (sk, κ), define
Tsk,κ(N,m) = (N, fsk(N)⊕ Hκ(m))

Note: sk and κ are both independent and random

Defined in [Shoup, 1996] who first proved security for PRF-family
f , and for PRP-family f he added the distance between PRF and
PRP.
Bernstein [Bernstein, 2005] gave a more precise proof that works
directly for PRP-family. His proof assumes that f has a small
“interpolation probability”.

Helger Lipmaa COMPGA4 Crypto II, 2008

Lecture 1
Lecture 2
Lecture 3
Lecture 4
Lecture 5

Authentication
Message Authentication Codes
Wegman-Carter MAC

Bernstein’s Proof: Basic Idea

In WC+OTP, adversary saw one query and made one forgery
attempt

Because H is ε-AXU and Pr[sk = c] is small for every c , we
get simple upperbound

If adversary sees more than one queries, we have to
upperbound bound
Pr[fsk(N1) = x1 ∧ · · · ∧ fsk(Nγ) = xγ ∧ fsk(N

∗) = x∗]

This latter probability is exactly interpolation probability

Security of WC follows directly (though via a technical proof)
from that
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Interpolation Assumption on f

Definition ([Bernstein, 2005])

For a function family f : A→ B we say that f has γ-order
interpolation probability Intγ(f ) = δ if

Pr
sk

[(fsk(N1), . . . , fsk(Nγ)) = (x1, . . . , xγ)] ≤ δ

for all tuples (x1, . . . , xγ ,N1, . . . ,Nγ), s.t. Ni 6= Nj for i 6= j .
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Bernstein’s Theorem

Theorem

Assume γ < 2k − 1. Let H be an ε-AXU. Let f be a function
family, s.t.

Intγ(f ) ≤ δ

2γk
,

and

Intγ+1(f ) ≤ δε

2γk
.

Let Tsk,κ(N,m) := (N, fsk(N)⊕ Hκ(m)). Then MAC is
(∞, γv · δε/2γk , γ, γv )-SUF-CMA secure.

Note: in proof, we bound success probability of one forgery
attempt, then multiply it with γv .
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WC + f -OTP: Security Proof

Attacker sees γ tuples (Ni ,mi , tagi ), s.t.
fsk(Ni )⊕ Hκ(mi ) = tagi .

She outputs (N∗,m∗, tag∗); wins if fsk(N
∗)⊕ Hκ(m∗) = tag∗

Probability: over coin tosses of challenger and attacker

Fix any tag = (tag1, . . . , tagγ). We bound probability that
(N∗,m∗, tag∗) is successful forgery for this concrete tuple.

Probability: over choice of sk, κ and adversary’s coin tosses.

Let A be event that for this fixed tag, N∗ 6∈ {N1, . . . ,Nγ}.
We have to bound probability Pr[fsk(N

∗) = Hκ(m∗)⊕ tag∗,
fsk(N1) = Hκ(m1)⊕ tag1, . . . , fsk(Nγ) = Hκ(mγ)⊕ tagγ ]

This probability is upperbound by
Intγ+1(f ) · Pr[A] + Intγ(f ) · ε · Pr[¬A] = δε/2γk

Helger Lipmaa COMPGA4 Crypto II, 2008

Lecture 1
Lecture 2
Lecture 3
Lecture 4
Lecture 5

Authentication
Message Authentication Codes
Wegman-Carter MAC

What’s This Interpolation Probability?

If f : A→ B is random function then Intγ(f ) = 1/|B|γ
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What’s This Interpolation Probability?

If f : A→ B is random permutation then
Intγ(f ) ≤ 1

|B| ·
1

|B|−1 · · · · ·
1

|B|−(γ−1)
But

γ−1∏
i=0

(x − i) =

√√√√γ−1∏
i=0

(x − i)(x − (γ − 1− i))

≥

√(
x2

(
1− γ − 1

x

))γ

=
√

x2γ(1− (γ − 1)/x)γ

Thus

Intγ(f ) ≤

√
(1− (γ − 1)/|B|)−γ

|B|2γ
=

(1− (γ − 1)/|B|)−γ/2

|B|γ
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Bernstein’s Theorem for RF

Theorem

Assume γ < 2k − 1 and ε ≥ 1/2k . Let H be an ε-AXU. Let f be
random function. Let Tsk,κ(N,m) := (N, fsk(N)⊕ Hκ(m)). Then
MAC is (∞, γv · ε, γ, γv )-SUF-CMA secure.

Here, write δ = 1. We know

Intγ(f ) = 1/2γk = δ/2γk

and

Intγ+1(f ) =
1

2(γ+1)k
≤ ε

2γk
=

δε

2γk

because ε ≥ 1/2k
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Bernstein’s Theorem for RP

Theorem

Assume γ < 2k − 1 and ε ≥ 1/2k . Let H be an ε-AXU. Let f be
random permutation. Let Tsk,κ(N,m) := (N, fsk(N)⊕ Hκ(m)).
Then MAC is (∞, γv · (1− γ/2k)−(γ+1)/2ε, γ, γv )-SUF-CMA
secure.

Define δ = (1− γ/2k)−(γ+1)/2.
Then

Intγ(f ) ≤ (1− (γ − 1)/2k)−γ/2

2γk
≤ δ

2γk

and

Intγ+1(f ) ≤ (1− γ/2k)−(γ+1)/2

2(γ+1)k
≤ δ

2(γ+1)k
≤ δε

2γk
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Bernstein’s Theorem For PRP

Assume f is a (τ, εprp, γ + γv )-PRP

Game0: WC + PRP, Game1: WC + RP

Then
Pr[W0] ≤ Pr[D1] + Pr[W1] ≤ γv · (1− γ/2k)−(γ+1)/2ε + εprp
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Remarks

Efficiency: in case of RP, we had multiplicand
(1− γ/2k)−(γ+1)/2. This is “small” if γ < 2k/2

If γ = 2k/2, this is (1− 2−k/2)(−1−2−k/2)/2

But (1− x)(−1−x)/2 = 1 + x/2 + O(x2) by series expansion
Thus for γ = 2k/2, this multiplier is ≈ 1

Bernstein’s paper uses nonstandard notation, and is somewhat
difficult to read

However, it is very instructive and recommended

In concrete proof, one keeps precise account of what the
probability is taken over, on conditions, etc

Current presentation was again simplified
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Example: Concrete WC MAC

Let f be AES, then k = 128. Assume message length divides
by k

Let H be the polynomial hash, Hκ(m) =
∑n−1

i=0 miκ
i

This assumes we fix a representation of {0, 1}k as a field
GF (2128), any representation is ok
Because AES uses GF (2128) already, we can actually share
arithmetics there

Select secret k-bit keys sk, κ

For concrete message m = (m0, . . . ,mn−1) and nonce N,
Tsk,κ(N,m) := (N,AESsk(N)⊕

⊕n−1
i=0 miκ

i )

This is very efficient: one AES call + computation of degree
n − 1 polynomial over GF (2128) (fast)

Recall here ε = (n − 1)/2k
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