## Combinatorics.

## Problem set 1: Counting I.

1. (MN 3.1.6). Show that a natural number $n \geq 1$ has an odd number of divisors (including 1 and itself) if and only if $\sqrt{n}$ is an integer.
2. (MN 3.2.3) Let $p$ be a permutation, and let $p^{k}$ be the $k$-fold composition of $p$. By the order of the permutation $p$ we mean the smallest natural number $k \geq 1$ such that $p^{k}=i d$, where $i d$ denotes the identity permutation (mapping each element onto itself).
(a) Determine the order of the permutation (2 3154789 6).
(b) Show that each permutation $p$ of a finite set has a well-defined finite order, and show how to compute the order using the lengths of the cycles of $p$.

## 3. (MN 3.2.7)

(a) Find out what is the largest power of 10 dividing the number 70 ! (i.e. the number of trailing zeros in the decimal notation for 70 !).
(b) Find a general formula for the highest power $k$ such that $n$ ! is divisible by $p^{k}$, where $p$ is a given prime number.
4. (MN 3.3.4) For natural numbers $m \leq n$ calculate (i.e. express by a simple formula not containing a sum) $\sum_{k=m}^{n}\binom{k}{m} \cdot\binom{n}{k}$.
5. (MN 3.3.7) How many functions $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ are there that are monotone; that is, for $i<j$ we have $f(i) \leq f(j)$ ?
6. (MN 3.4.2) Find positive and nondecreasing functions $f(n), g(n)$ defined for all natural numbers such that neither $f(n)=O(g(n))$ nor $g(n)=$ $O(f(n))$ holds.
7. (MN 3.5.5) Decide which of the following statements are true:
(a) $n!\sim((n+1) / 2)^{n}$,
(b) $n!\sim n e(n / e)^{n}$,
(c) $n!=O\left((n / e)^{n}\right)$,
(d) $\ln (n!)=\Omega(n \ln n)$,
(e) $\ln (n!) \sim n \ln n$.
8. (MN 3.5.9) Prove the lower bound $n!\geq e\left(\frac{n}{e}\right)^{n}$ in Thm. 3.5.5 by induction.

9*. (MN 3.3.6) Prove that $\sum_{k=0}^{m}\binom{m}{k} \cdot\binom{n+k}{m}=\sum_{k=0}^{m}\binom{n}{k} \cdot\binom{m}{k} \cdot 2^{k}$.

