Combinatorics.

Problem set 2: Counting II.

1. (MN 3.3.9) How many k-element subsets of $\{1,2, \ldots, n\}$ exist containing no two consecutive numbers?
2. (MN 3.5.2) Using Fact 3.5.4, prove that for all $n \geq 1$

$$
\left(1+\frac{1}{n}\right)^{n} \leq e \leq\left(1+\frac{1}{n}\right)^{n+1}
$$

3. (MN 3.6.1). Prove the estimate $\binom{n}{k} \leq(e n / k)^{k}$ directly from Theorem 3.5.5.
4. (MN 3.7.3) (Sieve of Eratosthenes) How many numbers are left in the set $1,2, \ldots, 1000$ after all multiples of $2,3,5$, and 7 are crossed out?
5. (MN 3.7.6) How many ways are there to arrange 4 Americans, 3 Russians, and 5 Chinese into a queue, in such a way that no nationality forms a single consecutive block?
6. (MN 3.8.6) How many permutations of the numbers $1,2, \ldots, 10$ exist that map no even number to itself?
7. (MN 3.8.12) For a given natural number N, determine the probability that two numbers $m, n \in\{1,2, \ldots, N\}$ chosen independently at random are relatively prime.
8. (MN 3.8.14) How many ways are there to seat n married couples at a round table with $2 n$ chairs in such a way that the couples never sit next to each other?

9*. (\sim MN 3.7.5) How many orderings of the letters A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P are there such that we cannot obtain any of the words BAD, DEAF, APE by crossing out some letters? What if we also forbid BEAMING?

