Combinatorics.

Problem set 3: Graphs I.

1. (MN 4.1.4) Show that a graph G with n vertices is asymmetric (its only automorphism is the identity mapping) if and only if n ! distinct graphs on the set $V(G)$ are isomorphic to G.
2. (MN 4.1.6) How many graphs on the vertex set $\{1,2, \ldots, 2 n\}$ are isomorphic to the graph consisting of n vertex-disjoint edges (i.e. with edge set $\{\{1,2\},\{3,4\}, \ldots,\{2 n-1,2 n\}\}$?
3. (MN 4.2.2) What is the maximum possible number of edges of a graph with n vertices and k components?
4. (MN 4.2.4) Prove that a graph is bipartite if and only if it contains no cycle of odd length.
5. (MN 4.3.2) Construct an example of a sequence of length $n \geq 5$ in which each term is some of the numbers $1,2, \ldots, n-1$ and which has an even number of odd terms, and yet the sequence is not a graph score.
6. (MN 4.3.5) Draw all nonisomorphic graphs with score ($6,3,3,3,3,3,3$). Prove that none was left out!
7. (MN 4.4.2) Characterize graphs that have a tour, not necessarily a closed one, covering all edges.
8. (MN 4.4.7) Construct two connected graphs with the same score, one with and one without a Hamiltonian cycle.

9*. (MN 4.2.6) Describe all graphs containing no path of length 4.

