Finite Fields I
 Tutorial 1

Group theory and ring theory.

1. Find all the subgroups of $U\left(\mathbb{Z}_{28}\right)$. For each subgroup, determine its order and index.
2. Prove that if the order of a finite group G is a prime power p^{k}, then the order of its center $C(G)$ is divisible by p.
3. The ring of Gaussian integers is the subring $G=\{a+b i \mid a, b \in \mathbb{Z}\}$ of \mathbb{C}. Find the quotient ring $G /\langle 3-i\rangle$. Is it a field? Is it isomorphic to a ring you already know?
4. What is the least possible size of a maximal ideal of a commutative ring with 2020 elements? Give an example of such a ring and its maximal ideal.
5. Let R be a commutative ring with 1 , without nilpotents (i.e. $x^{n}=0$ implies $x=0$) and of prime characteristic p. Prove that the Frobenius map $x \mapsto x^{p}$ is an injective endomorphism. Show that if R is a finite field, it is an automorphism. Does this remain true for infinite fields?

6 . Find the gcd of the following polynomials in the ring $\mathbb{Z}_{2}[x]$:

$$
\begin{gathered}
f(x)=x^{5}+2 x^{4}+3 x^{3}+x^{2}+2 x+3 \quad \text { and } \\
g(x)=x^{6}+2 x^{5}+3 x^{4}+4 x^{3}+3 x^{2}+2 x+3
\end{gathered}
$$

7. Show that if F is a field, $f, g \in F[x]$ are coprime and not simultaneously constant polynomials, then there exist such $u, v \in F[x]$ that $u f+v g=1$, $\operatorname{deg}(u)<\operatorname{deg}(g)$ and $\operatorname{deg}(v)<\operatorname{deg}(f)$.
8. Show that for a polynomial f of positive degree over a field F, the following are equivalent:
1) f is irreducible;
2) the principal ideal (f) is a maximal ideal;
$3)$ the principal ideal (f) is a prime ideal.
9^{*}. Take a non-square $n \in \mathbb{N}$, an odd prime $p, R_{n}=\{a+\sqrt{n} \cdot b \mid a, b \in \mathbb{Z}\}$, and $I_{p}=\left\{a+\sqrt{n} \cdot b \in R_{n}|p| a \wedge p \mid b\right\}$. Show that I_{p} is an ideal of R_{n} and find a necessary and sufficient condition in terms of n and p for R_{n} / I_{p} to be a field. Is this field finite, and if so, how many elements does it have?
