Publications

See also my publication list on INSPIRE.

  1. M. Hohmann, C. Pfeifer, J. L. Said and U. Ualikhanova,
    Propagation of gravitational waves in symmetric teleparallel gravity theories,
    arXiv:1808.02894 [gr-qc].
  2. M. Hohmann, M. Krššák, C. Pfeifer and U. Ualikhanova,
    Propagation of gravitational waves in teleparallel gravity theories,
    arXiv:1807.04580 [gr-qc].
  3. M. Hohmann,
    Polarization of gravitational waves in general teleparallel theories of gravity,
    arXiv:1806.10429 [gr-qc].
  4. M. Hohmann, C. Pfeifer, M. Raidal and H. Veermäe,
    Wormholes in conformal gravity,
    arXiv:1802.02184 [gr-qc].
  5. M. Hohmann and C. Pfeifer,
    Scalar-torsion theories of gravity II: L(T, X, Y, φ) theory,
    Phys. Rev. D 98 (2018) 064003 [arXiv:1801.06536 [gr-qc]].
  6. M. Hohmann,
    Scalar-torsion theories of gravity III: analogue of scalar-tensor gravity and conformal invariants,
    Phys. Rev. D 98 (2018) 064004 [arXiv:1801.06531 [gr-qc]].
  7. M. Hohmann,
    Scalar-torsion theories of gravity I: general formalism and conformal transformations,
    Phys. Rev. D 98 (2018) 064002 [arXiv:1801.06528 [gr-qc]].
  8. M. Hohmann, L. Järv and U. Ualikhanova,
    Covariant formulation of scalar-torsion gravity,
    Phys. Rev. D 97 (2018) 104011 [arXiv:1801.05786 [gr-qc]].
  9. M. Hohmann,
    Good vs. Bad Tetrads in f(T) Gravity and the Role of Spacetime Symmetries,
    Proceedings 2018 2 (2018) 33.
  10. M. Hohmann, L. Järv, M. Krššák and C. Pfeifer,
    Teleparallel theories of gravity as analogue of non-linear electrodynamics,
    Phys. Rev. D 97 (2018) 104042 [arXiv:1711.09930 [gr-qc]].
  11. M. Hohmann and A. Schärer,
    Post-Newtonian parameters γ and β of scalar-tensor gravity for a homogeneous gravitating sphere,
    Phys. Rev. D 96 (2017) 104026 [arXiv:1708.07851 [gr-qc]].
  12. M. Hohmann, L. Järv and U. Ualikhanova,
    Dynamical systems approach and generic properties of f(T) cosmology,
    Phys. Rev. D 96 (2017) 043508 [arXiv:1706:02376 [gr-qc]].
  13. M. Hohmann,
    Post-Newtonian parameter γ and the deflection of light in ghost-free massive bimetric gravity,
    Phys. Rev. D 95 (2017) 124049 [arXiv:1701:07700 [gr-qc]].
  14. M. Hohmann and C. Pfeifer,
    Geodesics and the magnitude-redshift relation on cosmologically symmetric Finsler spacetimes,
    Phys. Rev. D 95 (2017) 104021 [arXiv:1612:08187 [gr-qc]].
  15. M. Hohmann, L. Järv, P. Kuusk, E. Randla and O. Vilson,
    Post-Newtonian parameter γ for multiscalar-tensor gravity with a general potential,
    Phys. Rev. D 94 (2016) 124015 [arXiv:1607.02356 [gr-qc]].
  16. M. Hohmann,
    Finsler fluid dynamics in SO(4) symmetric cosmology,
    The Fourteenth Marcel Grossmann Meeting; World Scientific; pp 1233-1238 [arXiv:1512.07927 [gr-qc]].
  17. M. Hohmann,
    Parameterized post-Newtonian limit of Horndeski's gravity theory,
    Proceedings of the Twelfth Asia-Pacific International Conference on Gravitation, Astrophysics, and Cosmology; World Scientific; pp 196-197 [arXiv:1508.05092 [gr-qc]].
  18. M. Hohmann,
    Symmetry in Cartan language for geometric theories of gravity,
    Proceedings of the Twelfth Asia-Pacific International Conference on Gravitation, Astrophysics, and Cosmology; World Scientific; pp 257-258 [arXiv:1508.05058 [math-ph]].
  19. M. Hohmann,
    Non-metric fluid dynamics and cosmology on Finsler spacetimes,
    Int. J. Mod. Phys. A 31 (2016) 1641012 [arXiv:1508.03304 [gr-qc]].
  20. M. Hohmann,
    Parameterized post-Newtonian limit of Horndeski's gravity theory,
    Phys. Rev. D 92 (2015) 064019 [arXiv:1506.04253 [gr-qc]].
  21. M. Hohmann,
    Spacetime and observer space symmetries in the language of Cartan geometry,
    J. Math. Phys. 57 (2016) 082502 [arXiv:1505.07809 [math-ph]].
  22. M. Hohmann,
    Aspects of multimetric gravity,
    J. Phys.: Conf. Ser. 532 (2014) 012009.
  23. M. Hohmann,
    Observer dependent geometries,
    invited contribution to Mathematical Structures of the Universe [arXiv:1403.4005 [math-ph]].
  24. M. Hohmann,
    Traversable wormholes without exotic matter in multimetric repulsive gravity,
    Phys. Rev. D 89 (2014) 087503 [arXiv:1312.5290 [gr-qc]].
  25. M. Hohmann,
    Parameterized post-Newtonian formalism for multimetric gravity,
    Class. Quant. Grav. 31 (2014) 135003 [arXiv:1309.7787 [gr-qc]].
  26. M. Hohmann, L. Järv, P. Kuusk and E. Randla,
    Post-Newtonian parameters γ and β of scalar-tensor gravity with a general potential,
    Phys. Rev. D 88 (2013) 084054 [Erratum-ibid. 89 (2014) 069901] [arXiv:1309.0031 [gr-qc]].
  27. M. Hohmann,
    Extensions of Lorentzian spacetime geometry: From Finsler to Cartan and vice versa,
    Phys. Rev. D 87 (2013) 124034 [arXiv:1304.5430 [gr-qc]].
  28. M. Hohmann,
    Propagation of gravitational waves in multimetric gravity,
    Phys. Rev. D 85 (2012) 084024 [arXiv:1105.2555 [gr-qc]].
  29. M. Hohmann,
    Quantum manifolds,
    AIP Conf. Proc. 1424 (2011) 149.
  30. M. Hohmann,
    Geometric constructions for repulsive gravity and quantization,
    PhD thesis.
  31. M. Hohmann and M. N. R. Wohlfarth,
    Multimetric extension of the PPN formalism: experimental consistency of repulsive gravity,
    Phys. Rev. D 82 (2010) 084028 [arXiv:1007.4945 [gr-qc]].
  32. M. Hohmann and M. N. R. Wohlfarth,
    Repulsive gravity model for dark energy,
    Phys. Rev. D 81 (2010) 104006 [arXiv:1003.1379 [gr-qc]].
  33. M. Hohmann and M. N. R. Wohlfarth,
    No-go theorem for bimetric gravity with positive and negative mass,
    Phys. Rev. D 80 (2009) 104011 [arXiv:0908.3384 [gr-qc]].
  34. M. Hohmann, R. Punzi and M. N. R. Wohlfarth,
    Quantum manifolds with classical limit,
    arXiv:0809.3111 [math-ph].
  35. M. Hohmann,
    Quantum aspects of spinning strings on AdS3 × S3 × T4 with RR-flux,
    diploma thesis.