Dark and visible lenses in bimetric gravity

Phys. Rev. D95 (2017) 124049

Daniel Blixt, Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu
Center of Excellence “The Dark Side of the Universe”

Tartu-Tuorla annual meeting - “What matters”
September 2017
\[S_{GR} = m_g^2 \int d^4 x \sqrt{-g} R(g) \]
Spin 0	Scalar field ϕ	$\mathcal{L}_\phi = -\partial_\mu \phi \partial^\mu \phi - m^2 \phi^2$
Spin 1/2	Spinor field ψ^α	$\mathcal{L}_\psi = -\bar{\psi} \gamma^\mu \partial_\mu \psi - m \bar{\psi} \psi$
Spin 1	Vector field A_μ	$\mathcal{L}_A = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{m^2}{2} A_\mu A^\mu$
Hassan Rosen Bimetric Gravity:

\[S_{HR} = m_g^2 \int d^4 x \sqrt{-g} R(g) + m_f^2 \int d^4 x \sqrt{-f} R(f) \]

\[-2m^4 \int d^4 x \sqrt{-g} \sum_{n=0}^{4} \beta_n e_n \left(\sqrt{g^{-1} f} \right) \]
Equations of Motion:

\[R_{\mu\nu}(g) - \frac{1}{2} g_{\mu\nu} R(g) + \frac{m^4}{m_g^2} V^g_{\mu\nu}(g, f; \beta_n) = 0, \]

\[R_{\mu\nu}(f) - \frac{1}{2} f_{\mu\nu} R(f) + \frac{m^4}{m_f^2} V^f_{\mu\nu}(g, f; \beta_n) = 0 \]
Couplings to matter

\[S_m = \int d^4x \sqrt{-g} \mathcal{L}_m (g, \phi_g) + \int d^4x \sqrt{-f} \tilde{\mathcal{L}}_m (f, \phi_f) \]
Stress-Energy Tensor:

\[T^g_{\mu\nu} \equiv -\frac{1}{\sqrt{-g}} \delta \left(\sqrt{-g} \mathcal{L}_m (g, \phi_g) \right) \frac{\delta g^{\mu\nu}}{\delta g_{\mu\nu}} \]

\[T^f_{\mu\nu} \equiv -\frac{1}{\sqrt{-f}} \delta \left(\sqrt{-f} \check{\mathcal{L}}_m (f, \phi_f) \right) \frac{\delta f^{\mu\nu}}{\delta f_{\mu\nu}} \]
Observational evidence for dark matter:
- Galaxy rotation curves: dark matter in galactic halos.
- Peculiar motion in clusters: dark matter in clusters.
- Galactic mergers: dark matter outside of galaxies.
Observational evidence for dark matter:
- Galaxy rotation curves: dark matter in galactic halos.
- Peculiar motion in clusters: dark matter in clusters.
- Galactic mergers: dark matter outside of galaxies.

Possibly interacting and non-interacting dark matter components.
Dark matter phenomenology

- Observational evidence for dark matter:
 - Galaxy rotation curves: dark matter in galactic halos.
 - Peculiar motion in clusters: dark matter in clusters.
 - Galactic mergers: dark matter outside of galaxies.

- Possibly interacting and non-interacting dark matter components.

- Simple ansatz for matter source:
 - Point-like matter distribution (consider galaxy as point mass).
 - Contains both visible and dark matter.
 - Dark matter is constituted by second matter sector $T^f_{\mu\nu}$.
Dark matter phenomenology

- Observational evidence for dark matter:
 - Galaxy rotation curves: dark matter in galactic halos.
 - Peculiar motion in clusters: dark matter in clusters.
 - Galactic mergers: dark matter outside of galaxies.

- Possibly interacting and non-interacting dark matter components.

- Simple ansatz for matter source:
 - Point-like matter distribution (consider galaxy as point mass).
 - Contains both visible and dark matter.
 - Dark matter is constituted by second matter sector $T^f_{\mu\nu}$.

⇒ Matter density:

$$T^g_{00} = \rho^g = M^g \delta(\vec{x}) , \quad T^f_{00} = \rho^f = M^f \frac{\delta(\vec{x})}{c^3} .$$
Post-Newtonian metric ansatz

- Proportional background metric ansatz:

\[g_{\mu\nu}^{(0)} = \eta_{\mu\nu}, \quad f_{\mu\nu}^{(0)} = c^2 \eta_{\mu\nu}; \quad c > 0. \]
Post-Newtonian metric ansatz

- Proportional background metric ansatz:
 \[g_{\mu\nu}^{(0)} = \eta_{\mu\nu}, \quad f_{\mu\nu}^{(0)} = c^2 \eta_{\mu\nu}; \quad c > 0. \]

- Metric \(g_{\mu\nu} \) determines trajectories of visible matter and light.
Post-Newtonian metric ansatz

- Proportional background metric ansatz:
 \[g^{(0)}_{\mu\nu} = \eta_{\mu\nu}, \quad f^{(0)}_{\mu\nu} = c^2 \eta_{\mu\nu}; \quad c > 0. \]

- Metric \(g_{\mu\nu} \) determines trajectories of visible matter and light.

- First order perturbation around background metric:

 \[
 g_{00} = -1 + 2G_v \frac{M^g}{r} + 2G_d \frac{cM^f}{r},
 \]

 \[
 g_{ij} = \left(1 + 2G_v \gamma_v \frac{M^g}{r} + 2G_d \gamma_d \frac{cM^f}{r}\right) \delta_{ij}.
 \]
Post-Newtonian metric ansatz

- Proportional background metric ansatz:
 \[g^{(0)}_{\mu\nu} = \eta_{\mu\nu} , \quad f^{(0)}_{\mu\nu} = c^2 \eta_{\mu\nu} ; \quad c > 0 . \]

- Metric \(g_{\mu\nu} \) determines trajectories of visible matter and light.

- First order perturbation around background metric:
 \[
 g_{00} = -1 + 2 G_v \frac{M^g}{r} + 2 G_d \frac{c M^f}{r} ,
 \]
 \[
 g_{ij} = \left(1 + 2 G_v \gamma_v \frac{M^g}{r} + 2 G_d \gamma_d \frac{c M^f}{r} \right) \delta_{ij} .
 \]

- Observable PPN parameters:
 - \(G_v \): Newtonian gravity caused by visible matter.
Post-Newtonian metric ansatz

- Proportional background metric ansatz:
 \[g^{(0)}_{\mu\nu} = \eta_{\mu\nu}, \quad f^{(0)}_{\mu\nu} = c^2 \eta_{\mu\nu}; \quad c > 0. \]

- Metric \(g_{\mu\nu} \) determines trajectories of visible matter and light.

- First order perturbation around background metric:
 \[
 g_{00} = -1 + 2G_v \frac{M^g}{r} + 2G_d \frac{cM^f}{r},

 g_{ij} = \left(1 + 2G_v \gamma_v \frac{M^g}{r} + 2G_d \gamma_d \frac{cM^f}{r} \right) \delta_{ij}.
 \]

- Observable PPN parameters:
 - \(G_v \): Newtonian gravity caused by visible matter.
 - \(G_d \): Newtonian gravity caused by dark matter.
Post-Newtonian metric ansatz

- Proportional background metric ansatz:
 \[g^{(0)}_{\mu\nu} = \eta_{\mu\nu}, \quad f^{(0)}_{\mu\nu} = c^2 \eta_{\mu\nu}; \quad c > 0. \]

- Metric \(g_{\mu\nu} \) determines trajectories of visible matter and light.

- First order perturbation around background metric:
 \[
 g_{00} = -1 + 2G_v \frac{M^g}{r} + 2G_d \frac{cM^f}{r},
 \]
 \[
 g_{ij} = \left(1 + 2G_v \gamma_v \frac{M^g}{r} + 2G_d \gamma_d \frac{cM^f}{r} \right) \delta_{ij}.
 \]

- Observable PPN parameters:
 - \(G_v \): Newtonian gravity caused by visible matter.
 - \(G_d \): Newtonian gravity caused by dark matter.
 - \(\gamma_v \): Light deflection caused by visible matter.
Post-Newtonian metric ansatz

- Proportional background metric ansatz:
 \[g^{(0)}_{\mu\nu} = \eta_{\mu\nu}, \quad f^{(0)}_{\mu\nu} = c^2 \eta_{\mu\nu}; \quad c > 0. \]

- Metric \(g_{\mu\nu} \) determines trajectories of visible matter and light.

- First order perturbation around background metric:
 \[
 g_{00} = -1 + 2G_v \frac{M^g}{r} + 2G_d \frac{cM^f}{r},
 \]
 \[
 g_{ij} = \left(1 + 2G_v \gamma_v \frac{M^g}{r} + 2G_d \gamma_d \frac{cM^f}{r} \right) \delta_{ij}.
 \]

- Observable PPN parameters:
 - \(G_v \): Newtonian gravity caused by visible matter.
 - \(G_d \): Newtonian gravity caused by dark matter.
 - \(\gamma_v \): Light deflection caused by visible matter.
 - \(\gamma_d \): Light deflection caused by dark matter.
Calculated values of PPN parameters:

\[G_v = \frac{3\tilde{m}_g^2 + 4\tilde{m}_f^2 e^{-\mu r}}{24\pi \tilde{m}_g^2 (\tilde{m}_f^2 + \tilde{m}_g^2)}, \]

\[G_d = \frac{3 - 4 e^{-\mu r}}{24\pi (\tilde{m}_f^2 + \tilde{m}_g^2)}, \]

\[\gamma_v = \frac{3\tilde{m}_g^2 + 2\tilde{m}_f^2 e^{-\mu r}}{3\tilde{m}_g^2 + 4\tilde{m}_f^2 e^{-\mu r}}, \]

\[\gamma_d = 1 + \frac{2(\tilde{m}_g^2 + 4\tilde{m}_f^2)}{3\tilde{m}_f^2 (3 e^{\mu r} - 4)}. \]
Calculated values of PPN parameters:

\[
G_v = \frac{3\tilde{m}_g^2 + 4\tilde{m}_f^2 e^{-\mu r}}{24\pi \tilde{m}_g^2 (\tilde{m}_f^2 + \tilde{m}_g^2)}, \quad \gamma_v = \frac{3\tilde{m}_g^2 + 2\tilde{m}_f^2 e^{-\mu r}}{3\tilde{m}_g^2 + 4\tilde{m}_f^2 e^{-\mu r}},
\]

\[
G_d = \frac{3 - 4e^{-\mu r}}{24\pi (\tilde{m}_f^2 + \tilde{m}_g^2)}, \quad \gamma_d = 1 + \frac{2(\tilde{m}_g^2 + 4\tilde{m}_f^2)}{3\tilde{m}_f^2 (3e^{\mu r} - 4)}.
\]

Constants appearing in PPN parameters:

- Effective Planck masses \(\tilde{m}_g = m_g, \tilde{m}_f = cm_f. \)
Calculated values of PPN parameters:

\[
G_v = \frac{3\tilde{m}_g^2 + 4\tilde{m}_f^2 e^{-\mu r}}{24\pi \tilde{m}_g^2 (\tilde{m}_f^2 + \tilde{m}_g^2)}, \quad \gamma_v = \frac{3\tilde{m}_g^2 + 2\tilde{m}_f^2 e^{-\mu r}}{3\tilde{m}_g^2 + 4\tilde{m}_f^2 e^{-\mu r}},
\]

\[
G_d = \frac{3 - 4e^{-\mu r}}{24\pi (\tilde{m}_f^2 + \tilde{m}_g^2)}, \quad \gamma_d = 1 + \frac{2(\tilde{m}_g^2 + 4\tilde{m}_f^2)}{3\tilde{m}_f^2 (3e^{\mu r} - 4)}.
\]

Constants appearing in PPN parameters:

- Effective Planck masses \(\tilde{m}_g = m_g, \tilde{m}_f = cm_f \).
- Massive spin 2 field mass:

\[
\mu = m^2 \sqrt{\left(\tilde{\beta}_1 + 2\tilde{\beta}_2 + \tilde{\beta}_3\right)\left(\frac{1}{\tilde{m}_f^2} + \frac{1}{\tilde{m}_g^2}\right)}.
\]
Solar system consistency

- Cassini tracking experiment (Shapiro delay by the sun):
 - Effective interaction distance: \(r_0 \approx 1.6R_\odot \approx 7.44 \cdot 10^{-3}\text{AU} \).
 - Measured PPN parameter: \(\gamma_v - 1 = (2.1 \pm 2.3) \cdot 10^{-5} \).
Solar system consistency

- Cassini tracking experiment (Shapiro delay by the sun):
 - Effective interaction distance: $r_0 \approx 1.6R_\odot \approx 7.44 \cdot 10^{-3} \text{AU}$.
 - Measured PPN parameter: $\gamma_v - 1 = (2.1 \pm 2.3) \cdot 10^{-5}$.
 - Gray area excluded at 2σ (with $m_{\text{AU}} = 1\text{AU}^{-1} \approx 1.32 \cdot 10^{-18}\text{eV/c}^2$):
Summary:

- **Dark matter:**
 - Non-interacting component passes through (Bullet cluster).
 - Interacting component undergoes shock in merger (Abell 520).

- **Bimetric gravity:**
 - Non-interacting dark matter could be dark spin 2 field.
 - Interacting dark matter could be sector coupled to second metric.

- **Test hypothesis using light deflection:**
 - Visible matter observations yield bounds on theory parameters.
 - Study gravitational effects of dark matter on masses / light.

- **What matters?**
 - Dark matter influences both light and visible matter by its gravity.
 - This gravitational influence may differ from that of visible matter.

- **Question:**
 - How can we measure the ratio of light deflection and Newtonian gravity for dark matter?
Conclusion

Summary:

Dark matter:
- Non-interacting component passes through (Bullet cluster).
- Interacting component undergoes shock in merger (Abell 520).

Bimetric gravity:
- Non-interacting dark matter could be dark spin 2 field.
- Interacting dark matter could be sector coupled to second metric.

Test hypothesis using light deflection:

Visible matter observations yield bounds on theory parameters.

Study gravitational effects of dark matter on masses / light.

What matters?

Dark matter influences both light and visible matter by its gravity. This gravitational influence may differ from that of visible matter.

Question:

How can we measure the ratio of light deflection and Newtonian gravity for dark matter?
Summary:

- **Dark matter:**
 - Non-interacting component passes through (Bullet cluster).
 - Interacting component undergoes shock in merger (Abell 520).

- **Bimetric gravity:**
 - Non-interacting dark matter could be dark spin 2 field.
 - Interacting dark matter could be sector coupled to second metric.

Test hypothesis using light deflection:

- Visible matter observations yield bounds on theory parameters.
- Study gravitational effects of dark matter on masses / light.
Summary:

- **Dark matter:**
 - Non-interacting component passes through (Bullet cluster).
 - Interacting component undergoes shock in merger (Abell 520).

- **Bimetric gravity:**
 - Non-interacting dark matter could be dark spin 2 field.
 - Interacting dark matter could be sector coupled to second metric.

- **Test hypothesis using light deflection:**
 - Visible matter observations yield bounds on theory parameters.
 - Study gravitational effects of dark matter on masses / light.

What matters?

Dark matter influences both light and visible matter by its gravity. This gravitational influence may differ from that of visible matter.
Summary:

Dark matter:
- Non-interacting component passes through (Bullet cluster).
- Interacting component undergoes shock in merger (Abell 520).

Bimetric gravity:
- Non-interacting dark matter could be dark spin 2 field.
- Interacting dark matter could be sector coupled to second metric.

Test hypothesis using light deflection:
- Visible matter observations yield bounds on theory parameters.
- Study gravitational effects of dark matter on masses / light.

What matters?
Dark matter influences both light and visible matter by its gravity. This gravitational influence may differ from that of visible matter.

Question:
How can we measure the ratio of light deflection and Newtonian gravity for dark matter?
β_n are just coefficients to the elementary symmetric polynomials of the eigenvalues λ_n of the matrix $\sqrt{g^{-1}f}$:

$$e_0 \left(\sqrt{g^{-1}f} \right) = 1,$$ \hspace{1cm} (1)

$$e_1 \left(\sqrt{g^{-1}f} \right) = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4,$$ \hspace{1cm} (2)

$$e_2 \left(\sqrt{g^{-1}f} \right) = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_1 \lambda_4 + \lambda_2 \lambda_3 + \lambda_2 \lambda_4 + \lambda_3 \lambda_4,$$ \hspace{1cm} (3)

$$e_3 \left(\sqrt{g^{-1}f} \right) = \lambda_1 \lambda_2 \lambda_3 + \lambda_1 \lambda_2 \lambda_4 + \lambda_1 \lambda_3 \lambda_4 + \lambda_2 \lambda_3 \lambda_4,$$ \hspace{1cm} (4)

$$e_4 \left(\sqrt{g^{-1}f} \right) = \lambda_1 \lambda_2 \lambda_3 \lambda_4 = \det \sqrt{g^{-1}f} \hspace{1cm} (5)$$