Extensions of Lorentzian spacetime geometry

From Finsler to Cartan and vice versa

Manuel Hohmann

Teoreetilise Füüsika Labor
Füüsika Instituut
Tartu Ülikool

22. aprill 2013
This work:

MH,
“Extensions of Lorentzian spacetime geometry: from Finsler to Cartan and vice versa,”
arXiv:1304.5430 [gr-qc].

Cartan geometry of observer space:

S. Gielen and D. K. Wise,
“Lifting General Relativity to Observer Space,”
arXiv:1210.0019 [gr-qc].

Finsler spacetimes:

C. Pfeifer and M. N. R. Wohlfarth,
“Causal structure and electrodynamics on Finsler spacetimes,”

C. Pfeifer and M. N. R. Wohlfarth,
“Finsler geometric extension of Einstein gravity,”
Outline

1. Physical motivation
2. Cartan geometry on observer space
3. Finsler spacetimes
4. From Finsler geometry to Cartan geometry
5. From Cartan geometry to Finsler geometry
6. Closing the circle
7. Finsler-Cartan-Gravity
8. Conclusion
Outline

1 Physical motivation

2 Cartan geometry on observer space

3 Finsler spacetimes

4 From Finsler geometry to Cartan geometry

5 From Cartan geometry to Finsler geometry

6 Closing the circle

7 Finsler-Cartan-Gravity

8 Conclusion
Consider the following experiment:

- A supernova occurs in a far away galaxy.
- An astronomer points his telescope to the sky.
- He takes a picture of the supernova.
Consider the following experiment:

- A supernova occurs in a far away galaxy.
- An astronomer points his telescope to the sky.
- He takes a picture of the supernova.

How can we describe this experiment?
What does it tell us about “spacetime”?
The spacetime picture:

- Model spacetime as a Lorentzian manifold \((M, g)\).
- Supernova is a “beacon” at some event \(x_0 \in M\).
- Astronomer observes the light at another event \(x \in M\).
- Light follows a null geodesic \(\gamma\) from \(x_0\) to \(x\).
The spacetime picture:
- Model spacetime as a Lorentzian manifold \((M, g)\).
- Supernova is a “beacon” at some event \(x_0 \in M\).
- Astronomer observes the light at another event \(x \in M\).
- Light follows a null geodesic \(\gamma\) from \(x_0\) to \(x\).

Description of measured data:
- Tangent vector to \(\gamma\) in \(x\) determines direction of light propagation.
- Distance determines apparent magnitude (observed brightness).
- Spacetime metric \(g\) determines redshift.
The spacetime picture:

- Model spacetime as a Lorentzian manifold \((M, g)\).
- Supernova is a “beacon” at some event \(x_0 \in M\).
- Astronomer observes the light at another event \(x \in M\).
- Light follows a null geodesic \(\gamma\) from \(x_0\) to \(x\).

Description of measured data:

- Tangent vector to \(\gamma\) in \(x\) determines direction of light propagation.
- Distance determines apparent magnitude (observed brightness).
- Spacetime metric \(g\) determines redshift.

How much imagination does this picture require?
Fix an observer frame:
- Location of the observer: spacetime event x.
- Four-velocity of the observer: future timelike unit tangent vector f_0.
- Coordinate axes of the observatory: spatial frame components f_α.

Perform the measurement:
- Direction of incoming light with respect to local frame.
- Brightness: photon rate using local clock.
- Redshift: frequency using local clock.

\Rightarrow Variables split into two classes: $(x, f_\alpha) \in P$ describes the observer.
- Light direction, photon rate, frequency describe the observation.

\Rightarrow "Beacon" event x_0 and geodesic γ are part of the interpretation.
The actual measurement

- Fix an observer frame:
 - Location of the observer: spacetime event x.
 - Four-velocity of the observer: future timelike unit tangent vector f_0.
 - Coordinate axes of the observatory: spatial frame components f^α.

- Perform the measurement:
 - Direction of incoming light with respect to local frame.
 - Brightness: photon rate using local clock.
 - Redshift: frequency using local clock.

⇒ Variables split into two classes: $(x, f^\alpha) \in P$ describes the observer. Light direction, photon rate, frequency describe the observation. ⇒ "Beacon" event x_0 and geodesic γ are part of the interpretation.
The actual measurement

- Fix an observer frame:
 - Location of the observer: spacetime event x.
 - Four-velocity of the observer: future timelike unit tangent vector f_0.
 - Coordinate axes of the observatory: spatial frame components f_{α}.

- Perform the measurement:
 - Direction of incoming light with respect to local frame.
 - Brightness: photon rate using local clock.
 - Redshift: frequency using local clock.

⇒ Variables split into two classes:
 - $(x, f) \in P$ describes the observer.
 - Light direction, photon rate, frequency describe the observation.
The actual measurement

- Fix an observer frame:
 - Location of the observer: spacetime event x.
 - Four-velocity of the observer: future timelike unit tangent vector f_0.
 - Coordinate axes of the observatory: spatial frame components f_{α}.

- Perform the measurement:
 - Direction of incoming light with respect to local frame.
 - Brightness: photon rate using local clock.
 - Redshift: frequency using local clock.

\Rightarrow Variables split into two classes:
 - $(x, f) \in P$ describes the observer.
 - Light direction, photon rate, frequency describe the observation.

\Rightarrow “Beacon” event x_0 and geodesic γ are part of the interpretation.
Spacetime vs. observer space

- The spacetime picture:
 - Spacetime geometry given by Lorentzian manifold \((M, g)\).
 - \(P\) is the space of orthonormal frames of \((M, g)\).
 \[\Rightarrow \tilde{\pi} : P \rightarrow M \text{ is a principal } \text{SO}_0(3, 1)\text{-bundle.} \]
 \[\Rightarrow \text{Observers } (x, f) \text{ and } (x, f') \text{ are related by Lorentz transform.} \]

- The observer space idea:
 - "Geometrodynamical" theories suggest split into space and time:
 - Loop quantum gravity
 - Spin foam models
 - Causal dynamical triangulations
 \[\Rightarrow \text{Symmetry breaking } \text{SO}_0(3, 1) \rightarrow \text{SO}(3). \]
 \[\Rightarrow \text{Possible dependence of physical quantities on } f_0. \]
 \[\Rightarrow \text{Observers } (x, f_0, f_0) \text{ and } (x, f_0, f_0') \text{ are related by rotation.} \]
 \[\Rightarrow \text{Consider a principal } \text{SO}(3)\text{-bundle } \pi : P \rightarrow O. \]
 \[\Rightarrow \text{Describe experiments on } O \ni (x, f_0). \]
 \[\Rightarrow \text{Advantage: No preferred observer. } O \text{ contains all observers.} \]
 \[\Rightarrow \text{In general no (absolute) spacetime } M. \]
 \[\Rightarrow \text{Geometry on observer space } O? \]
The spacetime picture:
- Spacetime geometry given by Lorentzian manifold \((M, g)\).
- \(P\) is the space of orthonormal frames of \((M, g)\).
 \[\Rightarrow \tilde{\pi} : P \to M\] is a principal \(\text{SO}_0(3, 1)\)-bundle.
- Observers \((x, f)\) and \((x, f')\) are related by Lorentz transform.

The observer space idea:
- "Geometrodynamical" theories suggest split into space and time:
 - Loop quantum gravity
 - Spin foam models
 - Causal dynamical triangulations
 \[\Rightarrow \text{Symmetry breaking } \text{SO}_0(3, 1) \to \text{SO}(3).\]
- Possible dependence of physical quantities on \(f_0\).
Spacetime vs. observer space

The spacetime picture:
- Spacetime geometry given by Lorentzian manifold \((M, g)\).
- \(P\) is the space of orthonormal frames of \((M, g)\).
 \[\tilde{\pi} : P \rightarrow M \] is a principal \(\text{SO}_0(3, 1)\)-bundle.
 \(\Rightarrow\) Observers \((x, f)\) and \((x, f')\) are related by Lorentz transform.

The observer space idea:
- “Geometrodynamical” theories suggest split into space and time:
 - Loop quantum gravity
 - Spin foam models
 - Causal dynamical triangulations
 \[\Rightarrow \text{Symmetry breaking } \text{SO}_0(3, 1) \rightarrow \text{SO}(3). \]
- Possible dependence of physical quantities on \(f_0\).
- Observers \((x, f_0, f_\alpha)\) and \((x, f_0, f'_\alpha)\) are related by rotation.
 \[\Rightarrow \text{Consider a principal } \text{SO}(3)\text{-bundle } \pi : P \rightarrow O. \]
- Describe experiments on observer space \(O \ni (x, f_0)\).
- Advantage: No preferred observer. \(O\) contains all observers.

Spacetime vs. observer space

- **The spacetime picture:**
 - Spacetime geometry given by Lorentzian manifold \((M, g)\).
 - \(P\) is the space of orthonormal frames of \((M, g)\).
 - \(\tilde{\pi} : P \to M\) is a principal \(\text{SO}_0(3, 1)\)-bundle.
 - Observers \((x, f)\) and \((x, f')\) are related by Lorentz transform.

- **The observer space idea:**
 - “Geometrodynamical” theories suggest split into space and time:
 - Loop quantum gravity
 - Spin foam models
 - Causal dynamical triangulations
 - \(\text{Symmetry breaking } \text{SO}_0(3, 1) \to \text{SO}(3)\).
 - Possible dependence of physical quantities on \(f_0\).
 - Observers \((x, f_0, f_\alpha)\) and \((x, f_0, f'_\alpha)\) are related by rotation.
 - \(\text{Consider a principal } \text{SO}(3)\)-bundle \(\pi : P \to O\).
 - Describe experiments on *observer space* \(O \ni (x, f_0)\).
 - Advantage: No preferred observer. \(O\) contains *all* observers.
 - In general no (absolute) spacetime \(M\).
 - Geometry on observer space \(O\)?
Cartan geometry

- Ingredients of a Cartan geometry:
 - A Lie group G with a closed subgroup $H \subset G$.
 - A principal H-bundle $\pi : P \to M$.
 - A 1-form $A \in \Omega^1(P, g)$ on P with values in g.

Curvature of the Cartan connection:
- Curvature defined by $F = dA + \frac{1}{2} [A, A]$.
- Curvature measures deviation between M and G/H.

- Geometry of M:
 - Cartan connection describes geometry and parallel transport on M.
 - M "locally looks like" homogeneous space G/H.
 - Tangent spaces $T_x M \cong z = g/h$.
Ingredients of a Cartan geometry:

- A Lie group G with a closed subgroup $H \subset G$.
- A principal H-bundle $\pi : P \to M$.
- A 1-form $A \in \Omega^1(P, g)$ on P with values in g.

Conditions on the Cartan connection A:

- For each $p \in P$, $A_p : T_p P \to g$ is a linear isomorphism.
- A is right-equivariant: $(R_h)^* A = \text{Ad}(h^{-1}) \circ A \quad \forall h \in H$.
- A restricts to the Maurer-Cartan form of H on $\ker \pi^*$.
Ingredients of a Cartan geometry:
- A Lie group G with a closed subgroup $H \subset G$.
- A principal H-bundle $\pi : P \to M$.
- A 1-form $A \in \Omega^1(P, g)$ on P with values in g.

Conditions on the Cartan connection A:
- For each $p \in P$, $A_p : T_p P \to g$ is a linear isomorphism.
- A is right-equivariant: $(R_h)^* A = \text{Ad}(h^{-1}) \circ A \quad \forall h \in H$.
- A restricts to the Maurer-Cartan form of H on $\ker \pi$.

Fundamental vector fields:
- A has an “inverse” $\tilde{A} : g \to \Gamma(TP)$.
- Vector fields $\tilde{A}(a)$ for $a \in g$ are nowhere vanishing.
Ingredients of a Cartan geometry:
- A Lie group G with a closed subgroup $H \subset G$.
- A principal H-bundle $\pi : P \to M$.
- A 1-form $A \in \Omega^1(P, g)$ on P with values in g.

Conditions on the Cartan connection A:
- For each $p \in P$, $A_p : T_p P \to g$ is a linear isomorphism.
- A is right-equivariant: $(R_h)^* A = \text{Ad}(h^{-1}) \circ A \quad \forall h \in H$.
- A restricts to the Maurer-Cartan form of H on $\ker \pi^*$.

Fundamental vector fields:
- A has an “inverse” $\underline{A} : g \to \Gamma(TP)$.
- Vector fields $\underline{A}(a)$ for $a \in g$ are nowhere vanishing.

Geometry of M:
- Cartan connection describes geometry and parallel transport on M.
- M “locally looks like” homogeneous space G/H.
- Tangent spaces $T_x M \cong \mathfrak{z} = g/\mathfrak{h}$.
Cartan geometry

- **Ingredients of a Cartan geometry:**
 - A Lie group \(G \) with a closed subgroup \(H \subset G \).
 - A principal \(H \)-bundle \(\pi : P \to M \).
 - A 1-form \(A \in \Omega^1(P, \mathfrak{g}) \) on \(P \) with values in \(\mathfrak{g} \).

- **Conditions on the Cartan connection \(A \):**
 - For each \(p \in P \), \(A_p : T_p P \to \mathfrak{g} \) is a linear isomorphism.
 - \(A \) is right-equivariant: \((R_h)^* A = \text{Ad}(h^{-1}) \circ A \quad \forall h \in H \).
 - \(A \) restricts to the Maurer-Cartan form of \(H \) on \(\text{ker} \pi^* \).

- **Fundamental vector fields:**
 - \(A \) has an “inverse” \(A : \mathfrak{g} \to \Gamma(TP) \).
 - Vector fields \(A(a) \) for \(a \in \mathfrak{g} \) are nowhere vanishing.

- **Geometry of \(M \):**
 - Cartan connection describes geometry and parallel transport on \(M \).
 - \(M \) “locally looks like” homogeneous space \(G/H \).
 - Tangent spaces \(T_x M \cong \mathfrak{z} = \mathfrak{g}/\mathfrak{h} \).

- **Curvature of the Cartan connection:**
 - Curvature defined by \(F = dA + \frac{1}{2}[A, A] \).
 - Curvature measures deviation between \(M \) and \(G/H \).
Choose Lie groups:

Let

\[G = \begin{cases}
 \text{SO}_0(4, 1) & \Lambda > 0 \\
 \text{ISO}_0(3, 1) & \Lambda = 0 \\
 \text{SO}_0(3, 2) & \Lambda < 0
\end{cases} \]

\[H = \text{SO}_0(3, 1). \]

\[\text{Coset spaces } G/H \text{ are the maximally symmetric spacetimes.} \]
Example: Cartan geometry of spacetime

Choose Lie groups:

Let

\[G = \begin{cases}
 \text{SO}_0(4, 1) & \Lambda > 0 \\
 \text{ISO}_0(3, 1) & \Lambda = 0 \\
 \text{SO}_0(3, 2) & \Lambda < 0
\end{cases} \]

\[H = \text{SO}_0(3, 1). \]

⇒ Coset spaces \(G/H \) are the maximally symmetric spacetimes.

Choose principal \(H \)-bundle:

Let \((M, g)\) be a Lorentzian manifold.

Let \(P \) be the oriented time-oriented orthonormal frames on \(M \).

⇒ \(\tilde{\pi} : P \to M \) is a principal \(H \)-bundle.
Choose Lie groups:

Let

\[
G = \begin{cases}
 \text{SO}_0(4,1) & \Lambda > 0 \\
 \text{ISO}_0(3,1) & \Lambda = 0 \\
 \text{SO}_0(3,2) & \Lambda < 0
\end{cases}
H = \text{SO}_0(3,1).
\]

⇒ Coset spaces \(G/H \) are the maximally symmetric spacetimes.

Choose principal \(H \)-bundle:

Let \((M, g)\) be a Lorentzian manifold.

Let \(P \) be the oriented time-oriented orthonormal frames on \(M \).

⇒ \(\tilde{\pi} : P \to M \) is a principal \(H \)-bundle.

Choose Cartan connection:

\(g = \mathfrak{h} \oplus \mathfrak{z} \) splits into direct sum.

Let \(e \in \Omega^1(P, \mathfrak{z}) \) be the solder form of \(\tilde{\pi} : P \to M \).

Let \(\omega \in \Omega^1(P, \mathfrak{h}) \) be the Levi-Civita connection.

⇒ \(A = \omega + e \in \Omega^1(P, g) \) is a Cartan connection.
Choose Lie groups:
- Let
 \[G = \begin{cases}
 \text{SO}_0(4, 1) & \Lambda > 0 \\
 \text{ISO}_0(3, 1) & \Lambda = 0 \\
 \text{SO}_0(3, 2) & \Lambda < 0
 \end{cases} \]
- \[H = \text{SO}_0(3, 1) \].

\[\Rightarrow \] Coset spaces \(G/H \) are the maximally symmetric spacetimes.

Choose principal \(H \)-bundle:
- Let \((M, g)\) be a Lorentzian manifold.
- Let \(P \) be the oriented time-oriented orthonormal frames on \(M \).
 \[\Rightarrow \tilde{\pi} : P \rightarrow M \] is a principal \(H \)-bundle.

Choose Cartan connection:
- \(g = \mathfrak{h} \oplus \mathfrak{z} \) splits into direct sum.
- Let \(e \in \Omega^1(P, \mathfrak{z}) \) be the solder form of \(\tilde{\pi} : P \rightarrow M \).
- Let \(\omega \in \Omega^1(P, \mathfrak{h}) \) be the Levi-Civita connection.
 \[\Rightarrow A = \omega + e \in \Omega^1(P, g) \] is a Cartan connection.

\[\Rightarrow \] Spacetime \((M, g)\) can be reconstructed from Cartan geometry.
Example: Cartan geometry of observer space

- **Choose Lie groups:** [S. Gielen, D. Wise ’12]
 - Let
 \[
 G = \begin{cases}
 \text{SO}_0(4, 1) & \Lambda > 0 \\
 \text{ISO}_0(3, 1) & \Lambda = 0, \quad K = \text{SO}(3) \\
 \text{SO}_0(3, 2) & \Lambda < 0
 \end{cases}
 \]
 - \(\Rightarrow\) Coset spaces \(G/K\) are the maximally symmetric observer spaces.

- **Choose principal \(K\)-bundle:**
 - Let \((M, g)\) be a Lorentzian manifold.
 - Let \(O\) be the future unit timelike vectors on \(M\).
 - Let \(P\) be the oriented time-oriented orthonormal frames on \(M\).
 - \(\Rightarrow\) \(\pi : P \rightarrow O\) is a principal \(K\)-bundle.

- **Choose Cartan connection:**
 - \(g = \mathfrak{h} \oplus \mathfrak{z}\) splits into direct sum.
 - Let \(e \in \Omega^1(P, \mathfrak{z})\) be the solder form of \(\tilde{\pi} : P \rightarrow M\).
 - Let \(\omega \in \Omega^1(P, \mathfrak{h})\) be the Levi-Civita connection.
 - \(\Rightarrow\) \(A = \omega + e \in \Omega^1(P, g)\) is a Cartan connection.
 - \(\Rightarrow\) Spacetime \((M, g)\) can be reconstructed from Cartan geometry.
Outline

1. Physical motivation
2. Cartan geometry on observer space
3. Finsler spacetimes
4. From Finsler geometry to Cartan geometry
5. From Cartan geometry to Finsler geometry
6. Closing the circle
7. Finsler-Cartan-Gravity
8. Conclusion
Proper time along a curve in Lorentzian spacetime:

$$\tau = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)} dt.$$
The clock postulate

- Proper time along a curve in Lorentzian spacetime:
 \[\tau = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)} \, dt. \]

- Finsler geometry: use a more general length functional:
 \[\tau = \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) \, dt. \]

- Finsler function \(F : TM \to \mathbb{R}^+ \).

- Parametrization invariance requires homogeneity:
 \[F(x, \lambda y) = \lambda F(x, y) \quad \forall \lambda > 0. \]
Definition of Finsler spacetimes

- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]
 ⇒ Notion of timelike, lightlike, spacelike tangent vectors.
Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth ’11]

⇒ Notion of timelike, lightlike, spacelike tangent vectors.

Finsler metric with Lorentz signature:

$$g^F_{ab}(x, y) = \frac{1}{2} \frac{\partial}{\partial y^a} \frac{\partial}{\partial y^b} F^2(x, y).$$

Unit vectors $y \in T_x M$ defined by

$$F^2(x, y) = g^F_{ab}(x, y) y^a y^b = 1.$$
Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]

⇒ Notion of timelike, lightlike, spacelike tangent vectors.

Finsler metric with Lorentz signature:

\[g^F_{ab}(x, y) = \frac{1}{2} \frac{\partial}{\partial y^a} \frac{\partial}{\partial y^b} F^2(x, y). \]

Unit vectors \(y \in T_xM \) defined by

\[F^2(x, y) = g^F_{ab}(x, y) y^a y^b = 1. \]

⇒ Set \(\Omega_x \subset T_xM \) of unit timelike vectors at \(x \in M \).

\(\Omega_x \) contains a closed connected component \(S_x \subset \Omega_x \).

Causality: \(S_x \) corresponds to physical observers.
Outline

1. Physical motivation
2. Cartan geometry on observer space
3. Finsler spacetimes
4. From Finsler geometry to Cartan geometry
5. From Cartan geometry to Finsler geometry
6. Closing the circle
7. Finsler-Cartan-Gravity
8. Conclusion
Observer space

- Recall from the definition of Finsler spacetimes:
 - Set $\Omega_x \subset T_x M$ of unit timelike vectors at $x \in M$.
 - Ω_x contains a closed connected component $S_x \subseteq \Omega_x$.

\Rightarrow Tangent vectors $y \in S_x$ satisfy $g_{F}^{ab}(x,y)y^a y^b = 1$.

Complete $y = f_0$ to a frame f^i with $g_{F}^{ab}(x,y)f^a_i f^b_j = -\eta^{ij}$.

Let P be the space of all observer frames.

$\Rightarrow \pi: P \rightarrow O$ is a principal $SO(3)$-bundle.

In general no principal $SO_0(3,1)$-bundle $\tilde{\pi}: P \rightarrow M$.

Manuel Hohmann (Tartu Ülikool)
Observer space

- Recall from the definition of Finsler spacetimes:
 - Set $\Omega_x \subset T_x M$ of unit timelike vectors at $x \in M$.
 - Ω_x contains a closed connected component $S_x \subseteq \Omega_x$.
- Definition of observer space:

 $$O = \bigcup_{x \in M} S_x.$$

 \Rightarrow Tangent vectors $y \in S_x$ satisfy $g_{ab}^F(x, y)y^ay^b = 1$.

Observer space

- Recall from the definition of Finsler spacetimes:
 - Set $\Omega_x \subset T_x M$ of unit timelike vectors at $x \in M$.
 - Ω_x contains a closed connected component $S_x \subseteq \Omega_x$.
- Definition of observer space:

$$O = \bigcup_{x \in M} S_x.$$

\Rightarrow Tangent vectors $y \in S_x$ satisfy $g^F_{ab}(x, y)y^ay^b = 1$.
- Complete $y = f_0$ to a frame f_i with $g^F_{ab}(x, y)f_i^af_j^b = -\eta_{ij}$.
- Let P be the space of all observer frames.
\Rightarrow $\pi : P \to O$ is a principal $\text{SO}(3)$-bundle.
- In general no principal $\text{SO}_0(3,1)$-bundle $\tilde{\pi} : P \to M$.
Need to construct \(A \in \Omega^1(P, g) \).

Recall that

\[
\begin{align*}
g &= \mathfrak{h} \oplus \mathfrak{z} \\
A &= \omega + e
\end{align*}
\]

\(\Rightarrow \) Need to construct \(\omega \in \Omega^1(P, \mathfrak{h}) \) and \(e \in \Omega^1(P, \mathfrak{z}) \).
Need to construct $A \in \Omega^1(P, g)$.

Recall that
\[
\begin{align*}
g & = h \oplus \mathfrak{z} \\
A & = \omega + e
\end{align*}
\]

⇒ Need to construct $\omega \in \Omega^1(P, h)$ and $e \in \Omega^1(P, \mathfrak{z})$.

Definition of e: Use the *solder form*.

- Let $w \in T_{(x,f)}P$ be a tangent vector.
- Differential of the projection $\tilde{\pi} : P \to M$ yields $\tilde{\pi}^*(w) \in T_xM$.
- View frame f as a linear isometry $f : \mathfrak{z} \to T_xM$.
- Solder form given by $e(w) = f^{-1}(\tilde{\pi}^*(w))$.
Definition of ω:

- Frames (x, f) and (x, f') related by generalized Lorentz transform.

 [C. Pfeifer, M. Wohlfarth '11]

- Relation between f and f' defined by parallel transport on O.

- Tangent vector $w \in T_{(x,f)}P$ “shifts” frame f by small amount.

- Compare shifted frame with parallely transported frame.

- Measure the difference using the original frame:

 \[
 \Delta f^a_i = \epsilon f^a_j \omega^j_i(w).
 \]
Definition of ω:

- Frames (x, f) and (x, f') related by generalized Lorentz transform.

 [C. Pfeifer, M. Wohlfarth '11]

- Relation between f and f' defined by parallel transport on O.

- Tangent vector $w \in T_{(x,f)} P$ “shifts” frame f by small amount.

- Compare shifted frame with parallely transported frame.

- Measure the difference using the original frame:

 $$\Delta f^a_i = \epsilon f^a_j \omega^j_i (w).$$

- Choose parallel transport on O so that g^F is covariantly constant.

- Connection on Finsler geometry: Cartan linear connection.
Definition of ω:

- Frames (x, f) and (x, f') related by generalized Lorentz transform.

- Relation between f and f' defined by parallel transport on O.
- Tangent vector $w \in T(x,f)P$ “shifts” frame f by small amount.
- Compare shifted frame with parallely transported frame.
- Measure the difference using the original frame:

 \[\Delta f_i^a = \epsilon f_j^a \omega^j_i(w). \]

Choose parallel transport on O so that g^F is covariantly constant.

Connection on Finsler geometry: Cartan linear connection.

\Rightarrow Frames f_i^a and $f_i^a + \Delta f_i^a$ are orthonormal wrt the same metric.

$\Rightarrow \omega(w) \in \mathfrak{h}$ is an infinitesimal Lorentz transform.
Complete Cartan connection

- Translational part $e \in \Omega^1(P, \mathfrak{h})$:
 \[
e^i = f^{-1}i_a dx^a.
 \]
Complete Cartan connection

- **Translational part** $e \in \Omega^1(P, \mathfrak{d})$:
 $$e^i = f^{-1} a dx^a.$$

- **Boost / rotational part** $\omega \in \Omega^1(P, \mathfrak{h})$:
 $$\omega^i_{\ j} = f^{-1} a \left[df^a + f^b_j \left(dx^c F^a_{\ bc} + (dx^d N^c_{\ d} + df^c_0) C^a_{\ bc} \right) \right].$$
Complete Cartan connection

- Translational part $e \in \Omega^1(P, \mathfrak{h})$:
 \[e^i = f^{-1}_a dx^a. \]

- Boost / rotational part $\omega \in \Omega^1(P, \mathfrak{h})$:
 \[\omega^i_j = f^{-1}_a \left[df^a_j + f^b_j \left(dx^c F^a_{bc} + (dx^d N^c_d + df^c_0) C^a_{bc} \right) \right]. \]

- Coefficients of Cartan linear connection:
 \[
 N^a_b = \frac{1}{4} \bar{\partial}_b \left[g^F_{aq} \left(y^p \partial_p \bar{\partial}_q F^2 - \partial_q F^2 \right) \right], \\
 F^a_{bc} = \frac{1}{2} g^F_{ap} \left(\delta_b g^F_{pc} + \delta_c g^F_{bp} - \delta_p g^F_{bc} \right), \\
 C^a_{bc} = \frac{1}{2} g^F_{ap} \left(\bar{\partial}_b g^F_{pc} + \bar{\partial}_c g^F_{bp} - \bar{\partial}_p g^F_{bc} \right).
 \]
Complete Cartan connection

- Translational part \(e \in \Omega^1(P, \mathfrak{h}) \):
 \[
e^i = f^{-1} i_a dx^a.
 \]

- Boost / rotational part \(\omega \in \Omega^1(P, \mathfrak{h}) \):
 \[
 \omega^i_j = f^{-1} i_a \left[df^a_j + f_j^b \left(dx^c F^a_{bc} + (dx^d N^c_{d} + df^c_0) C^a_{bc} \right) \right].
 \]

- Coefficients of Cartan linear connection:
 \[
 N^a_{\ b} = \frac{1}{4} \bar{\partial}_b \left[g^F_{aq} \left(y^p \partial_p \bar{\partial}_q F^2 - \partial_q F^2 \right) \right],
 \]
 \[
 F^a_{bc} = \frac{1}{2} g^F_{ap} \left(\delta_b g^F_{pc} + \delta_c g^F_{bp} - \delta_p g^F_{bc} \right),
 \]
 \[
 C^a_{bc} = \frac{1}{2} g^F_{ap} \left(\bar{\partial}_b g^F_{pc} + \bar{\partial}_c g^F_{bp} - \bar{\partial}_p g^F_{bc} \right).
 \]

\[\Rightarrow \ A = \omega + e \text{ is a Cartan connection on } \pi : P \rightarrow O.\]
Fundamental vector fields

- Let $a = z^i Z_i + \frac{1}{2} h^i_j \mathcal{H}_i^j \in \mathfrak{g}$.
- Define the vector field

$$A(a) = z^i f^a_i \left(\partial_a - f^b_j F_{ab}^c \bar{\partial}^j_c \right) + \left(h^i_j f^a_i - h^i_0 f^b_i f^c_j C_{abc}^a \right) \bar{\partial}^j_a.$$
Fundamental vector fields

- Let \(a = z^i Z_i + \frac{1}{2} h^i{}_j \mathcal{H}_{ij} \in \mathfrak{g} \).
- Define the vector field

\[
A(a) = z^i f^a_i \left(\partial_a - f^b_j F^c_{ab} \bar{\partial}^j_c \right) + \left(h^i{}_j f^a_i - h^i{}_0 f^b_i f^c_j C^a_{bc} \right) \bar{\partial}^j_a .
\]

\(\Rightarrow \) For all \(p \in P \) we find

\[
A(A(a)(p)) = a .
\]

\(\Rightarrow \) For all \(w \in T_p P \) we find

\[
A(A(w))(p) = w .
\]

\(\Rightarrow \) \(A_p : T_p P \to \mathfrak{g} \) and \(A_p : \mathfrak{g} \to T_p P \) complement each other.
Consider adjoint representation $\text{Ad} : K \subset G \to \text{Aut}(\mathfrak{g})$ of K on \mathfrak{g}.

\mathfrak{g} splits into irreducible subrepresentations of Ad.
Split of the tangent bundle TP

- Consider adjoint representation $\text{Ad} : K \subset G \rightarrow \text{Aut}(\mathfrak{g})$ of K on \mathfrak{g}.
- \mathfrak{g} splits into irreducible subrepresentations of Ad.
- Induced decompositions of A and TP:

\[
\mathfrak{g} = \xi \oplus \eta \oplus \bar{\delta} \oplus \delta_0
\]

\[
A = \Omega + b + \bar{e} + e^0
\]

\[
TP_p = R_pP \oplus B_pP \oplus \bar{H}_pP \oplus H^0_pP
\]

- Subbundles of TP spanned by fundamental vector fields A.

- Rotations
- Boosts
- Spatial translations
- Temporal translations
Consider the fundamental vector field

\[t = A(Z_0) = f_0^a \partial_a - f_j^a N^b_a \bar{\partial}_b \iff \omega^i_j(t) = 0, \quad e^i(t) = \delta^i_0. \]

Integral curve \(\Gamma : \mathbb{R} \to P, \lambda \mapsto (x(\lambda), f(\lambda)) \) of \(t \).
Consider the fundamental vector field

\[t = A(Z_0) = f^a_0 \partial_a - f^a_j N^b_a \bar{\partial}_b \]
\[\iff \quad \omega^i_j(t) = 0, \quad e^i(t) = \delta^i_0. \]

Integral curve \(\Gamma : \mathbb{R} \to P, \lambda \mapsto (x(\lambda), f(\lambda)) \) of \(t \).

From \(e^i(t) = \delta^i_0 \) follows:

\[\dot{x}^a = f^a_0. \]

\((x, f_0) \) is the canonical lift of a curve from \(M \) to \(O \).
Consider the fundamental vector field
\[t = A(Z_0) = f_0^a \partial_a - f_j^a N^b_a \bar{\partial}^j_b \ \iff \ \omega^i_j(t) = 0, \quad e^i(t) = \delta^i_0. \]

Integral curve \(\Gamma : \mathbb{R} \to P, \lambda \mapsto (x(\lambda), f(\lambda)) \) of \(t \).

From \(e^i(t) = \delta^i_0 \) follows:
\[\dot{x}^a = f_0^a. \]

\((x, f_0) \) is the canonical lift of a curve from \(M \) to \(O \).

From \(\omega^i_0(t) = 0 \) follows:
\[0 = \dot{f}_0^a + N^a_b \dot{x}^b = \ddot{x}^a + N^a_b \ddot{x}^b. \]

\((x, f_0) \) is a Finsler geodesic.
Consider the fundamental vector field
\[\mathbf{t} = A(Z_0) = f_0^a \partial_a - f_j^a N^b_a \bar{j}_b \] \iff \omega^i_j(\mathbf{t}) = 0, \quad e^i(\mathbf{t}) = \delta^i_0.

Integral curve \(\Gamma : \mathbb{R} \to P, \lambda \mapsto (x(\lambda), f(\lambda)) \) of \(\mathbf{t} \).

From \(e^i(\mathbf{t}) = \delta^i_0 \) follows:
\[\dot{x}^a = f_0^a. \]

\Rightarrow \((x, f_0) \) is the canonical lift of a curve from \(M \) to \(O \).

From \(\omega^i_0(\mathbf{t}) = 0 \) follows:
\[0 = \dot{f}_0^a + N^a_b \dot{x}^b = \ddot{x}^a + N^a_b \dot{x}^b. \]

\Rightarrow \((x, f_0) \) is a Finsler geodesic.

From \(\omega^\alpha_\beta(\mathbf{t}) = 0 \) follows:
\[0 = \dot{f}_\alpha^a + f_\alpha^b \left(\dot{x}^c F^a_{bc} + (\dot{x}^d N^c_d + \dot{f}_0^c) C^a_{bc} \right) = \nabla (\dot{x}, \dot{f}_0) f_\alpha^a. \]

\Rightarrow Frame \(f \) is parallely transported.
Curvature of the Cartan connection

- Curvature \(F \in \Omega^2(P, g) \) defined by

\[
F = dA + \frac{1}{2} [A, A].
\]
Curvature of the Cartan connection

- Curvature $F \in \Omega^2(P, g)$ defined by

$$F = dA + \frac{1}{2}[A, A].$$

- Translational part $F_z \in \Omega^2(P, z)$ (“torsion”):

$$de^i + \omega^i{}_j \wedge e^j = - f^{-1}{}^i{}_a C^a{}_{bc} dx^b \wedge \delta f^c_0$$

with $\delta f^c_0 = N^c{}_d dx^d + df^c_0$.

$R_d cab$, $P_d cab$, $S_d cab$: curvature of Cartan linear connection.
Curvature of the Cartan connection

- Curvature $F \in \Omega^2(P, g)$ defined by
 \[
 F = dA + \frac{1}{2}[A, A].
 \]

- Translational part $F_z \in \Omega^2(P, z)$ ("torsion"):
 \[
 de^i + \omega^i_j \wedge e^j = -f^{-1}_{ia}C^a_{bc}dx^b \wedge \delta f^c_0
 \]
 with $\delta f^c_0 = N^c_d dx^d + df^c_0$.

- Boost / rotational part $F_h \in \Omega^2(P, h)$:
 \[
 d\omega^i_j + \omega^i_k \wedge \omega^k_j = -\frac{1}{2}f^{-1}_{ia}f_j^c \left(R^d_{cab} dx^a \wedge dx^b
 + 2P^d_{cab} dx^a \wedge \delta f^b_0 + S^d_{cab} \delta f^a_0 \wedge \delta f^b_0 \right).
 \]
Curvature of the Cartan connection

- Curvature $F \in \Omega^2(P, g)$ defined by
 \[F = dA + \frac{1}{2} [A, A]. \]

- Translational part $F_\delta \in \Omega^2(P, \delta)$ ("torsion"):
 \[de^i + \omega^i_j \wedge e^j = -f^{-1}A C^a_{bc} dx^b \wedge \delta f^c_0 \]
 with $\delta f^c_0 = N^c d dx^d + df^c_0$.

- Boost / rotational part $F_\mathfrak{h} \in \Omega^2(P, \mathfrak{h})$:
 \[d\omega^i_j + \omega^i_k \wedge \omega^k_j = -\frac{1}{2} f^{-1}A f^c_j \left(R^d_{cab} dx^a \wedge dx^b \right. \]
 \[+ 2 P^d_{cab} dx^a \wedge \delta f^b_0 + S^d_{cab} \delta f^a_0 \wedge \delta f^b_0 \right). \]

- $R^d_{cab}, P^d_{cab}, S^d_{cab}$: curvature of Cartan linear connection.
1. Physical motivation
2. Cartan geometry on observer space
3. Finsler spacetimes
4. From Finsler geometry to Cartan geometry
5. From Cartan geometry to Finsler geometry
6. Closing the circle
7. Finsler-Cartan-Gravity
8. Conclusion
Condition: boost distribution $VP = RP \oplus BP$ is integrable.

$\Rightarrow VP$ can be integrated to a foliation \mathcal{F} with leaf space M.
Condition: boost distribution $VP = RP \oplus BP$ is integrable.
⇒ VP can be integrated to a foliation \mathcal{F} with leaf space M.
Condition: foliation \mathcal{F} is strictly simple.
⇒ Leaf space M is a smooth manifold.
⇒ Canonical projection $\tilde{\pi}: P \rightarrow M$ is a submersion.
Spacetime

- Condition: boost distribution $VP = RP \oplus BP$ is integrable.
 \Rightarrow VP can be integrated to a foliation \mathcal{F} with leaf space M.
- Condition: foliation \mathcal{F} is strictly simple.
 \Rightarrow Leaf space M is a smooth manifold.
 \Rightarrow Canonical projection $\tilde{\pi} : P \to M$ is a submersion.
- Canonical projections $\tilde{\pi} = \pi' \circ \pi$:

\[
P \xrightarrow{\pi} O \xrightarrow{\pi'} M
\]
Condition: boost distribution \(VP = RP \oplus BP \) is integrable.

\[\Rightarrow \quad VP \text{ can be integrated to a foliation } \mathcal{F} \text{ with leaf space } M. \]

Condition: foliation \(\mathcal{F} \) is strictly simple.

\[\Rightarrow \quad \text{Leaf space } M \text{ is a smooth manifold.} \]

\[\Rightarrow \quad \text{Canonical projection } \tilde{\pi} : P \rightarrow M \text{ is a submersion.} \]

Canonical projections \(\tilde{\pi} = \pi' \circ \pi \):

\[P \xrightarrow{\pi} O \xrightarrow{\pi'} M \]

Tangent spaces (with \(o = \pi(p) \) and \(x = \pi'(o) = \tilde{\pi}(p) \)):

\[R_pP \oplus B_pP \oplus H_pP = T_pP \]

\[0 \xrightarrow{\pi_*} B_oO \oplus H_oO = T_oO \]

\[0 \xrightarrow{\pi_*} T_xM = T_xM \]
Observer trajectories

- Embedding of observer space O into TM?
- Four-velocity of an observer?

Fundamental vector field $t = A(Z^0) \in \Gamma(TP)$ of time translation.

$ \Rightarrow $ Vector field $r \in \Gamma(TO)$ independent of $p \in \pi^{-1}(o)$:

$$ r(o) = \pi^* (t(p)) $$

Relation of t and r:

$$ P_{\pi} \rightarrow t \downarrow \downarrow O \rightarrow r \downarrow \downarrow TP_{\pi} \rightarrow \rightarrow TO $$

Define the map $\sigma = \pi' \ast \circ r$.

σ is in general not an embedding.

Impose this as another condition.
Observer trajectories

- Embedding of observer space O into TM?
- Four-velocity of an observer?
- Fundamental vector field $t = A(Z_0) \in \Gamma(TP)$ of time translation.

\Rightarrow Vector field $r \in \Gamma(TO)$ independent of $p \in \pi^{-1}(o)$:

$$r(o) = \pi_*(t(p)).$$

- Relation of t and r:

π}

\[\begin{array}{ccc}
P & \xrightarrow{\pi} & O \\
\downarrow & & \downarrow \\
TP & \xrightarrow{\pi_*} & TO \\
\end{array} \]
Observer trajectories

- Embedding of observer space O into TM?
- Four-velocity of an observer?
- Fundamental vector field $t = A(Z_0) \in \Gamma(TP)$ of time translation.

\Rightarrow Vector field $r \in \Gamma(TO)$ independent of $p \in \pi^{-1}(o)$:

$$r(o) = \pi_*(t(p)).$$

- Relation of t and r:

Define the map $\sigma = \pi_* \circ r$.
Observer trajectories

- Embedding of observer space O into TM?
- Four-velocity of an observer?
- Fundamental vector field $\mathbf{t} = A(Z_0) \in \Gamma(TP)$ of time translation.
 \[\Rightarrow \text{Vector field } \mathbf{r} \in \Gamma(TO) \text{ independent of } p \in \pi^{-1}(o): \]
 \[\mathbf{r}(o) = \pi_* (\mathbf{t}(p)). \]

- Relation of \mathbf{t} and \mathbf{r}:

\[\begin{array}{c}
P \xrightarrow{\pi} O \\
\downarrow \mathbf{t} \quad \downarrow \mathbf{r} \\
TP \xrightarrow{\pi_*} TO \xrightarrow{\pi'_*} TM \\
\end{array} \]

- Define the map $\sigma = \pi'_* \circ \mathbf{r}$.
- σ is in general not an embedding.
- Impose this as another condition.
Finsler geometry

- Finsler function must be positively homogeneous of degree one:
 \[F(x, \lambda y) = |\lambda|F(x, y) \]

- Unit timelike condition: \(F(\sigma(o)) = 1 \) for all observers \(o \in O \).
Finsler geometry

- Finsler function must be positively homogeneous of degree one:
 \[F(x, \lambda y) = |\lambda| F(x, y) \]

- Unit timelike condition: \(F(\sigma(o)) = 1 \) for all observers \(o \in O \).

 \[\Rightarrow \text{Define } F(\lambda \sigma(o)) = |\lambda| \text{ on double cone } \mathbb{R}\sigma(O). \]
Finsler geometry

- Finsler function must be positively homogeneous of degree one:
 \[F(x, \lambda y) = |\lambda| F(x, y) \]

- Unit timelike condition: \(F(\sigma(o)) = 1 \) for all observers \(o \in O \).
 \[\Rightarrow \text{Define } F(\lambda \sigma(o)) = |\lambda| \text{ on double cone } \mathbb{R}\sigma(O). \]

- Condition: \(\sigma(O) \) must intersect each line \((x, \mathbb{R}y)\) at most once.

- Condition: Finsler metric \(g^F_{ab} \) must have Lorentz signature:
 \[g^F_{ab} = \frac{1}{2} \bar{\partial}_a \bar{\partial}_b F^2 \]
Finsler geometry

- Finsler function must be positively homogeneous of degree one:
 \[F(x, \lambda y) = |\lambda| F(x, y) \]

- Unit timelike condition: \(F(\sigma(o)) = 1 \) for all observers \(o \in O \).
 \[\Rightarrow \text{Define } F(\lambda \sigma(o)) = |\lambda| \text{ on double cone } \mathbb{R}\sigma(O). \]

- Condition: \(\sigma(O) \) must intersect each line \((x, \mathbb{R}y) \) at most once.
- Condition: Finsler metric \(g^F_{ab} \) must have Lorentz signature:
 \[g^F_{ab} = \frac{1}{2} \partial_a \partial_b F^2 \]

- No Finsler geometry on \(TM \setminus \mathbb{R}\sigma(O) \).
- Cartan geometry describes only geometry visible to observers.
Outline

1 Physical motivation
2 Cartan geometry on observer space
3 Finsler spacetimes
4 From Finsler geometry to Cartan geometry
5 From Cartan geometry to Finsler geometry
6 Closing the circle
7 Finsler-Cartan-Gravity
8 Conclusion
Reconstruction of a given Finsler spacetime

- Idea:
 - Start from a Finsler spacetime \((M, F)\).
 - Construct a Cartan observer space \((\pi : P \rightarrow O, A)\).
 - Construct a new Finsler spacetime \((\hat{M}, \hat{F})\).
Reconstruction of a given Finsler spacetime

- **Idea:**
 - Start from a Finsler spacetime (M, F).
 - Construct a Cartan observer space $(\pi: P \to O, A)$.
 - Construct a new Finsler spacetime (\hat{M}, \hat{F}).
- **Equivalence of Finsler spacetimes** (M, F) and (\hat{M}, \hat{F})?
Reconstruction of a given Finsler spacetime

- Idea:
 - Start from a Finsler spacetime \((M, F)\).
 - Construct a Cartan observer space \((\pi : P \rightarrow O, A)\).
 - Construct a new Finsler spacetime \((\hat{M}, \hat{F})\).

- Equivalence of Finsler spacetimes \((M, F)\) and \((\hat{M}, \hat{F})\)?
- There exists a diffeomorphism \(\mu\):

![Diagram showing the relationships between the spacetimes and observer spaces.]
Reconstruction of a given Finsler spacetime

- Idea:
 - Start from a Finsler spacetime \((M, F)\).
 - Construct a Cartan observer space \((\pi : P \rightarrow O, A)\).
 - Construct a new Finsler spacetime \((\hat{M}, \hat{F})\).
- Equivalence of Finsler spacetimes \((M, F)\) and \((\hat{M}, \hat{F})\)?
- There exists a diffeomorphism \(\mu\):

\[
\begin{array}{cccc}
TM & \rightarrow & M \\
\pi_* & \downarrow & \downarrow & \pi' \\
\hat{\pi}_* & \downarrow & \downarrow & \hat{\pi}' \\
\mu_* & \downarrow & \downarrow & \mu \\
T\hat{M} & \rightarrow & \hat{M}
\end{array}
\]

- \(\mu\) preserves the Finsler function on timelike vectors.

\(\Rightarrow\) Reconstruction of the original Finsler geometry.
Reconstruction of a given Cartan observer space

Idea:
- Start from a Cartan observer space \((\pi : P \to O, A)\).
- Construct a Finsler spacetime \((M, F)\).
- Construct a new Cartan observer space \((\hat{\pi} : \hat{P} \to \hat{O}, \hat{A})\).
Reconstruction of a given Cartan observer space

- **Idea:**
 - Start from a Cartan observer space \((\pi : P \to O, A)\).
 - Construct a Finsler spacetime \((M, F)\).
 - Construct a new Cartan observer space \((\hat{\pi} : \hat{P} \to \hat{O}, \hat{A})\).
- **Equivalence of** \((\pi : P \to O, A)\) **and** \((\hat{\pi} : \hat{P} \to \hat{O}, \hat{A})\)?
Reconstruction of a given Cartan observer space

- Idea:
 - Start from a Cartan observer space \((\pi : P \rightarrow O, A)\).
 - Construct a Finsler spacetime \((M, F)\).
 - Construct a new Cartan observer space \((\hat{\pi} : \hat{P} \rightarrow \hat{O}, \hat{A})\).
- Equivalence of \((\pi : P \rightarrow O, A)\) and \((\hat{\pi} : \hat{P} \rightarrow \hat{O}, \hat{A})\)?
- Only if a “Cartan morphism” \(\chi\) exists:

\[
\begin{array}{cccccc}
M & \xleftarrow{\pi'} & O & \xleftarrow{\pi} & P & \xrightarrow{A(a)} & TP \\
\downarrow{\hat{\pi}'} & \downarrow{\sigma} & \downarrow{\chi} & \downarrow{\chi^*} & \downarrow & \\
\hat{O} & \xleftarrow{\hat{\pi}} & \hat{P} & \xrightarrow{\hat{A}(a)} & T\hat{P} \\
\end{array}
\]
Reconstruction of a given Cartan observer space

- **Idea:**
 - Start from a Cartan observer space \((\pi : P \to O, A)\).
 - Construct a Finsler spacetime \((M, F)\).
 - Construct a new Cartan observer space \((\hat{\pi} : \hat{P} \to \hat{O}, \hat{A})\).

- **Equivalence of** \((\pi : P \to O, A)\) **and** \((\hat{\pi} : \hat{P} \to \hat{O}, \hat{A})\) **?**
 - Only if a “Cartan morphism” \(\chi\) exists:

\[
\begin{align*}
M & \xleftarrow{\pi'} O \xleftarrow{\pi} P \xrightarrow{A(a)} TP \xrightarrow{\pi_*} TO \xrightarrow{\pi'_*} TM \\
\hat{O} & \xleftarrow{\hat{\pi}} \hat{P} \xrightarrow{A(a)} T\hat{P} \xrightarrow{\hat{\pi}_*} T\hat{O}
\end{align*}
\]

- **Every Cartan morphism** \(\chi = (x, f)\) **takes the form**

\[
x(p) = \pi'(\pi(p)) , \quad f_i(p) = \pi'_*(\pi_*(A(Z_i))(p))
\]

\(\Rightarrow\) **Simple test for equivalence of** \((\pi : P \to O, A)\) **and** \((\hat{\pi} : \hat{P} \to \hat{O}, \hat{A})\).
1. Physical motivation
2. Cartan geometry on observer space
3. Finsler spacetimes
4. From Finsler geometry to Cartan geometry
5. From Cartan geometry to Finsler geometry
6. Closing the circle
7. Finsler-Cartan-Gravity
8. Conclusion
MacDowell-Mansouri gravity on observer space: [S. Gielen, D. Wise ’12]

\[S_G = \int_{\mathcal{O}} \epsilon_{\alpha\beta\gamma} \text{tr}_{\mathfrak{h}}(F_{\mathfrak{h}} \wedge \star F_{\mathfrak{h}}) \wedge b^\alpha \wedge b^\beta \wedge b^\gamma \]

- Hodge operator \(*\) on \(\mathfrak{h}\).
- Non-degenerate \(H\)-invariant inner product \(\text{tr}_{\mathfrak{h}}\) on \(\mathfrak{h}\).
MacDowell-Mansouri gravity on observer space: [S. Gielen, D. Wise ’12]

\[S_G = \int \epsilon_{\alpha\beta\gamma} \text{tr}_{\mathfrak{h}}(F_{\mathfrak{h}} \wedge \star F_{\mathfrak{h}}) \wedge b^\alpha \wedge b^\beta \wedge b^\gamma \]

- Hodge operator \(\star \) on \(\mathfrak{h} \).
- Non-degenerate \(H \)-invariant inner product \(\text{tr}_{\mathfrak{h}} \) on \(\mathfrak{h} \).

Translate terms into Finsler language (with \(R = d\omega + \frac{1}{2}[\omega, \omega] \)):

- Curvature scalar:
 \[[e, e] \wedge \star R \rightsquigarrow g^{F \, ab} R^c_{\, abc} \, dV \, . \]

- Cosmological constant:
 \[[e, e] \wedge \star [e, e] \rightsquigarrow dV \, . \]

- Gauss-Bonnet term:
 \[R \wedge \star R \rightsquigarrow \epsilon^{abcd} \epsilon^{efgh} R_{abef} R_{cdgh} \, dV \, . \]
MacDowell-Mansouri gravity on observer space: [S. Gielen, D. Wise ’12]

\[S_G = \int_O \epsilon_{\alpha\beta\gamma} \text{tr}_h(F_h \wedge \star F_h) \wedge b^\alpha \wedge b^\beta \wedge b^\gamma \]

- Hodge operator \(\star \) on \(h \).
- Non-degenerate \(H \)-invariant inner product \(\text{tr}_h \) on \(h \).

Translate terms into Finsler language (with \(R = d\omega + \frac{1}{2} [\omega, \omega] \)):

- Curvature scalar:
 \[[e, e] \wedge \star R \leadsto g^{F \, ab} R^{c \, acb} dV . \]

- Cosmological constant:
 \[[e, e] \wedge \star [e, e] \leadsto dV . \]

- Gauss-Bonnet term:
 \[R \wedge \star R \leadsto \epsilon^{abcd} \epsilon^{efgh} R_{abef} R_{cdgh} dV . \]

⇒ Gravity theory on Finsler spacetime.
Finsler gravity action: [C. Pfeifer, M. Wohlfarth '11]

\[S_G = \int_O d^4 x \, d^3 y \sqrt{-\tilde{G} R^a_{\,ab} y^b}. \]

- Sasaki metric \(\tilde{G} \) on \(O \).
- Non-linear curvature \(R^a_{\,ab} \).
Gravity from Finsler to Cartan

- Finsler gravity action: [C. Pfeifer, M. Wohlfarth '11]
 \[S_G = \int_O d^4x \, d^3y \sqrt{-\tilde{G} R^a_{\, \, ab} y^b}. \]

 - Sasaki metric \(\tilde{G} \) on \(O \).
 - Non-linear curvature \(R^a_{\, \, ab} \).

- Translate terms into Cartan language:
 \[d^4x \, d^3y \sqrt{-\tilde{G}} = \epsilon_{ijkl} \epsilon_{\alpha\beta\gamma} \, e^i \wedge e^j \wedge e^k \wedge e^l \wedge b^\alpha \wedge b^\beta \wedge b^\gamma, \]
 \[R^a_{\, \, ab} y^b = b^\alpha [A(Z_\alpha), A(Z_0)]. \]
Finsler gravity action: [C. Pfeifer, M. Wohlfarth '11]

\[S_G = \int_O d^4x \, d^3y \sqrt{-\tilde{G} R^a_{\, \, \, ab} y^b}. \]

- Sasaki metric \tilde{G} on O.
- Non-linear curvature $R^a_{\, \, \, ab}$.

Translate terms into Cartan language:

\[d^4x \, d^3y \sqrt{-\tilde{G}} = \epsilon_{ijkl} \epsilon_{\alpha\beta\gamma} e^i \wedge e^j \wedge e^k \wedge e^l \wedge b^\alpha \wedge b^\beta \wedge b^\gamma, \]

\[R^a_{\, \, \, ab} y^b = b^\alpha [A(Z_\alpha), A(Z_0)]. \]

\Rightarrow Gravity theory on observer space.
Summary

Observer space:
- Lift physics from spacetime to the space of observers.
- Describe observer space geometry using Cartan geometry.
Observer space:
- Lift physics from spacetime to the space of observers.
- Describe observer space geometry using Cartan geometry.

Finsler spacetime:
- Based on generalized length functional.
- Finsler metric is observer dependent.

From Finsler to Cartan:
- Cartan geometry on observer space derived from Finsler geometry.
- Connection calculated from Cartan linear connection.
- Parallely transported observer frames given by the "flow of time".

From Cartan to Finsler:
- Spacetime can (sometimes) be constructed from Cartan geometry.
- Observer dependent Finsler metric from Cartan connection.
- Observers have timelike four-velocities in $\mathcal{T}M$.

Both constructions complement each other.

Gravity:
- MacDowell-Mansouri gravity from Cartan to Finsler.
- Finsler gravity from Finsler to Cartan.
Summary

- **Observer space:**
 - Lift physics from spacetime to the space of observers.
 - Describe observer space geometry using Cartan geometry.

- **Finsler spacetime:**
 - Based on generalized length functional.
 - Finsler metric is observer dependent.

- **From Finsler to Cartan:**
 - Cartan geometry on observer space derived from Finsler geometry.
 - Connection calculated from Cartan linear connection.
 - Parallely transported observer frames given by the “flow of time”.

- **From Cartan to Finsler:**
 - Spacetime can (sometimes) be constructed from Cartan geometry.
 - Observer dependent Finsler metric from Cartan connection.
 - Observers have timelike four-velocities in \(TM \).

Both constructions complement each other.

- **Gravity:**
 - MacDowell-Mansouri gravity from Cartan to Finsler.
 - Finsler gravity from Finsler to Cartan.
Summary

- **Observer space:**
 - Lift physics from spacetime to the space of observers.
 - Describe observer space geometry using Cartan geometry.

- **Finsler spacetime:**
 - Based on generalized length functional.
 - Finsler metric is observer dependent.

- **From Finsler to Cartan:**
 - Cartan geometry on observer space derived from Finsler geometry.
 - Connection calculated from Cartan linear connection.
 - Parallelly transported observer frames given by the “flow of time”.

- **From Cartan to Finsler:**
 - Spacetime can (sometimes) be constructed from Cartan geometry.
 - Observer dependent Finsler metric from Cartan connection.
 - Observers have timelike four-velocities in TM.

Both constructions complement each other.

Gravity:
- MacDowell-Mansouri gravity from Cartan to Finsler.
- Finsler gravity from Finsler to Cartan.
Summary

- **Observer space:**
 - Lift physics from spacetime to the space of observers.
 - Describe observer space geometry using Cartan geometry.

- **Finsler spacetime:**
 - Based on generalized length functional.
 - Finsler metric is observer dependent.

- **From Finsler to Cartan:**
 - Cartan geometry on observer space derived from Finsler geometry.
 - Connection calculated from Cartan linear connection.
 - Parallely transported observer frames given by the “flow of time”.

- **From Cartan to Finsler:**
 - Spacetime can (sometimes) be constructed from Cartan geometry.
 - Observer dependent Finsler metric from Cartan connection.
 - Observers have timelike four-velocities in TM.

- Both constructions complement each other.
Observer space:
- Lift physics from spacetime to the space of observers.
- Describe observer space geometry using Cartan geometry.

Finsler spacetime:
- Based on generalized length functional.
- Finsler metric is observer dependent.

From Finsler to Cartan:
- Cartan geometry on observer space derived from Finsler geometry.
- Connection calculated from Cartan linear connection.
- Parallely transported observer frames given by the “flow of time”.

From Cartan to Finsler:
- Spacetime can (sometimes) be constructed from Cartan geometry.
- Observer dependent Finsler metric from Cartan connection.
- Observers have timelike four-velocities in TM.

Both constructions complement each other.

Gravity:
- MacDowell-Mansouri gravity from Cartan to Finsler.
- Finsler gravity from Finsler to Cartan.
Current projects:
- Derive gravitational equations of motion.
- Translate more terms between both languages.
Outlook

- Current projects:
 - Derive gravitational equations of motion.
 - Translate more terms between both languages.

- Future projects:
 - Consistent matter coupling.
 - Study of exact solutions.
 - Effects of deviations from metric geometry?
 - Geometrodynamics of Finsler spacetimes.
 - …