Finsler and Cartan geometric physical backgrounds
arXiv:1403.4005 [math-ph]

Manuel Hohmann

Laboratory of Theoretical Physics
Physics Institute
University of Tartu

Moduli Operads Dynamics II
Tallinn – 4 June 2014
Outline

1. Introduction
2. Causality
3. Observers
4. Gravity
5. Conclusion
Motivation

- **Metric geometry** of spacetime serves multiple roles:
 - Causality
 - Observers, observables and observations
 - Gravity

...
Motivation

- **Metric geometry** of spacetime serves multiple roles:
 - Causality
 - Observers, observables and observations
 - Gravity

- **Geometry imposes several conditions:**
 - Local Lorentz invariance
 - General covariance

Theories of quantum gravity may break these conditions:
- Loop quantum gravity
- Spin foam networks
- Causal dynamical triangulations
 \[\Rightarrow \]
 Possible stronger, non-tensorial dependence of physical quantities on observer's motion.

\[\Rightarrow \]
More general, non-tensorial, "observer dependent" geometries:
- Finsler spacetimes
- Cartan geometry on observer space
Motivation

- **Metric geometry** of spacetime serves multiple roles:
 - Causality
 - Observers, observables and observations
 - Gravity

- Geometry imposes several conditions:
 - Local Lorentz invariance
 - General covariance

- Theories of quantum gravity may break these conditions:
 - Loop quantum gravity
 - Spin foam networks
 - Causal dynamical triangulations

⇒ Possible stronger, non-tensorial dependence of physical quantities on observer's motion.
⇒ More general, non-tensorial, "observer dependent" geometries:
 - Finsler spacetimes
 - Cartan geometry on observer space

Manuel Hohmann (University of Tartu)
Finsler and Cartan geometry
4 June 2014
3 / 31
Motivation

- **Metric geometry** of spacetime serves multiple roles:
 - Causality
 - Observers, observables and observations
 - Gravity

- Geometry imposes several conditions:
 - Local Lorentz invariance
 - General covariance

- Theories of quantum gravity may break these conditions:
 - Loop quantum gravity
 - Spin foam networks
 - Causal dynamical triangulations

⇒ Possible stronger, non-tensorial dependence of physical quantities on observer’s motion.
Motivation

- **Metric geometry** of spacetime serves multiple roles:
 - Causality
 - Observers, observables and observations
 - Gravity

- Geometry imposes several conditions:
 - Local Lorentz invariance
 - General covariance

- Theories of quantum gravity may break these conditions:
 - Loop quantum gravity
 - Spin foam networks
 - Causal dynamical triangulations

⇒ Possible stronger, non-tensorial dependence of physical quantities on observer’s motion.

⇒ More general, non-tensorial, “observer dependent” geometries:
 - Finsler spacetimes
 - Cartan geometry on observer space
Motivation

- **Metric geometry** of spacetime serves multiple roles:
 - Causality
 - Observers, observables and observations
 - Gravity

- Geometry imposes several conditions:
 - Local Lorentz invariance
 - General covariance

- Theories of quantum gravity may break these conditions:
 - Loop quantum gravity
 - Spin foam networks
 - Causal dynamical triangulations

⇒ Possible stronger, non-tensorial dependence of physical quantities on observer’s motion.

⇒ More general, non-tensorial, “observer dependent” geometries:
 - **Finsler spacetimes**
 - **Cartan geometry on observer space**

- How to serve the same roles as metric geometry?
Why Finsler geometry of spacetimes?

- Finsler geometry of space widely used in physics:
 - Approaches to quantum gravity
 - Electrodynamics in anisotropic media
 - Modeling of astronomical data

Finsler spacetimes are suitable backgrounds for:
- Gravity
- Electrodynamics
- Other matter field theories

Possible explanations of yet unexplained phenomena:
- Fly-by anomaly
- Galaxy rotation curves
- Accelerating expansion of the universe
Why Finsler geometry of spacetimes?

- Finsler geometry of space widely used in physics:
 - Approaches to quantum gravity
 - Electrodynamics in anisotropic media
 - Modeling of astronomical data

- Finsler geometry generalizes Riemannian geometry:
 - Clock postulate: proper time equals arc length along trajectories.
 - Geometry described by Finsler metric.
 - Well-defined notions of connections, curvature, parallel transport...
Why Finsler geometry of spacetimes?

- Finsler geometry of space widely used in physics:
 - Approaches to quantum gravity
 - Electrodynamics in anisotropic media
 - Modeling of astronomical data
- Finsler geometry generalizes Riemannian geometry:
 - Clock postulate: proper time equals arc length along trajectories.
 - Geometry described by Finsler metric.
 - Well-defined notions of connections, curvature, parallel transport. . .
- Finsler spacetimes are suitable backgrounds for:
 - Gravity
 - Electrodynamics
 - Other matter field theories
Finsler geometry of space widely used in physics:
- Approaches to quantum gravity
- Electrodynamics in anisotropic media
- Modeling of astronomical data

Finsler geometry generalizes Riemannian geometry:
- Clock postulate: proper time equals arc length along trajectories.
- Geometry described by Finsler metric.
- Well-defined notions of connections, curvature, parallel transport.

Finsler spacetimes are suitable backgrounds for:
- Gravity
- Electrodynamics
- Other matter field theories

Possible explanations of yet unexplained phenomena:
- Fly-by anomaly
- Galaxy rotation curves
- Accelerating expansion of the universe
Why Cartan geometry on observer space?

- Quantum gravity suggests breaking of...
 - ...local Lorentz invariance.
 - ...general covariance.

Problems:
- Breaking of Copernican principle for observers.
- No observation of (strongly) broken symmetry.

Solution:
- Consider space O of all allowed observers.
- Describe experiments on observer space instead of spacetime.

\Rightarrow Observer dependence of physical quantities follows naturally.

\Rightarrow No preferred observers.

Geometry of observer space modeled by Cartan geometry.
Why Cartan geometry on observer space?

- Quantum gravity suggests breaking of...
 - …local Lorentz invariance.
 - …general covariance.

- Possible breaking of symmetry through...
 - …preferred observers / timelike vector fields.
 - …preferred spatial foliations of spacetime.

Problems:
- Breaking of Copernican principle for observers.
- No observation of (strongly) broken symmetry.

Solution:
- Consider space O of all allowed observers.
- Describe experiments on observer space instead of spacetime.
- ⇒ Observer dependence of physical quantities follows naturally.
- ⇒ No preferred observers.
- Geometry of observer space modeled by Cartan geometry.
Why Cartan geometry on observer space?

- Quantum gravity suggests breaking of...
 - ...local Lorentz invariance.
 - ...general covariance.
- Possible breaking of symmetry through...
 - ...preferred observers / timelike vector fields.
 - ...preferred spatial foliations of spacetime.
- Problems:
 - Breaking of Copernican principle for observers.
 - No observation of (strongly) broken symmetry.
Why Cartan geometry on observer space?

- Quantum gravity suggests breaking of...
 - ...local Lorentz invariance.
 - ...general covariance.
- Possible breaking of symmetry through...
 - ...preferred observers / timelike vector fields.
 - ...preferred spatial foliations of spacetime.
- Problems:
 - Breaking of Copernican principle for observers.
 - No observation of (strongly) broken symmetry.
- Solution:
 - Consider space O of all allowed observers.
 - Describe experiments on observer space instead of spacetime.
 - Observer dependence of physical quantities follows naturally.
 - No preferred observers.
 - Geometry of observer space modeled by Cartan geometry.
<table>
<thead>
<tr>
<th>Metric geometry</th>
<th>Finsler geometry</th>
<th>Cartan geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manifold M</td>
<td>Tangent bundle TM</td>
<td>Lie group $G = \text{ISO}_0(3,1)$</td>
</tr>
<tr>
<td>Lorentzian metric g</td>
<td>Geometry function $L : TM \to \mathbb{R}$</td>
<td>Closed subgroup $K = \text{SO}(3)$</td>
</tr>
<tr>
<td>Orientation</td>
<td>Finsler function $F : TM \to \mathbb{R}$</td>
<td>Principal K-bundle $\pi : P \to O$</td>
</tr>
<tr>
<td>Time orientation</td>
<td>Finsler metric $g^F(x, y)$</td>
<td>Cartan connection $A \in \Omega^1(P, g)$</td>
</tr>
<tr>
<td></td>
<td>Cartan non-linear connection N^a_b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cartan linear connection ∇</td>
<td></td>
</tr>
</tbody>
</table>
Geometrical structures

Metric geometry
- Manifold M
- Lorentzian metric g
- Orientation
- Time orientation

Finsler geometry
- Tangent bundle TM
- Geometry function $L : TM \rightarrow \mathbb{R}$
- Finsler function $F : TM \rightarrow \mathbb{R}$
- Finsler metric $g^F(x, y)$
- Cartan non-linear connection N^a_b
- Cartan linear connection ∇

Cartan geometry
- Lie group $G = \text{ISO}_0(3, 1)$
- Closed subgroup $K = \text{SO}(3)$
- Principal K-bundle $\pi : P \rightarrow O$
- Cartan connection $A \in \Omega^1(P, g)$

From metric to Finsler
- Coordinates (x^a) on M
- Coordinates (x^a, y^a) on TM
- Define $L(x, y) = g_{ab}(x)y^ay^b$

From Finsler to Cartan
- Space O of observer 4-velocities
- Space P of observer frames
- Define A from connection ∇
Ingredients of metric spacetime geometry:
- 4-dimensional spacetime manifold M.
- Metric g_{ab} of Lorentzian signature $(-, +, +, +)$.
- Orientation and time orientation of frames.
Ingredients of metric spacetime geometry:

- 4-dimensional spacetime manifold M.
- Metric g_{ab} of Lorentzian signature $(-, +, +, +)$.
- Orientation and time orientation of frames.

Clock postulate: proper time measured by arc length.

Arc length for curves $t \mapsto \gamma(t) \in M$ defined by the metric:

$$
\tau_2 - \tau_1 = \int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} \, dt.
$$
Ingredients of metric spacetime geometry:

- 4-dimensional spacetime manifold M.
- Metric g_{ab} of Lorentzian signature $(-, +, +, +)$.
- Orientation and time orientation of frames.

Clock postulate: proper time measured by arc length.

$$\tau_2 - \tau_1 = \int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} \, dt.$$

Observables are components of tensor fields.

Tensor components must be expressed in suitable basis.

Metric provides notion of orthonormal frames:

$$g_{ab} f^a_i f^b_j = \eta_{ij}.$$
Basics of Finsler spacetimes

- Finsler geometry defined by length functional for curve γ:
 \[
 \tau_2 - \tau_1 = \int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt
 \]

- Finsler function $F : TM \rightarrow \mathbb{R}^+$.

- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]
Basics of Finsler spacetimes

- Finsler geometry defined by length functional for curve γ:
 $$\tau_2 - \tau_1 = \int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt$$

- Finsler function $F : TM \rightarrow \mathbb{R}^+$.
- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth ’11]
- Introduce manifold-induced coordinates (x^a, y^a) on TM:
 - Coordinates x^a on M.
 - Define coordinates y^a for $y^a \frac{\partial}{\partial x^a} \in T_xM$.
 - Tangent bundle TTM spanned by $\left\{ \partial_a = \frac{\partial}{\partial x^a}, \bar{\partial} a = \frac{\partial}{\partial y^a} \right\}$.
Basics of Finsler spacetimes

- Finsler geometry defined by length functional for curve γ:
 \[\tau_2 - \tau_1 = \int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt \]

- Finsler function $F : TM \to \mathbb{R}^+$.
- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]
- Introduce manifold-induced coordinates (x^a, y^a) on TM:
 - Coordinates x^a on M.
 - Define coordinates y^a for $y^a \frac{\partial}{\partial x^a} \in T_x M$.
 - Tangent bundle TTM spanned by $\{ \partial_a = \frac{\partial}{\partial x^a}, \bar{\partial}_a = \frac{\partial}{\partial y^a} \}$.
- n-homogeneous functions on TM: $f(x, \lambda y) = \lambda^n f(x, y)$.
 - n-homogeneous smooth geometry function $L : TM \to \mathbb{R}$.
 \[\Rightarrow \text{1-homogeneous Finsler function } F = |L|^\frac{1}{n}. \]
 \[\Rightarrow \text{Finsler metric with Lorentz signature:} \]
 \[g_{ab}^F(x, y) = \frac{1}{2} \bar{\partial}_a \bar{\partial}_b F^2(x, y). \]
Connections on Finsler spacetimes

- Cartan non-linear connection:

 \[N^a_b = \frac{1}{4} \bar{\partial}_b \left[g^{F \, ac} (y^d \partial_d \bar{\partial}_c F^2 - \partial_c F^2) \right] . \]

⇒ Berwald basis of \(TTM \):

\[\{ \delta_a = \partial_a - N^b_a \bar{\partial}_b, \bar{\partial}_a \} . \]

⇒ Dual Berwald basis of \(T^* TM \):

\[\{ dx^a, \delta y^a = dy^a + N^a_b dx^b \} . \]

⇒ Splits \(TTM = HTM \oplus VTM \) and \(T^* TM = H^* TM \oplus V^* TM \).
Connections on Finsler spacetimes

- Cartan non-linear connection:

\[N^a_b = \frac{1}{4} \bar{\partial}_b \left[g^F ac (y^d \partial_d \bar{\partial}_c F^2 - \partial_c F^2) \right]. \]

\[\Rightarrow \text{Berwald basis of } TTM: \]

\[\{ \delta_a = \partial_a - N^b_a \bar{\partial}_b, \bar{\partial}_a \}. \]

\[\Rightarrow \text{Dual Berwald basis of } T^*TM: \]

\[\{ dx^a, \delta y^a = dy^a + N^a_b dx^b \}. \]

\[\Rightarrow \text{Splits } TTM = HTM \oplus VTM \text{ and } T^*TM = H^*TM \oplus V^*TM. \]

- Cartan linear connection:

\[\nabla_{\delta_a} \delta_b = F^c_{ab} \delta_c, \quad \nabla_{\delta_a} \bar{\partial}_b = F^c_{ab} \bar{\partial}_c, \quad \nabla_{\bar{\partial}_a} \delta_b = C^c_{ab} \delta_c, \quad \nabla_{\bar{\partial}_a} \bar{\partial}_b = C^c_{ab} \bar{\partial}_c, \]

\[F^c_{ab} = \frac{1}{2} g^F cd (\delta_a g^F_{bd} + \delta_b g^F_{ad} - \delta_d g^F_{ab}), \]

\[C^c_{ab} = \frac{1}{2} g^F cd (\bar{\partial}_a g^F_{bd} + \bar{\partial}_b g^F_{ad} - \bar{\partial}_d g^F_{ab}). \]
Consider a hamster ball on a two-dimensional surface:
- Two-dimensional Riemannian manifold \((M, g)\).
- Orthonormal frame bundle \(\pi : P \to M\) is principal \(\text{SO}(2)\)-bundle.
- Hamster position and orientation marks frame \(p \in P\).
Consider a hamster ball on a two-dimensional surface:
- Two-dimensional Riemannian manifold \((M, g)\).
- Orthonormal frame bundle \(\pi : P \to M\) is principal \(\text{SO}(2)\)-bundle.
- Hamster position and orientation marks frame \(p \in P\).

Hamster’s degrees of freedom \(\in T_pP\):
- Rotations around its position \(x = \pi(p)\).
- “Rolling without slipping” over \(M\).
Consider a hamster ball on a two-dimensional surface:
- Two-dimensional Riemannian manifold \((M, g)\).
- Orthonormal frame bundle \(\pi: P \to M\) is principal \(\text{SO}(2)\)-bundle.
- Hamster position and orientation marks frame \(p \in P\).

Hamster’s degrees of freedom \(\in T_p P \sim \text{ball motions} \in g = \mathfrak{so}(3)\):
- Rotations around its position \(x = \pi(p)\): subalgebra \(\mathfrak{h} = \mathfrak{so}(2)\).
- “Rolling without slippling” over \(M\): quotient space \(\mathfrak{z} = \mathfrak{so}(3)/\mathfrak{so}(2)\).
Consider a hamster ball on a two-dimensional surface:
- Two-dimensional Riemannian manifold (M, g).
- Orthonormal frame bundle $\pi: P \to M$ is principal $\text{SO}(2)$-bundle.
- Hamster position and orientation marks frame $p \in P$.

Hamster’s degrees of freedom $\in T_p P \sim \text{ball motions} \in \mathfrak{g} = \mathfrak{so}(3)$:
- Rotations around its position $x = \pi(p)$: subalgebra $\mathfrak{h} = \mathfrak{so}(2)$.
- “Rolling without slippling” over M: quotient space $\mathfrak{z} = \mathfrak{so}(3)/\mathfrak{so}(2)$.

\Rightarrow Surface M “traced” by $S^2 \cong \text{SO}(3)/\text{SO}(2) = G/H$.
\Rightarrow Geometry of M fully described by Hamster ball motion.
Consider Lorentzian manifold \((M, g)\).

Orthonormal frame bundle \(\tilde{\pi} : P \to M\).
Consider Lorentzian manifold \((M, g)\).
Orthonormal frame bundle \(\tilde{\pi}: P \to M\).
Split of the tangent spaces \(T_pP\):
\[
T_pP = V_pP + H_pP
\]
- Infinitesimal Lorentz transforms \(\in V_pP\).
- Infinitesimal translations \(\in H_pP\).
Consider Lorentzian manifold \((M, g)\).

Orthonormal frame bundle \(\tilde{\pi} : P \to M\) is principal \(H\)-bundle.

Split of the tangent spaces \(T_pP \cong g\):

\[
T_pP = V_pP + H_pP
\]

- Infinitesimal Lorentz transforms \(\in V_pP \cong \mathfrak{h}\).
- Infinitesimal translations \(\in H_pP \cong \mathfrak{z}\).

Corresponding split of Poincaré algebra \(g\):
- Lorentz algebra \(\mathfrak{h}\).
- Translations \(\mathfrak{z}\).
Consider Lorentzian manifold \((M, g)\).

Orthonormal frame bundle \(\tilde{\pi} : P \to M\) is principal \(H\)-bundle.

Split of the tangent spaces \(T_pP \cong g\):

\[
T_pP = V_pP + H_pP
\]

\[
A_p = \omega_p + e_p
\]

\[
g = h + \mathfrak{z}
\]

- Infinitesimal Lorentz transforms \(\in V_pP \cong h\).
- Infinitesimal translations \(\in H_pP \cong \mathfrak{z}\).

Corresponding split of Poincaré algebra \(g\):
- Lorentz algebra \(h\).
- Translations \(\mathfrak{z}\).

Cartan connection \(A = \omega + e \in \Omega^1(P, g)\).
Consider Lorentzian manifold \((M, g)\).

Orthonormal frame bundle \(\tilde{\pi} : P \rightarrow M\) is principal \(H\)-bundle.

Split of the tangent spaces \(T_p P \cong \mathfrak{g}\):

\[
T_p P = V_p P + H_p P
\]

- Infinitesimal Lorentz transforms \(\in V_p P \cong \mathfrak{h}\).
- Infinitesimal translations \(\in H_p P \cong \mathfrak{z}\).

Corresponding split of Poincaré algebra \(\mathfrak{g}\):
- Lorentz algebra \(\mathfrak{h}\).
- Translations \(\mathfrak{z}\).

Cartan connection \(A = \omega + e \in \Omega^1(P, \mathfrak{g})\).

Fundamental vector fields \(\underline{A} : \mathfrak{g} \rightarrow \Gamma(TP)\) as “inverse” of \(A\).
Consider Lorentzian manifold \((M, g)\).

Orthonormal frame bundle \(\tilde{\pi} : P \to M \) is principal \(H\)-bundle.

Split of the tangent spaces \(T_pP \cong \mathfrak{g} \):

\[
T_pP = V_pP + H_pP
\]

- Infinitesimal Lorentz transforms \(\in V_pP \cong \mathfrak{h} \).
- Infinitesimal translations \(\in H_pP \cong \mathfrak{z} \).

Corresponding split of Poincaré algebra \(\mathfrak{g} \):

- Lorentz algebra \(\mathfrak{h} \).
- Translations \(\mathfrak{z} \).

Cartan connection \(A = \omega + e \in \Omega^1(P, \mathfrak{g}) \).

Fundamental vector fields \(A : \mathfrak{g} \to \Gamma(TP) \) as “inverse” of \(A \).

\(\Rightarrow \) Geometry of \(M \) encoded in \(A \) resp. \(A \).
Consider Lorentzian manifold \((M, g)\).
Future unit timelike vectors \(O \subset TM\).
Orthonormal frame bundle \(\pi : P \to O\).
Consider Lorentzian manifold \((M, g)\).

Future unit timelike vectors \(O \subset TM\).

Orthonormal frame bundle \(\pi : P \rightarrow O\) is principal \(K\)-bundle.

Split of the tangent spaces \(T_p P \cong g\):

\[
T_p P = R_p P + B_p P + \tilde{H}_p P + H^0_p P
\]

- Infinitesimal rotations \(\in R_p P \cong \mathfrak{k}\).
- Infinitesimal Lorentz boosts \(\in B_p P \cong \eta\).
- Infinitesimal spatial translations \(\in \tilde{H}_p P \cong \tilde{\mathfrak{j}}\).
- Infinitesimal temporal translations \(\in H^0_p P \cong \mathfrak{j}^0\).
Consider Lorentzian manifold (M, g).
Future unit timelike vectors $O \subset TM$.
Orthonormal frame bundle $\pi : P \to O$ is principal K-bundle.
Split of the tangent spaces $T_P P \cong g$:

\[
\begin{align*}
T_P P &= R_P P + B_P P + \tilde{H}_P P + H^0_P P \\
A_p &= \Omega_p + b_p + \tilde{e}_p + e^0_p \\
g &= \mathfrak{k} + \mathfrak{h} + \mathfrak{z} + \mathfrak{z}^0
\end{align*}
\]

- Infinitesimal rotations $\in R_P P \cong \mathfrak{k}$.
- Infinitesimal Lorentz boosts $\in B_P P \cong \mathfrak{h}$.
- Infinitesimal spatial translations $\in \tilde{H}_P P \cong \mathfrak{z}$.
- Infinitesimal temporal translations $\in H^0_P P \cong \mathfrak{z}^0$.

Cartan connection $A = \Omega + b + \tilde{e} + e^0 \in \Omega^1(P, g)$.

Fundamental vector fields $\underline{A} : g \to \Gamma(TP)$ as “inverse” of A.

\Rightarrow Geometry of M encoded in A resp. \underline{A}. [S. Gielen, D. Wise ’12]
From metric to Finsler

- Metric-induced 2-homogeneous geometry function:

\[L(x, y) = g_{ab}(x) y^a y^b. \]

⇒ Finsler function \(F(x, y) = \sqrt{|L(x, y)|}. \)

⇒ Finsler metric

\[g^F(x, y) = \begin{cases}
-g(x, y) & \text{for } y \text{ timelike}, \\
 g(x, y) & \text{for } y \text{ spacelike}.
\end{cases} \]
Metric-induced 2-homogeneous geometry function:

\[L(x, y) = g_{ab}(x)y^ay^b. \]

⇒ Finsler function \(F(x, y) = \sqrt{|L(x, y)|}. \)

⇒ Finsler metric

\[g^F(x, y) = \begin{cases} -g(x, y) & \text{for } y \text{ timelike,} \\ g(x, y) & \text{for } y \text{ spacelike.} \end{cases} \]

⇒ Cartan non-linear connection:

\[N^a_{\ b} = \Gamma^a_{\ bc}y^c. \]

⇒ Cartan linear connection:

\[F^a_{\ bc} = \Gamma^a_{\ bc}, \quad C^a_{\ bc} = 0. \]
Need to construct \(A \in \Omega^1(P, \mathfrak{g}) \).

Recall that

\[
\begin{align*}
\mathfrak{g} &= \mathfrak{h} \oplus \mathfrak{z} \\
A &= \omega + e
\end{align*}
\]

Definition of \(e \): Use the solder form:

\[
e^i = f^{-1}i_a dx^a.
\]

Definition of \(\omega \): Use the Cartan linear connection:

\[
\omega^i_j = f^{-1}i_a \left[df^a_j + f^b_j \left(dx^c F^a_{bc} + (dx^d N^c_d + df^c_0) C^a_{bc} \right) \right].
\]
Need to construct \(A \in \Omega^1(P, g) \).

Recall that

\[
\begin{align*}
 g &= \mathfrak{h} \oplus \mathfrak{z} \\
 A &= \omega + e
\end{align*}
\]

Definition of \(e \): Use the solder form:

\[
e^i_j = f^{-1}^{i} a dx^a.
\]

Definition of \(\omega \): Use the Cartan linear connection:

\[
\omega^i_j = f^{-1}^{i} a \left[df^a_j + f^b_j \left(dx^c F^{ab}^c_{bc} + (dx^d N^c_d + df^0_c) C^{abc} \right) \right].
\]

Let \(a = z^i \mathcal{Z}_i + \frac{1}{2} h^i_j \mathcal{H}_{ij} \in g \).

Fundamental vector fields:

\[
A(a) = z^i f^a_i \left(\partial_a - f^b_j F^c_{ab} \bar{\partial}_c \right) + \left(h^i_j f^a_i - h^i_j f^b f^c_i C^{abc} \right) \bar{\partial}_a.
\]
Causal structure

Metric geometry

Geometry function:

\[L = g_{ab} y^a y^b \]

\(y^a \) timelike for \(L < 0 \).
Causal structure

Metric geometry

Geometry function:

\[L = g_{ab} y^a y^b \]

\(y^a \) timelike for \(L < 0 \).

Finsler geometry

Fundamental geometry function \(L \)

Hessian:

\[g^L_{ab}(x, y) = \frac{1}{2} \bar{\partial}_a \bar{\partial}_b L(x, y) \]

Use sign of \(L \) and signature of \(g^L \).
Causal structure

Metric geometry

Geometry function:

\[L = g_{ab} y^a y^b \]

\(y^a \) timelike for \(L < 0 \).

Finsler geometry

Fundamental geometry function \(L \)

Hessian:

\[g^L_{ab}(x, y) = \frac{1}{2} \bar{\partial}_a \bar{\partial}_b L(x, y) \]

Use sign of \(L \) and signature of \(g^L \).

Cartan geometry

Observer space:

\[O = \bigcup_{x \in M} S_x \]

\(O \) contains only future unit timelike vectors.
“Unit timelike condition” required for Finsler spacetimes:
For all $x \in M$ the set

$$\Omega_x = \{ y \in T_xM \mid |L(x, y)| = 1, \text{sig} \bar{\partial}_a \bar{\partial}_b L(x, y) = (\epsilon, -\epsilon, -\epsilon, -\epsilon) \}$$

with $\epsilon = L(x, y)/|L(x, y)|$ contains a non-empty closed connected component $S_x \subseteq \Omega_x \subset T_xM$.
"Unit timelike condition" required for Finsler spacetimes:
For all \(x \in M \) the set
\[
\Omega_x = \{ y \in T_x M \mid |L(x, y)| = 1, \text{sig} \bar{\partial}_a \bar{\partial}_b L(x, y) = (\epsilon, -\epsilon, -\epsilon, -\epsilon) \}
\]
with \(\epsilon = \frac{L(x, y)}{|L(x, y)|} \) contains a non-empty closed connected component \(S_x \subseteq \Omega_x \subset T_x M \).

\(\Rightarrow \) \(S_x \) contains physical observers.
\(\Rightarrow \) \(\mathbb{R}^+ S_x \) is convex cone.
Observer space of a Finsler spacetime:

- Consider all allowed observer tangent vectors:

\[O = \bigcup_{x \in M} S_x. \]

- Tangent vectors \(y \in S_x \) satisfy \(g_{ab}^F(x, y)y^a y^b = 1. \)
The observer frame bundle

- Observer space of a Finsler spacetime:
 - Consider all allowed observer tangent vectors:

\[O = \bigcup_{x \in M} S_x . \]

- Tangent vectors \(y \in S_x \) satisfy \(g^F_{ab}(x, y)y^ay^b = 1. \)

- Construct orthonormal observer frames:
 \[\Rightarrow \text{Complete } y = f_0 \text{ to a frame } f_i \text{ with } g^F_{ab}(x, y)f^af^b = -\eta_{ij}. \]
 - Let \(P \) be the space of all observer frames.
 - Natural projection \(\pi : P \to O \) discards spatial frame components.
The observer frame bundle

- Observer space of a Finsler spacetime:
 - Consider all allowed observer tangent vectors:

 \[
 O = \bigcup_{x \in M} S_x.
 \]

 - Tangent vectors \(y \in S_x \) satisfy
 \[
 g^F_{ab}(x, y) y^a y^b = 1.
 \]

 - Construct orthonormal observer frames:
 \[\Rightarrow\]
 Complete \(y = f_0 \) to a frame \(f_i \) with
 \[
 g^F_{ab}(x, y) f_i^a f_j^b = -\eta_{ij}.
 \]

 - Let \(P \) be the space of all observer frames.

 - Natural projection \(\pi : P \to O \) discards spatial frame components.

- Group action on the frame bundle:
 - \(\text{SO}(3) \) acts on spatial frame components by rotations.

 - Action is free and transitive on fibers of \(\pi : P \to O \).

 \[\Rightarrow\]
 \(\pi : P \to O \) is principal \(K \)-bundle.
Observers

Metric geometry

Timelike curve γ:

\[\gamma : \mathbb{R} \rightarrow M \]
\[\tau \mapsto \gamma(\tau) \]

\[g_{ab} \dot{\gamma}^a \dot{\gamma}^b = -1 \]

Orthonormal frame f:

\[f_0^a = \dot{\gamma}^a \]

\[g_{ab} f_i^a f_j^b = \eta_{ij} \]
Metric geometry

Timelike curve γ:
\[
\gamma : \mathbb{R} \rightarrow M \\
\tau \mapsto \gamma(\tau)
\]

Orthonormal frame f:
\[
f^a_0 = \dot{\gamma}^a
\]
\[
g_{ab}f^a_i f^b_j = \eta_{ij}
\]

Finsler geometry

Timelike curve γ:
\[
\gamma : \mathbb{R} \rightarrow M \\
\tau \mapsto \gamma(\tau)
\]

Orthonormal frame f:
\[
f^a_0 = \dot{\gamma}^a
\]
\[
g_{ab}^F f^a_i f^b_j = -\eta_{ij}
\]
Observers

Metric geometry

Timelike curve γ:

$$\gamma : \mathbb{R} \to M \quad \tau \mapsto \gamma(\tau)$$

Orthonormal frame f:

$$f_0^a = \dot{\gamma}^a$$

$$g_{ab} f_i^a f_j^b = \eta_{ij}$$

Finsler geometry

Timelike curve γ:

$$\gamma : \mathbb{R} \to M \quad \tau \mapsto \gamma(\tau)$$

Orthonormal frame f:

$$f_0^a = \dot{\gamma}^a$$

$$g_{ab} f_i^a f_j^b = -\eta_{ij}$$

Cartan geometry

Observer curve Γ:

$$\Gamma : \mathbb{R} \to O \quad \tau \mapsto \Gamma(\tau)$$

Lift condition:

$$\tilde{e}^i \dot{\Gamma}(\tau) = \delta_0^i$$

Orthonormal frame f:

$$f \in \pi^{-1}(\Gamma(\tau)) \subset P$$
Metric geometry

Minimize arc length integral:

$$\int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} \, dt$$

Geodesic equation:

$$\ddot{\gamma}^a + \Gamma^a_{bc} \dot{\gamma}^b \dot{\gamma}^c = 0$$
Inertial observers

Metric geometry

Minimize arc length integral:

\[
\int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} dt
\]

Geodesic equation:

\[
\ddot{\gamma}^a + \Gamma^a_{bc} \dot{\gamma}^b \dot{\gamma}^c = 0
\]

Finsler geometry

Minimize arc length integral:

\[
\int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt
\]

Geodesic equation:

\[
\ddot{\gamma}^a + \mathcal{N}^a_{bc} \dot{\gamma}^b \dot{\gamma}^c = 0
\]

Geodesic spray:

\[
\mathbf{S} = y^a(\partial_a - \mathcal{N}^b_{a}\bar{\partial}_b)
\]

Integral curves:

\[
\dot{\Gamma}(\tau) = \mathbf{S}(\Gamma(\tau))
\]
Metric geometry

Minimize arc length integral:

\[
\int_{t_1}^{t_2} \sqrt{g_{ab}(\gamma(t)) \dot{\gamma}^a(t) \dot{\gamma}^b(t)} \, dt
\]

Geodesic equation:

\[
\ddot{\gamma}^a + \Gamma^a_{bc} \dot{\gamma}^b \dot{\gamma}^c = 0
\]

Finsler geometry

Minimize arc length integral:

\[
\int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) \, dt
\]

Geodesic equation:

\[
\ddot{\gamma}^a + N^a_b \dot{\gamma}^b = 0
\]

Cartan geometry

Geodesic condition:

\[
\tilde{b}^\alpha \dot{\Gamma}(\tau) = 0
\]

Integral curves:

\[
\dot{\Gamma}(\tau) = \tilde{e}_0(\Gamma(\tau))
\]

Finsler and Cartan geometry

Geodesic spray:

\[
S = y^a (\partial_a - N^b_a \bar{\partial}_b)
\]

Integral curves:

\[
\dot{\Gamma}(\tau) = S(\Gamma(\tau))
\]
Observer trajectories:
- Observer trajectory γ in M.
- $\dot{\gamma}$ must be timelike and future-directed.

Inertial observers:
Minimize arc-length functional:
\[
\int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} \, dt.
\]

Geodesic equation:
\[
\ddot{\gamma}^a + \Gamma^a_{bc}\dot{\gamma}^b\dot{\gamma}^c = 0.
\]
Observers on metric spacetimes

- Observer trajectories:
 - Observer trajectory \(\gamma \) in \(M \).
 - \(\dot{\gamma} \) must be timelike and future-directed.

- Inertial observers:
 - Minimize arc-length functional:
 \[
 \int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} \, dt.
 \]

 \(\Rightarrow \) Geodesic equation:
 \[
 \ddot{\gamma}^a + \Gamma^a_{bc} \dot{\gamma}^b \dot{\gamma}^c = 0.
 \]
Observer trajectories and canonical lifts:

- Observer trajectory γ in M.
- Lift γ to a curve $\Gamma = (\gamma, \dot{\gamma})$ in TM.
- Curves Γ in TM are canonical lifts if and only if

$$dx^a \dot{\Gamma} = y^a.$$

- Tangent vector $\dot{\gamma}(\tau) \in S_{\gamma(\tau)}$; Γ is curve in $O \subset TM$.

Observer trajectories and canonical lifts:
- Observer trajectory γ in M.
- Lift γ to a curve $\Gamma = (\gamma, \dot{\gamma})$ in TM.
- Curves Γ in TM are canonical lifts if and only if
 \[dx^a \dot{\Gamma} = y^a. \]
- Tangent vector $\dot{\gamma}(\tau) \in S_{\gamma(\tau)}$; Γ is curve in $O \subset TM$.

Inertial observers:
- Minimize arc length functional:
 \[\int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt. \]

 \Rightarrow Geodesic equation:
 \[\ddot{\gamma}^a + N^a_b \dot{\gamma}^b = 0. \]

 \Rightarrow Γ is integral curve of geodesic spray:
 \[\dot{\Gamma} = S = y^a \delta_a. \]
Observer curves:

Consider curve Γ in O.

⇒ Tangent vector splits into translation and boost:

$$\dot{\Gamma} = \left(e^i \dot{\Gamma}\right) e_i + \left(b^\alpha \dot{\Gamma}\right) b_\alpha.$$
Observer curves:

Consider curve Γ in O.

\Rightarrow Tangent vector splits into translation and boost:

$$\dot{\Gamma} = (e^i \dot{\Gamma}) e_i + (b^\alpha \dot{\Gamma}) b_\alpha.$$

Translational component of the tangent vector:

Split into time and space components:

$$(e^i \dot{\Gamma}) e_i = (e^0 \dot{\Gamma}) e_0 + (e^\alpha \dot{\Gamma}) e_\alpha.$$

Components are relative to observer’s frame.

\Rightarrow Physical observer: translation corresponds to time direction:

$$e^0 \dot{\Gamma} = 1 \land e^\alpha \dot{\Gamma} = 0 \iff e^i \dot{\Gamma} = \delta^i_0.$$
Observers on Cartan observer space

- Observer curves:
 - Consider curve Γ in O.
 - Tangent vector splits into translation and boost:
 \[
 \dot{\Gamma} = \left(e^i \dot{\Gamma} \right) e_i + \left(b^\alpha \dot{\Gamma} \right) b_\alpha .
 \]

- Translational component of the tangent vector:
 - Split into time and space components:
 \[
 \left(e^i \dot{\Gamma} \right) e_i = \left(e^0 \dot{\Gamma} \right) e_0 + \left(e^\alpha \dot{\Gamma} \right) e_\alpha .
 \]
 - Components are relative to observer’s frame.
 - Physical observer: translation corresponds to time direction:
 \[
 e^0 \dot{\Gamma} = 1 \land e^\alpha \dot{\Gamma} = 0 \iff e^i \dot{\Gamma} = \delta^i_0 .
 \]

- Boost component of the tangent vector:
 - Measures acceleration in observer’s frame.
 - Inertial observers are non-accelerating: $b^\alpha \dot{\Gamma} = 0$.
 - Inertial observers follow integral curves of time translation: $\dot{\Gamma} = e^0_0$.

Manuel Hohmann (University of Tartu) Finsler and Cartan geometry 4 June 2014 24 / 31
1. Introduction
2. Causality
3. Observers
4. Gravity
5. Conclusion
Einstein-Hilbert action:

\[S_{EH} = \frac{1}{2\kappa} \int_M d^4 x \sqrt{-g} \ R \]
Gravity

Metric geometry

Einstein-Hilbert action:

\[S_{EH} = \frac{1}{2\kappa} \int_M d^4 x \sqrt{-g} R \]

Finsler geometry

Using non-linear connection:

\[S_N = \frac{1}{\kappa} \int_\Sigma \text{Vol}_{\tilde{G}} R^a_{ab} y^b \]

Using linear connection:

\[S_L = \frac{1}{\kappa} \int_\Sigma \text{Vol}_{\tilde{G}} g^F_{ab} R^c_{acb} \]
Metric geometry

Einstein-Hilbert action:

\[S_{EH} = \frac{1}{2\kappa} \int_M d^4x \sqrt{-g} R \]

Finsler geometry

Using non-linear connection:

\[S_N = \frac{1}{\kappa} \int \Sigma \text{Vol}_{\tilde{G}} R^a_{ab} y^b \]

Using linear connection:

\[S_L = \frac{1}{\kappa} \int \Sigma \text{Vol}_{\tilde{G}} g^{Fab} R^c_{acb} \]

Cartan geometry

Using horizontal vector fields:

\[S_H = \int_O \tilde{b}^\alpha ([\tilde{e}_\alpha, \tilde{e}_0]) \text{Vol}_O \]

Using Cartan curvature:

\[S_C = \int_O \kappa_h (\tilde{F}_h \wedge \tilde{F}_h) \wedge \text{Vol}_S \]
Gravity

Metric geometry

Einstein-Hilbert action:

\[S_{EH} = \frac{1}{2\kappa} \int_M d^4 x \sqrt{-g} \, R \]

Finsler geometry

Using non-linear connection:

\[S_N = \frac{1}{\kappa} \int_{\Sigma} \text{Vol}_{\tilde{G}} R^a_{\, ab} y^b \]

Using linear connection:

\[S_L = \frac{1}{\kappa} \int_{\Sigma} \text{Vol}_{\tilde{G}} g^{F \, ab} R^c_{\, acb} \]

Cartan geometry

Using horizontal vector fields:

\[S_H = \int_{O} \tilde{b}^\alpha ([\tilde{e}_\alpha, \tilde{e}_0]) \text{Vol}_O \]

Using Cartan curvature:

\[S_C = \int_{O} \kappa_h (\tilde{F}_h \wedge \tilde{F}_h) \wedge \text{Vol}_S \]
MacDowell-Mansouri gravity on observer space: [S. Gielen, D. Wise ’12]

\[S_G = \int_\mathcal{O} \epsilon_{\alpha\beta\gamma} \text{tr}_\mathcal{H}(F_\mathcal{H} \wedge \star F_\mathcal{H}) \wedge b^\alpha \wedge b^\beta \wedge b^\gamma \]

- Hodge operator \(\star \) on \(\mathcal{H} \).
- Non-degenerate \(H \)-invariant inner product \(\text{tr}_\mathcal{H} \) on \(\mathcal{H} \).
- Boost part \(b \in \Omega_1(\mathcal{H}, \eta) \) of the Cartan connection.
MacDowell-Mansouri gravity on observer space:

\[S_G = \int_O \epsilon_{\alpha \beta \gamma} \text{tr}_\mathfrak{h}(F_\mathfrak{h} \wedge \star F_\mathfrak{h}) \wedge b^\alpha \wedge b^\beta \wedge b^\gamma \]

- Hodge operator \(\star \) on \(\mathfrak{h} \).
- Non-degenerate \(H \)-invariant inner product \(\text{tr}_\mathfrak{h} \) on \(\mathfrak{h} \).
- Boost part \(b \in \Omega_1(P, \eta) \) of the Cartan connection.

Translate terms into Finsler language (with \(R = d\omega + \frac{1}{2} [\omega, \omega] \)):

- Curvature scalar:
 \[[e, e] \wedge \star R \sim g^{ab} R^c_{acb} dV. \]

- Cosmological constant:
 \[[e, e] \wedge \star [e, e] \sim dV. \]

- Gauss-Bonnet term:
 \[R \wedge \star R \sim \epsilon^{abcd} \epsilon^{efgh} R_{abef} R_{cdgh} dV. \]

\(\Rightarrow \) Gravity theory on Finsler spacetime.
Finsler gravity action: [C. Pfeifer, M. Wohlfarth '11]

\[S_G = \int_O d^4x \, d^3y \, \sqrt{-\tilde{G}} R^a_{\, \, ab} y^b. \]

- Sasaki metric \tilde{G} on O.
- Non-linear curvature $R^a_{\, \, ab}$.

⇒ Gravity theory on observer space.
Finsler gravity action: [C. Pfeifer, M. Wohlfarth '11]

\[
S_G = \int_O d^4x \, d^3y \, \sqrt{-\tilde{G}} R^a_{\, \, ab} y^b.
\]

- Sasaki metric \(\tilde{G} \) on \(O \).
- Non-linear curvature \(R^a_{\, \, ab} \).

Translate terms into Cartan language:

\[
d^4x \, d^3y \, \sqrt{-\tilde{G}} = \epsilon_{ijkl} \epsilon_{\alpha\beta\gamma} \, e^i \wedge e^j \wedge e^k \wedge e^l \wedge b^\alpha \wedge b^\beta \wedge b^\gamma,
\]

\[
R^a_{\, \, ab} y^b = b^\alpha [A(z_\alpha), A(z_0)].
\]

⇒ Gravity theory on observer space.
Summary

- **Finsler spacetimes**
 - Generalization of *metric spacetimes*.
 - Geometry defined by function L on TM.
 - Lengths measured by Finsler function $F = |L|^{\frac{1}{n}}$.
 - Metric generalized by Finsler metric g^{F}_{ab}.

Cartan geometry on observer space can be obtained from Finsler spacetimes.
Geometry on principal $SO(3)$-bundle $P \rightarrow O$.
Space O of physical observer four-velocities.
Space P of physical observer frames.
Geometry defined by Cartan connection $A \in \Omega^{1}(P, g)$.
Summary

- **Finsler spacetimes**
 - Generalization of metric spacetimes.
 - Geometry defined by function L on TM.
 - Lengths measured by Finsler function $F = |L|^\frac{1}{n}$.
 - Metric generalized by Finsler metric g^{F}_{ab}.

- **Cartan geometry on observer space**
 - Can be obtained from Finsler spacetimes.
 - Geometry on principal SO(3)-bundle $\pi : P \rightarrow O$.
 - Space O of physical observer four-velocities.
 - Space P of physical observer frames.
 - Geometry defined by Cartan connection $A \in \Omega^1(P, g)$.
Finsler spacetimes

- Generalization of metric spacetimes.
- Geometry defined by function L on TM.
- Lengths measured by Finsler function $F = |L|^\frac{1}{n}$.
- Metric generalized by Finsler metric g^{F}_{ab}.

Cartan geometry on observer space

- Can be obtained from Finsler spacetimes.
- Geometry on principal SO(3)-bundle $\pi : P \rightarrow O$.
- Space O of physical observer four-velocities.
- Space P of physical observer frames.
- Geometry defined by Cartan connection $A \in \Omega^1(P, g)$.

Different geometries provide compatible definitions of:

- Causality
- Observers
- Observables
- Gravity
Open questions

- Experimental effects of non-tensorial structures?
- Properties of matter (gauge) theories on these backgrounds?
- Quantization of these structures?
Open questions

- Experimental effects of non-tensorial structures?
- Properties of matter (gauge) theories on these backgrounds?
- Quantization of these structures?

MH, “Observer dependent geometries”,
in: “Mathematical Structures of the Universe”,
Copernicus Center Press, Krakow, 2014
arXiv:1403.4005 [math-ph]