Cosmology based on Finsler geometry

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu
Center of Excellence “The Dark Side of the Universe”

GR21 session A3 - 12. July 2016
Outline

1. Motivation
2. Finsler cosmology
3. Tensorial Finsler cosmologies
4. Conclusion
Outline

1. Motivation
2. Finsler cosmology
3. Tensorial Finsler cosmologies
4. Conclusion
Why cosmology based on Finsler geometry?

- Modify spacetime geometry to address open problems:
 - Origin of dark matter and dark energy.
 - Homogeneity of the cosmic microwave background and inflation.
 - Fly-by anomaly in the solar system.

- Choose geometry which keeps well-known notions:
 - Divide tangent spaces into space-, time-, lightlike vectors.
 - Provide notions of future and past.
 - Distinguish curves corresponding to physical trajectories.
 - Define proper time along physical trajectories.
 - Determine trajectories of freely falling test masses.

- Geometry is determined by matter distribution.

Finsler spacetime geometry provides all these notions:
- Finsler length functional measures length of curves.
- Finsler metric has Lorentz signature.
- Orientability allows to distinguish future and past.
- Previously mentioned notions define future timelike curves.
- Finsler geodesics determine notion of free fall.
- Gravity theory on Finsler spacetimes exists.
Why cosmology based on Finsler geometry?

- Modify spacetime geometry to address open problems:
 - Origin of dark matter and dark energy.
 - Homogeneity of the cosmic microwave background and inflation.
 - Fly-by anomaly in the solar system.

- Choose geometry which keeps well-known notions:
 - Divide tangent spaces into space-, time-, lightlike vectors.
 - Provide notions of future and past.
 - Distinguish curves corresponding to physical trajectories.
 - Define proper time along physical trajectories.
 - Determine trajectories of freely falling test masses.
 - Geometry is determined by matter distribution.
Why cosmology based on Finsler geometry?

- Modify spacetime geometry to address open problems:
 - Origin of dark matter and dark energy.
 - Homogeneity of the cosmic microwave background and inflation.
 - Fly-by anomaly in the solar system.

- Choose geometry which keeps well-known notions:
 - Divide tangent spaces into space-, time-, lightlike vectors.
 - Provide notions of future and past.
 - Distinguish curves corresponding to physical trajectories.
 - Define proper time along physical trajectories. ✓
 - Determine trajectories of freely falling test masses.
 - Geometry is determined by matter distribution.

- Finsler spacetime geometry provides all these notions:
 - Finsler length functional measures length of curves.
Why cosmology based on Finsler geometry?

- Modify spacetime geometry to address open problems:
 - Origin of dark matter and dark energy.
 - Homogeneity of the cosmic microwave background and inflation.
 - Fly-by anomaly in the solar system.

- Choose geometry which keeps well-known notions:
 - Divide tangent spaces into space-, time-, lightlike vectors. ✓
 - Provide notions of future and past.
 - Distinguish curves corresponding to physical trajectories.
 - Define proper time along physical trajectories. ✓
 - Determine trajectories of freely falling test masses.
 - Geometry is determined by matter distribution.

- Finsler spacetime geometry provides all these notions:
 - Finsler length functional measures length of curves.
 - Finsler metric has Lorentz signature.
Why cosmology based on Finsler geometry?

- Modify spacetime geometry to address open problems:
 - Origin of dark matter and dark energy.
 - Homogeneity of the cosmic microwave background and inflation.
 - Fly-by anomaly in the solar system.
- Choose geometry which keeps well-known notions:
 - Divide tangent spaces into space-, time-, lightlike vectors. ✓
 - Provide notions of future and past. ✓
 - Distinguish curves corresponding to physical trajectories.
 - Define proper time along physical trajectories. ✓
 - Determine trajectories of freely falling test masses.
 - Geometry is determined by matter distribution.
- Finsler spacetime geometry provides all these notions:
 - Finsler length functional measures length of curves.
 - Finsler metric has Lorentz signature.
 - Orientability allows to distinguish future and past.
Why cosmology based on Finsler geometry?

- Modify spacetime geometry to address open problems:
 - Origin of dark matter and dark energy.
 - Homogeneity of the cosmic microwave background and inflation.
 - Fly-by anomaly in the solar system.

- Choose geometry which keeps well-known notions:
 - Divide tangent spaces into space-, time-, lightlike vectors. ✓
 - Provide notions of future and past. ✓
 - Distinguish curves corresponding to physical trajectories. ✓
 - Define proper time along physical trajectories. ✓
 - Determine trajectories of freely falling test masses.
 - Geometry is determined by matter distribution.

- Finsler spacetime geometry provides all these notions:
 - Finsler length functional measures length of curves.
 - Finsler metric has Lorentz signature.
 - Orientability allows to distinguish future and past.
 - Previously mentioned notions define future timelike curves.
Why cosmology based on Finsler geometry?

- Modify spacetime geometry to address open problems:
 - Origin of dark matter and dark energy.
 - Homogeneity of the cosmic microwave background and inflation.
 - Fly-by anomaly in the solar system.

- Choose geometry which keeps well-known notions:
 - Divide tangent spaces into space-, time-, lightlike vectors. ✓
 - Provide notions of future and past. ✓
 - Distinguish curves corresponding to physical trajectories. ✓
 - Define proper time along physical trajectories. ✓
 - Determine trajectories of freely falling test masses. ✓
 - Geometry is determined by matter distribution.

- Finsler spacetime geometry provides all these notions:
 - Finsler length functional measures length of curves.
 - Finsler metric has Lorentz signature.
 - Orientability allows to distinguish future and past.
 - Previously mentioned notions define future timelike curves.
 - Finsler geodesics determine notion of free fall.
Why cosmology based on Finsler geometry?

- Modify spacetime geometry to address open problems:
 - Origin of dark matter and dark energy.
 - Homogeneity of the cosmic microwave background and inflation.
 - Fly-by anomaly in the solar system.

- Choose geometry which keeps well-known notions:
 - Divide tangent spaces into space-, time-, lightlike vectors. ✓
 - Provide notions of future and past. ✓
 - Distinguish curves corresponding to physical trajectories. ✓
 - Define proper time along physical trajectories. ✓
 - Determine trajectories of freely falling test masses. ✓
 - Geometry is determined by matter distribution. ✓

- Finsler spacetime geometry provides all these notions:
 - Finsler length functional measures length of curves.
 - Finsler metric has Lorentz signature.
 - Orientability allows to distinguish future and past.
 - Previously mentioned notions define future timelike curves.
 - Finsler geodesics determine notion of free fall.
 - Gravity theory on Finsler spacetimes exists.
Finsler gravity action and field equations

- Spacetime manifold M with Finsler function $F : TM \rightarrow \mathbb{R}^+$.

Finsler gravity action:

$$S_G = \int_{\Sigma} R \cdot \text{Vol}(G|\Sigma).$$

Σ: Unit tangent bundle $TM|F = 1$.

G: Sasaki metric on TM.

R: Scalar curvature of Cartan non-linear connection.

Gravitational field equations by variation with respect to F:

$$-\frac{1}{F^2} \left\{ 6R + G_{ab}[\nabla_v v^a \nabla_v v^b R + 2F^2 J_{ca} \nabla_h b^c / S^c + 2\nabla_v v^a (S^c \nabla_h c^b / S^b) \right\} = T^a.$$

a, b, c, \ldots: Coordinate indices $0, \ldots, 7$ on TM.

J_{ab}: Tangent structure.

S^a: Geodesic spray.

$/S^a$: Landsberg covector.

∇_h, ∇_v: Horizontal and vertical Berwald derivative.

T^a: Energy-momentum scalar.
Finsler gravity action and field equations

- Spacetime manifold M with Finsler function $F : TM \rightarrow \mathbb{R}^+$.
- Finsler gravity action:
 \[S_G = \int_{\Sigma} \mathcal{R} \, \text{Vol}(G|_\Sigma). \]
 - Σ: Unit tangent bundle $TM|_{F=1}$.
 - G: Sasaki metric on TM.
 - \mathcal{R}: Scalar curvature of Cartan non-linear connection.
Finsler gravity action and field equations

- Spacetime manifold M with Finsler function $F: TM \rightarrow \mathbb{R}^+$.

Finsler gravity action:

$$S_G = \int_{\Sigma} \mathcal{R} \text{Vol}(G|_{\Sigma}).$$

- Σ: Unit tangent bundle $TM|_{F=1}$.
- G: Sasaki metric on TM.
- \mathcal{R}: Scalar curvature of Cartan non-linear connection.

Gravitational field equations by variation with respect to F:

$$-\frac{1}{F^2} \left\{ 6\mathcal{R} + G^{ab} \left[\nabla^v_a \nabla^v_b \mathcal{R} + 2F^2 J^c_a \nabla^h_b \$_c + 2\nabla^v_a \left(S^c \nabla^h_c \$_b \right) \right] \right\} = \mathcal{T}.$$

- a, b, c, \ldots: Coordinate indices $0, \ldots, 7$ on TM.
- J^a_b: Tangent structure.
- S^a: Geodesic spray.
- $\$_a$: Landsberg covector.
- ∇^h, ∇^v: Horizontal and vertical Berwald derivative.
- \mathcal{T}: Energy-momentum scalar.
1. Motivation
2. Finsler cosmology
3. Tensorial Finsler cosmologies
4. Conclusion
Finsler length function

- Finsler function $F : TM \to \mathbb{R}^+$.
- Finsler length functional for $\gamma : \mathbb{R} \to M$:
 \[\ell_{t_1}^{t_2}[\gamma] = \int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) \, dt. \]
- Parametrization invariance requires homogeneity:
 \[F(x, \lambda y) = \lambda F(x, y) \quad \forall \lambda > 0. \]
Geometry of Finsler spacetimes

Finsler length function

- Finsler function \(F : TM \to \mathbb{R}^+ \).
- Finsler length functional for \(\gamma : \mathbb{R} \to M \):
 \[
 \ell_{t_1}^{t_2} [\gamma] = \int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) \, dt .
 \]
- Parametrization invariance requires homogeneity:
 \[
 F(x, \lambda y) = \lambda F(x, y) \quad \forall \lambda > 0 .
 \]

Connection and curvature

- Split \(TTM = HTM \oplus VTM \) of the double tangent bundle.
- Projectors \(h, v \) onto subbundles.
- Curvature tensor \(R = -N_h \) defined via Nijenhuis tensor.
- Curvature scalar defined from curvature tensor.
Cosmological symmetry

Cosmological coordinates on TM [MH ’15]

- Spherical coordinates t, r, ϑ, φ on M.
- Coordinates y, u, v, w on each $T_x M$:

$$y \partial_t + w \left[\cos u \sqrt{1 - kr^2} \partial_r + \frac{\sin u}{r} \left(\cos v \partial_\vartheta + \frac{\sin v}{\sin \vartheta} \partial_\varphi \right) \right] \in T_x M.$$
Cosmological symmetry

Cosmological coordinates on TM [MH '15]

- Spherical coordinates t, r, ϑ, φ on M.
- Coordinates y, u, v, w on each $T_x M$:

$$y \partial_t + w \left[\cos u \sqrt{1 - kr^2} \partial_r + \frac{\sin u}{r} \left(\cos v \partial_\vartheta + \frac{\sin v}{\sin \vartheta} \partial_\varphi \right) \right] \in T_x M.$$

Cosmologically symmetric Finsler spacetime

- Symmetry under rotations and translations (six vector fields).
- Most general Finsler function: $F(t, y, w)$.
- Homogeneity condition: $F(t, \lambda y, \lambda w) = \lambda F(t, y, w)$.
- Express Finsler function as $F(t, y, w) = y \tilde{F}(t, w/y)$.

Manuel Hohmann (University of Tartu) Cosmology based on Finsler geometry 12. July 2016 8 / 18
Observer space coordinates

Observer trajectories

- Tangent vectors are future unit timelike vectors: $F = 1$.
- Future unit timelike vectors form shell in each $T_x M$.
- Introduce suitable coordinates on these shells.
Observer space coordinates

Observer trajectories

- Tangent vectors are future unit timelike vectors: \(F = 1 \).
- Future unit timelike vectors form shell in each \(T_x M \).
- Introduce suitable coordinates on these shells.

Observer space coordinates [MH '15]

- Introduce coordinates:

\[
T = t, \quad R = r, \quad \Theta = \vartheta, \quad \Phi = \varphi, \quad Y = y \tilde{F} \left(t, \frac{w}{y} \right), \quad U = u, \quad V = v, \quad W = w/y.
\]

\[\Rightarrow \quad \text{Unit tangent bundle has } Y = 1.\]
\[\Rightarrow \quad \text{Light cone has } Y = 0.\]
Geodesics on cosmological background

- \(\gamma : \mathbb{R} \to M \) minimizes Finsler length functional.
- \(\iff \) \(\gamma \) satisfies second order ODE.
- \(\iff \) \(\dot{\gamma} : \mathbb{R} \to TM \) satisfies first order ODE.
- \(\iff \) \(\dot{\gamma} \) is integral curve of vector field \(\mathbf{S} \) called geodesic spray:

\[
\mathbf{S} = \frac{Y}{\tilde{F}} \left(\partial_T + W \cos U \sqrt{1 - kR^2} \partial_R
+ \frac{W \sin U \cos V}{R} \partial_\Theta
+ \frac{W \sin U \sin V}{R \sin \Theta} \partial_\Phi
- \frac{W \sin U \sqrt{1 - kR^2}}{R \tan \Theta} \partial_V
- \frac{\partial_T \partial_W \tilde{F}}{\partial_W \partial_W \tilde{F}} \partial_W \right).
\]

- Coordinate \(Y \) is constant along Finsler geodesics.
Geodesics on cosmological background

- \(\gamma : \mathbb{R} \rightarrow M \) minimizes Finsler length functional.
- \(\iff \gamma \) satisfies second order ODE.
- \(\iff \dot{\gamma} : \mathbb{R} \rightarrow TM \) satisfies first order ODE.
- \(\iff \dot{\gamma} \) is integral curve of vector field \(S \) called geodesic spray.

Coordinate \(Y \) is constant along Finsler geodesics.

Radial geodesic given by \(U = 0 \):

\[
S|_{U=0} = \frac{Y}{\tilde{F}} \left(\partial_T + W \sqrt{1 - kR^2} \partial_R - \frac{\partial_T \partial_W \tilde{F}}{\partial_W \partial_W \tilde{F}} \partial_W \right).
\]

Co-moving geodesic given by \(W = 0 \):

\[
S|_{W=0} = \frac{Y}{\tilde{F}} \left(\partial_T - \frac{\partial_T \partial_W \tilde{F}}{\partial_W \partial_W \tilde{F}} \partial_W \right).
\]
Kinetic theory of fluids \cite{Ehlers71, SarbachZannias13}

- Consider fluid as constituted by point particles.
- Particles follow piecewise geodesics between collisions.
- Continuum limit described by density $\phi : TM|_{Y=1} \rightarrow \mathbb{R}^+$.
- Collisionless fluid satisfies Liouville equation $\mathcal{L}_S\phi = 0$.

Fluid dynamics with cosmological symmetry

Kinetic theory of fluids [Ehlers '71], [Sarbach, Zannias '13]

- Consider fluid as constituted by point particles.
- Particles follow piecewise geodesics between collisions.
- Continuum limit described by density $\phi : TM|_{Y=1} \rightarrow \mathbb{R}^+$.
- Collisionless fluid satisfies Liouville equation $\mathcal{L}_S \phi = 0$.

Cosmologically symmetric Finsler fluids [MH '15]

- Most general cosmologically symmetric fluid: $\phi = \phi(T, W)$.
- Liouville equation: $\partial_T \phi \partial_W \partial_W \tilde{F} = \partial_W \phi \partial_T \partial_W \tilde{F}$.

Gravitational dynamics

Finsler gravity [Pfeifer, Wohlfarth '11]

- **Action:**

\[S_G = \int_{\Sigma} R \, \text{Vol}(G|_{\Sigma}) . \]

- **Field equations:**

\[- \frac{1}{F^2} \left\{ 6R + G^{ab} \left[\nabla^v_a \nabla^v_b R + 2F^2 J^c_a \nabla^h_b S_c + 2\nabla^v_a \left(S^c \nabla^h_c S_b \right) \right] \right\} = T.\]
Gravitational dynamics

Finsler gravity [Pfeifer, Wohlfarth '11]

- **Action:**
 \[
 S_G = \int_{\Sigma} \mathcal{R} \text{Vol}(G|\Sigma).
 \]

- **Field equations:**
 \[
 -\frac{1}{F^2} \left\{ 6\mathcal{R} + G^{ab} \left[\nabla^v_a \nabla^v_b \mathcal{R} + 2F^2 J^c_a \nabla^h_b S_c + 2\nabla^v_a \left(S^c \nabla^h_c S_b \right) \right] \right\} = \mathcal{T}.
 \]

Cosmological dynamics

- **Structure of cosmological equations:** \(G[\tilde{F}](\mathcal{T}, W) = \mathcal{T}[\tilde{F}, \phi](\mathcal{T}, W) \).

- **Difficulties:**
 - Geometry scalar \(G \) is complicated even for cosmology.
 - No “standard construction” for \(\mathcal{T} \) of non-metric kinetic fluid.
Outline

1. Motivation
2. Finsler cosmology
3. Tensorial Finsler cosmologies
4. Conclusion
Metric spacetime

Geometry

- Tensor field: metric $g_{\mu\nu}$.
- Cosmology: FLRW metric $g = -dt \otimes dt + a^2(t)\gamma_{ij}[\kappa]dx^i \otimes dx^j$.
- Finsler function:

\[
F(x, y) = \sqrt{|g_{\mu\nu}y^\mu y^\nu|} = Y\sqrt{|1 - a^2(T)W^2|}
\]
Metric spacetime

Geometry

- Tensor field: metric $g_{\mu\nu}$.
- Cosmology: FLRW metric $g = -dt \otimes dt + a^2(t) \gamma_{ij}[\kappa] dx^i \otimes dx^j$.
- Finsler function:

$$F(x, y) = \sqrt{|g_{\mu\nu}y^\mu y^\nu|} = Y \sqrt{|1 - a^2(T)W^2|}$$

Gravitational dynamics

- Geometry scalar:

$$\mathcal{G} = \frac{6}{a^2(1 - W^2 a^2)} \left(a\ddot{a} - 2\dot{a}^2 - 2\kappa + W^2 a^3 \dddot{a} \right).$$

\Rightarrow Reproduce structure of Friedmann equations.
Length measure with one-forms

Ingredients
- Tensor fields: metric $g_{\mu \nu}$, one-form A_μ.
- Cosmology:
 - FLRW metric $g = -dt \otimes dt + a^2(t)\gamma_{ij}[\kappa]dx^i \otimes dx^j$.
 - Hypersurface normal $A = b(t)dt$.
Length measure with one-forms

Ingredients

- Tensor fields: metric $g_{\mu\nu}$, one-form A_μ.
- Cosmology:
 - FLRW metric $g = -dt \otimes dt + a^2(t)\gamma_{ij}[\kappa] dx^i \otimes dx^j$.
 - Hypersurface normal $A = b(t)dt$.

Randers length measure [Randers '41]

$F(x, y) = \sqrt{|g_{\mu\nu} y^\mu y^\nu| + A_\mu y^\mu} = Y \sqrt{|1 - a^2(T)W^2|} + Yb(T)$

Bogoslovsky length measure [Bogoslovsky '77]

$F(x, y) = (A_\mu y^\mu)^q \left(\sqrt{|g_{\mu\nu} y^\mu y^\nu|}\right)^{1-q} = Yb^q(T) \left(\sqrt{|1 - a^2(T)W^2|}\right)^{1-q}$
1. Motivation
2. Finsler cosmology
3. Tensorial Finsler cosmologies
4. Conclusion
Summary

- **Finsler spacetimes:**
 - Based on Finsler length function.
 - Make use of tensors on the tangent bundle.
 - Generalize standard notions of causality, observers and gravity.

- **Finsler cosmology:**
 - Geometry defined by function $\tilde{F}(T, W)$.
 - Simple form of geodesic equation.
 - Simple equation of motion for fluid dynamics.
 - Gravitational field equations are rather complicated.
 - Simplified models can be derived from tensorial geometries.
Summary

- **Finsler spacetimes:**
 - Based on Finsler length function.
 - Make use of tensors on the tangent bundle.
 - Generalize standard notions of causality, observers and gravity.

- **Finsler cosmology:**
 - Geometry defined by function $\tilde{F}(T, W)$.
 - Simple form of geodesic equation.
 - Simple equation of motion for fluid dynamics.
 - Gravitational field equations are rather complicated.
 - Simplified models can be derived from tensorial geometries.

Outlook

- Construct energy-momentum scalar for kinetic Finsler fluid.
- Find non-metric solutions for Finsler cosmology.
- Calculate cosmological parameters from Finsler geometry.
Conclusion

- Kinetic theory on the tangent bundle:

- Finsler spacetimes:

- Finsler fluids and cosmology: