Finsler spacetimes, observer space and Cartan geometry

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

Geometry seminar - Transilvania University of Brașov June 16, 2021

Outline

1. Introduction

2. Geometries

- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries
- 3. Application in physics
- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity

4. Conclusion

- Pseudo-Riemannian geometry of spacetime has multiple roles:
 - Causality
 - Observers, observables and observations
 - o Gravity

- Pseudo-Riemannian geometry of spacetime has multiple roles:
 - Causality
 - Observers, observables and observations
 - o Gravity
- Geometry has implications for physical theories:
 - Local Lorentz invariance
 - General covariance

- Pseudo-Riemannian geometry of spacetime has multiple roles:
 - Causality
 - Observers, observables and observations
 - o Gravity
- Geometry has implications for physical theories:
 - Local Lorentz invariance
 - General covariance
- Theories of quantum gravity may break these conditions:
 - Loop quantum gravity
 - Spin foam networks
 - Causal dynamical triangulations

- Pseudo-Riemannian geometry of spacetime has multiple roles:
 - Causality
 - Observers, observables and observations
 - o Gravity
- Geometry has implications for physical theories:
 - Local Lorentz invariance
 - General covariance
- Theories of quantum gravity may break these conditions:
 - Loop quantum gravity
 - Spin foam networks
 - Causal dynamical triangulations
- $\Rightarrow\,$ Possible stronger, non-tensorial dependence of physical quantities on observer's motion.

- Pseudo-Riemannian geometry of spacetime has multiple roles:
 - Causality
 - Observers, observables and observations
 - o Gravity
- Geometry has implications for physical theories:
 - Local Lorentz invariance
 - General covariance
- Theories of quantum gravity may break these conditions:
 - Loop quantum gravity
 - Spin foam networks
 - Causal dynamical triangulations
- $\Rightarrow\,$ Possible stronger, non-tensorial dependence of physical quantities on observer's motion.
- \Rightarrow More general, non-tensorial, "observer dependent" geometries:
 - Finsler spacetimes
 - Cartan geometry on observer space

- Pseudo-Riemannian geometry of spacetime has multiple roles:
 - Causality
 - Observers, observables and observations
 - o Gravity
- Geometry has implications for physical theories:
 - Local Lorentz invariance
 - General covariance
- Theories of quantum gravity may break these conditions:
 - Loop quantum gravity
 - Spin foam networks
 - Causal dynamical triangulations
- $\Rightarrow\,$ Possible stronger, non-tensorial dependence of physical quantities on observer's motion.
- \Rightarrow More general, non-tensorial, "observer dependent" geometries:
 - Finsler spacetimes
 - Cartan geometry on observer space
 - How to serve the same roles as pseudo-Riemannian geometry?

- Finsler geometry of space widely used in physics:
 - Approaches to quantum gravity
 - Electrodynamics in anisotropic media
 - Modeling of astronomical data

- Finsler geometry of space widely used in physics:
 - Approaches to quantum gravity
 - Electrodynamics in anisotropic media
 - Modeling of astronomical data
- Finsler geometry generalizes Riemannian geometry:
 - Clock postulate: proper time equals arc length along trajectories.
 - Geometry described by Finsler metric.
 - Well-defined notions of connections, curvature, parallel transport...

- Finsler geometry of space widely used in physics:
 - Approaches to quantum gravity
 - Electrodynamics in anisotropic media
 - Modeling of astronomical data
- Finsler geometry generalizes Riemannian geometry:
 - Clock postulate: proper time equals arc length along trajectories.
 - Geometry described by Finsler metric.
 - Well-defined notions of connections, curvature, parallel transport...
- Finsler spacetimes are suitable backgrounds for:
 - o Gravity
 - Electrodynamics
 - Fluid dynamics / kinetic gases
 - Other matter field theories

- Finsler geometry of space widely used in physics:
 - Approaches to quantum gravity
 - Electrodynamics in anisotropic media
 - Modeling of astronomical data
- Finsler geometry generalizes Riemannian geometry:
 - · Clock postulate: proper time equals arc length along trajectories.
 - Geometry described by Finsler metric.
 - Well-defined notions of connections, curvature, parallel transport...
- Finsler spacetimes are suitable backgrounds for:
 - o Gravity
 - Electrodynamics
 - Fluid dynamics / kinetic gases
 - Other matter field theories
- ? Possible explanations of yet unexplained phenomena:
 - ? Galaxy rotation curves
 - ? Accelerating expansion of the universe

• Quantum gravity suggests breaking of...

- ... local Lorentz invariance.
- ... general covariance.

- Quantum gravity suggests breaking of...
 - ... local Lorentz invariance.
 - ... general covariance.
- Possible breaking of symmetry through...
 - ... preferred observers / timelike vector fields.
 - ... preferred spatial foliations of spacetime.

- Quantum gravity suggests breaking of...
 - ... local Lorentz invariance.
 - ... general covariance.
- Possible breaking of symmetry through...
 - ... preferred observers / timelike vector fields.
 - ... preferred spatial foliations of spacetime.
- Problems:
 - Breaking of Copernican principle for observers.
 - No observation of (strongly) broken symmetry.

- Quantum gravity suggests breaking of...
 - ... local Lorentz invariance.
 - ... general covariance.
- Possible breaking of symmetry through...
 - ... preferred observers / timelike vector fields.
 - ... preferred spatial foliations of spacetime.
- Problems:
 - Breaking of Copernican principle for observers.
 - No observation of (strongly) broken symmetry.
- Solution:
 - Consider space O of all allowed observers.
 - Describe experiments on observer space instead of spacetime.
 - ⇒ Observer dependence of physical quantities follows naturally.
 - ⇒ No preferred observers.
 - Geometry of observer space modeled by Cartan geometry.

Geometrical structures

Metric geometry

Manifold *M* Lorentzian metric *g* Orientation

Time orientation

Finsler geometry Tangent bundle TM Geometry function $L: TM \to \mathbb{R}$ **Finsler** function $F \cdot TM \to \mathbb{R}$ Finsler metric $g^F(x, y)$ Cartan non-linear connection N^{a}_{b} Cartan linear connection ∇

Cartan geometry

Lie group $G = ISO_0(3, 1)$ Closed subgroup K = SO(3)Principal K-bundle $\pi : P \rightarrow O$

Cartan connection $A \in \Omega^1(P, \mathfrak{g})$

Geometrical structures

1. Introduction

2. Geometries

- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries

3. Application in physics

- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity

4. Conclusion

Outline

1. Introduction

2. Geometries

2.1 Pseudo-Riemannian geometry

- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries

3. Application in physics

- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity

4. Conclusion

Pseudo-Riemannian spacetime geometry

- Ingredients of pseudo-Riemannian spacetime geometry:
 - 4-dimensional spacetime manifold *M*.
 - Metric g_{ab} of Lorentzian signature (-, +, +, +).
 - Orientation and time orientation of frames.

Pseudo-Riemannian spacetime geometry

- Ingredients of pseudo-Riemannian spacetime geometry:
 - 4-dimensional spacetime manifold *M*.
 - Metric g_{ab} of Lorentzian signature (-, +, +, +).
 - Orientation and time orientation of frames.
- Clock postulate: proper time measured by arc length.
- ⇒ Arc length for curves $t \mapsto \gamma(t) \in M$ defined by the metric:

$$au_2 - au_1 = \int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} dt$$

Pseudo-Riemannian spacetime geometry

- Ingredients of pseudo-Riemannian spacetime geometry:
 - 4-dimensional spacetime manifold *M*.
 - Metric g_{ab} of Lorentzian signature (-, +, +, +).
 - $\circ~$ Orientation and time orientation of frames.
- Clock postulate: proper time measured by arc length.
- \Rightarrow Arc length for curves $t \mapsto \gamma(t) \in M$ defined by the metric:

$$au_2- au_1=\int_{t_1}^{t_2}\sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|}dt\,.$$

- Observables are components of tensor fields.
- Tensor components must be expressed in suitable basis.
- \Rightarrow Metric provides notion of orthonormal frames:

$$g_{ab}f_i^a f_j^b = \eta_{ij}$$
.

 \Rightarrow Orthogonal frame bundle $\tilde{\pi} : P \rightarrow M$ is principal SO(1,3)-bundle.

Outline

1. Introduction

2. Geometries

2.1 Pseudo-Riemannian geometry

2.2 Finsler spacetime geometry

2.3 Observer space Cartan geometry

2.4 Relation between geometries

3. Application in physics

3.1 Causality

3.2 Observers

3.3 Gravity

4. Conclusion

Basics of Finsler spacetimes

Finsler geometry defined by length functional for curve γ:

$$\tau_2 - \tau_1 = \int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt$$

- Finsler function $F : TM \to \mathbb{R}^+$.
- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]

Basics of Finsler spacetimes

Finsler geometry defined by length functional for curve γ:

$$\tau_2 - \tau_1 = \int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt$$

- Finsler function $F : TM \to \mathbb{R}^+$.
- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]
- Introduce manifold-induced coordinates (x^a, y^a) on TM:
 - Coordinates x^a on M.
 - Define coordinates y^a for $y^a \frac{\partial}{\partial x^a} \in T_x M$.
 - Tangent bundle *TTM* spanned by $\left\{\partial_a = \frac{\partial}{\partial x^a}, \bar{\partial}_a = \frac{\partial}{\partial y^a}\right\}$.

Basics of Finsler spacetimes

Finsler geometry defined by length functional for curve γ:

$$\tau_2 - \tau_1 = \int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt$$

- Finsler function $F : TM \to \mathbb{R}^+$.
- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]
- Introduce manifold-induced coordinates (x^a, y^a) on TM:
 - Coordinates x^a on M.
 - Define coordinates y^a for $y^a \frac{\partial}{\partial x^a} \in T_x M$.
 - Tangent bundle *TTM* spanned by $\left\{\partial_a = \frac{\partial}{\partial x^a}, \bar{\partial}_a = \frac{\partial}{\partial y^a}\right\}$.
- *n*-homogeneous functions on *TM*: $f(x, \lambda y) = \lambda^n f(x, y)$.
 - *n*-homogeneous smooth geometry function $L: TM \rightarrow \mathbb{R}$.
 - \Rightarrow 1-homogeneous Finsler function $F = |L|^{\frac{1}{n}}$.
- \Rightarrow Finsler metric with Lorentz signature:

$$g_{ab}^{\mathsf{F}}(x,y) = \frac{1}{2} \bar{\partial}_a \bar{\partial}_b \mathsf{F}^2(x,y).$$

Connections on Finsler spacetimes

• Cartan non-linear connection:

$$N^{a}{}_{b} = \frac{1}{4} \bar{\partial}_{b} \left[g^{Fac} (y^{d} \partial_{d} \bar{\partial}_{c} F^{2} - \partial_{c} F^{2}) \right]$$

 \Rightarrow Berwald basis of *TTM*:

$$\{\delta_a = \partial_a - N^b{}_a \bar{\partial}_b, \bar{\partial}_a\}.$$

 \Rightarrow Dual Berwald basis of T^*TM :

$$\{dx^a, \delta y^a = dy^a + N^a{}_b dx^b\}.$$

 \Rightarrow Splits $TTM = HTM \oplus VTM$ and $T^*TM = H^*TM \oplus V^*TM$.

.

Connections on Finsler spacetimes

• Cartan non-linear connection:

$$N^{a}{}_{b} = \frac{1}{4} \bar{\partial}_{b} \left[g^{Fac} (y^{d} \partial_{d} \bar{\partial}_{c} F^{2} - \partial_{c} F^{2}) \right]$$

 \Rightarrow Berwald basis of *TTM*:

$$\{\delta_a = \partial_a - N^b{}_a \bar{\partial}_b, \bar{\partial}_a\}.$$

 \Rightarrow Dual Berwald basis of T^*TM :

$$\{dx^a, \delta y^a = dy^a + N^a{}_b dx^b\}.$$

 \Rightarrow Splits $TTM = HTM \oplus VTM$ and $T^*TM = H^*TM \oplus V^*TM$.

Cartan linear connection:

$$\begin{aligned} \nabla_{\delta_a}\delta_b &= F^c{}_{ab}\delta_c \,, \ \nabla_{\delta_a}\bar{\partial}_b = F^c{}_{ab}\bar{\partial}_c \,, \ \nabla_{\bar{\partial}_a}\delta_b = C^c{}_{ab}\delta_c \,, \ \nabla_{\bar{\partial}_a}\bar{\partial}_b = C^c{}_{ab}\bar{\partial}_c \,, \\ F^c{}_{ab} &= \frac{1}{2}g^{F\,cd}(\delta_a g^F_{bd} + \delta_b g^F_{ad} - \delta_d g^F_{ab}) \,, \\ C^c{}_{ab} &= \frac{1}{2}g^{F\,cd}(\bar{\partial}_a g^F_{bd} + \bar{\partial}_b g^F_{ad} - \bar{\partial}_d g^F_{ab}) \,. \end{aligned}$$

.

Outline

1. Introduction

2. Geometries

- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry

2.3 Observer space Cartan geometry

2.4 Relation between geometries

3. Application in physics

- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity

4. Conclusion

- Cartan geometry modeled on Klein geometry G/H:
 - *G* and *H* are Lie groups.
 - $H \subset G$ is a closed subgroup of G.
 - \Rightarrow Coset space G/H is a homogeneous space acted upon by G.

- Cartan geometry modeled on Klein geometry G/H:
 - G and H are Lie groups.
 - $H \subset G$ is a closed subgroup of G.
 - \Rightarrow Coset space G/H is a homogeneous space acted upon by G.
- Principal *H*-bundle $\pi : P \rightarrow M$:
 - Right action $\cdot : P \times H \rightarrow P, (p, h) \mapsto p \cdot h = R_h(p)$ of H.
 - Action generated by fundamental vector fields \tilde{a} for $a \in \mathfrak{h}$.

- Cartan geometry modeled on Klein geometry G/H:
 - *G* and *H* are Lie groups.
 - $H \subset G$ is a closed subgroup of G.
 - \Rightarrow Coset space G/H is a homogeneous space acted upon by G.
- Principal *H*-bundle $\pi: P \rightarrow M$:
 - Right action $\cdot : P \times H \rightarrow P, (p, h) \mapsto p \cdot h = R_h(p)$ of H.
 - Action generated by fundamental vector fields \tilde{a} for $a \in \mathfrak{h}$.
- Cartan connection $A \in \Omega^1(P, \mathfrak{g})$ satisfying:
 - 1. For each $p \in P$, $A_p = A|_{T_pP} : T_pP \to \mathfrak{g}$ is a linear isomorphism.
 - **2**. *A* is *H*-equivariant: $(R_h)^*A = \operatorname{Ad}(h^{-1}) \circ A$ for all $h \in H$.
 - **3**. $A(\tilde{a}) = a$ for all $a \in \mathfrak{h}$.

- Cartan geometry modeled on Klein geometry G/H:
 - G and H are Lie groups.
 - $H \subset G$ is a closed subgroup of G.
 - \Rightarrow Coset space G/H is a homogeneous space acted upon by G.
- Principal *H*-bundle $\pi: P \rightarrow M$:
 - Right action $\cdot : P \times H \rightarrow P, (p, h) \mapsto p \cdot h = R_h(p)$ of H.
 - Action generated by fundamental vector fields \tilde{a} for $a \in \mathfrak{h}$.
- Cartan connection $A \in \Omega^1(P, \mathfrak{g})$ satisfying:
 - 1. For each $p \in P$, $A_p = A|_{T_pP} : T_pP \to \mathfrak{g}$ is a linear isomorphism.
 - **2**. *A* is *H*-equivariant: $(R_h)^*A = \operatorname{Ad}(h^{-1}) \circ A$ for all $h \in H$.
 - **3**. $A(\tilde{a}) = a$ for all $a \in \mathfrak{h}$.
- \Rightarrow Dimensions of Cartan and Klein geometry are related:
 - Dimension of the fibers: dim P dim M = dim H.

- Cartan geometry modeled on Klein geometry G/H:
 - *G* and *H* are Lie groups.
 - $H \subset G$ is a closed subgroup of G.
 - \Rightarrow Coset space G/H is a homogeneous space acted upon by G.
- Principal *H*-bundle $\pi: P \rightarrow M$:
 - Right action $\cdot : P \times H \rightarrow P, (p, h) \mapsto p \cdot h = R_h(p)$ of H.
 - Action generated by fundamental vector fields \tilde{a} for $a \in \mathfrak{h}$.
- Cartan connection $A \in \Omega^1(P, \mathfrak{g})$ satisfying:
 - 1. For each $p \in P$, $A_p = A|_{T_pP} : T_pP \to \mathfrak{g}$ is a linear isomorphism.
 - **2**. *A* is *H*-equivariant: $(R_h)^*A = \operatorname{Ad}(h^{-1}) \circ A$ for all $h \in H$.
 - **3**. $A(\tilde{a}) = a$ for all $a \in \mathfrak{h}$.
- \Rightarrow Dimensions of Cartan and Klein geometry are related:
 - Dimension of the fibers: dim P dim M = dim H.
 - Dimension of the total space: dim $P = \dim G$.

- Cartan geometry modeled on Klein geometry G/H:
 - G and H are Lie groups.
 - $H \subset G$ is a closed subgroup of G.
 - \Rightarrow Coset space G/H is a homogeneous space acted upon by G.
- Principal *H*-bundle $\pi: P \rightarrow M$:
 - Right action $\cdot : P \times H \rightarrow P, (p, h) \mapsto p \cdot h = R_h(p)$ of H.
 - Action generated by fundamental vector fields \tilde{a} for $a \in \mathfrak{h}$.
- Cartan connection $A \in \Omega^1(P, \mathfrak{g})$ satisfying:
 - 1. For each $p \in P$, $A_p = A|_{T_pP} : T_pP \to \mathfrak{g}$ is a linear isomorphism.
 - **2**. *A* is *H*-equivariant: $(R_h)^*A = \operatorname{Ad}(h^{-1}) \circ A$ for all $h \in H$.
 - **3**. $A(\tilde{a}) = a$ for all $a \in \mathfrak{h}$.

 \Rightarrow Dimensions of Cartan and Klein geometry are related:

- Dimension of the fibers: dim P dim M = dim H.
- Dimension of the total space: dim $P = \dim G$.
- \Rightarrow Dimension of the base manifold:

 $\dim M = \dim G - \dim H = \dim G/H.$

- Consider a hamster ball on a two-dimensional surface:
 - Two-dimensional Riemannian manifold (M, g).
 - Orthonormal frame bundle $\pi : P \to M$ is principal SO(2)-bundle.
 - Hamster position and orientation marks frame $p \in P$.

- Consider a hamster ball on a two-dimensional surface:
 - Two-dimensional Riemannian manifold (M, g).
 - Orthonormal frame bundle $\pi : P \to M$ is principal SO(2)-bundle.
 - Hamster position and orientation marks frame $p \in P$.
- Hamster's degrees of freedom $\in T_p P$:
 - Rotations around its position $x = \pi(p)$.
 - "Rolling without slippling" over *M*.

- Consider a hamster ball on a two-dimensional surface:
 - Two-dimensional Riemannian manifold (M, g).
 - Orthonormal frame bundle $\pi : P \to M$ is principal SO(2)-bundle.
 - Hamster position and orientation marks frame $p \in P$.
- Hamster's degrees of freedom ∈ T_pP ~ ball motions ∈ g = so(3):
 - Rotations around its position $x = \pi(p)$: subalgebra $\mathfrak{h} = \mathfrak{so}(2)$.
 - "Rolling without slippling" over *M*: quotient space $\mathfrak{z} = \mathfrak{so}(3)/\mathfrak{so}(2)$.

- Consider a hamster ball on a two-dimensional surface:
 - Two-dimensional Riemannian manifold (M, g).
 - Orthonormal frame bundle $\pi : P \to M$ is principal SO(2)-bundle.
 - Hamster position and orientation marks frame $p \in P$.
- Hamster's degrees of freedom $\in T_p P \sim \text{ball motions} \in \mathfrak{g} = \mathfrak{so}(3)$:
 - Rotations around its position $x = \pi(p)$: subalgebra $\mathfrak{h} = \mathfrak{so}(2)$.
 - "Rolling without slippling" over *M*: quotient space $\mathfrak{z} = \mathfrak{so}(3)/\mathfrak{so}(2)$.
- ⇒ Surface *M* "traced" by $S^2 \cong SO(3)/SO(2) = G/H$.
- \Rightarrow Geometry of *M* fully described by Hamster ball motion.

Klein geometries for spacetime and observer space

• Consider groups $G \supset H \supset K$:

"Inhomogeneous group" - symmetry group of homogeneous space:

$$G_{\Lambda} = \begin{cases} \mathrm{SO}_0(4,1) & \Lambda = 1\\ \mathrm{ISO}_0(3,1) & \Lambda = 0\\ \mathrm{SO}_0(3,2) & \Lambda = -1 \end{cases}$$

- "Homogeneous group" $H = SO_0(3, 1)$ stabilizer of a point.
- "Observer group" K = SO(3) stabilizer of a tangent vector.

Klein geometries for spacetime and observer space

• Consider groups $G \supset H \supset K$:

"Inhomogeneous group" - symmetry group of homogeneous space:

$$G_{\Lambda} = \begin{cases} \mathrm{SO}_0(4,1) & \Lambda = 1\\ \mathrm{ISO}_0(3,1) & \Lambda = 0\\ \mathrm{SO}_0(3,2) & \Lambda = -1 \end{cases}$$

- "Homogeneous group" $H = SO_0(3, 1)$ stabilizer of a point.
- "Observer group" K = SO(3) stabilizer of a tangent vector.
- Induced split of Lie algebra g via Ad:
 - Irreducible representations of $H \subset G$ on \mathfrak{g} :

- Consider Lorentzian manifold (*M*, *g*).
- Orthonormal frame bundle $\tilde{\pi} : P \to M$.

- Consider Lorentzian manifold (*M*, *g*).
- Orthonormal frame bundle $\tilde{\pi}: P \to M$.
- Split of the tangent spaces $T_p P$:

$$T_{\rho}P = V_{\rho}P + H_{\rho}P$$

- Infinitesimal Lorentz transforms $\in V_p P$.
- Infinitesimal translations $\in H_p P$.

- Consider Lorentzian manifold (*M*, *g*).
- Orthonormal frame bundle $\tilde{\pi} : P \to M$ is principal *H*-bundle.
- Split of the tangent spaces $T_p P \cong \mathfrak{g}$:

- Infinitesimal Lorentz transforms $\in V_{\rho}P \cong \mathfrak{h}$.
- Infinitesimal translations $\in H_p P \cong \mathfrak{z}$.
- Corresponding split of Poincaré algebra g:

 - Translations 3.

- Consider Lorentzian manifold (*M*, *g*).
- Orthonormal frame bundle $\tilde{\pi} : P \to M$ is principal *H*-bundle.
- Split of the tangent spaces $T_p P \cong \mathfrak{g}$:

$$T_{\rho}P = V_{\rho}P + H_{\rho}P$$

$$A_{\rho} = \omega_{\rho} + e_{\rho}$$

$$g = h + 3$$

- Infinitesimal Lorentz transforms $\in V_{\rho}P \cong \mathfrak{h}$.
- Infinitesimal translations $\in H_p P \cong \mathfrak{z}$.
- Corresponding split of Poincaré algebra g:
 - Lorentz algebra h.
 - Translations 3.
- Cartan connection $A = \omega + e \in \Omega^1(P, \mathfrak{g})$.

- Consider Lorentzian manifold (*M*, *g*).
- Orthonormal frame bundle $\tilde{\pi} : P \to M$ is principal *H*-bundle.
- Split of the tangent spaces $T_p P \cong \mathfrak{g}$:

$$\begin{array}{rcl}
 T_{p}P &=& V_{p}P &+& H_{p}P \\
 \underline{A}_{p} & & & & \\
 g &=& \mathfrak{h} &+& \mathfrak{z}
 \end{array}$$

- Infinitesimal Lorentz transforms $\in V_p P \cong \mathfrak{h}$.
- Infinitesimal translations $\in H_p P \cong \mathfrak{z}$.
- Corresponding split of Poincaré algebra g:

 - Translations 3.
- Cartan connection $A = \omega + e \in \Omega^1(P, \mathfrak{g})$.
- Fundamental vector fields $\underline{A} : \mathfrak{g} \to \Gamma(TP)$ as "inverse" of A.

- Consider Lorentzian manifold (*M*, *g*).
- Orthonormal frame bundle $\tilde{\pi} : P \to M$ is principal *H*-bundle.
- Split of the tangent spaces $T_p P \cong \mathfrak{g}$:

- Infinitesimal Lorentz transforms $\in V_{\rho}P \cong \mathfrak{h}$.
- Infinitesimal translations $\in H_p P \cong \mathfrak{z}$.
- Corresponding split of Poincaré algebra g:

 - Translations 3.
- Cartan connection $A = \omega + e \in \Omega^1(P, g)$.
- Fundamental vector fields $\underline{A} : \mathfrak{g} \to \Gamma(TP)$ as "inverse" of A.
- \Rightarrow Geometry of *M* encoded in *A* resp. <u>*A*</u>.

Cartan geometry of observer space

- Consider Lorentzian manifold (*M*, *g*).
- Future unit timelike vectors $O \subset TM$.
- Orthonormal frame bundle $\pi: P \rightarrow O$.

Cartan geometry of observer space

- Consider Lorentzian manifold (*M*, *g*).
- Future unit timelike vectors $O \subset TM$.
- Orthonormal frame bundle $\pi: P \to O$ is principal *K*-bundle.
- Split of the tangent spaces $T_p P \cong \mathfrak{g}$:

$$T_{\rho}P = R_{\rho}P + B_{\rho}P + \vec{H}_{\rho}P + H_{\rho}^{0}P$$

$$\int_{\mathfrak{g}} = \mathfrak{k} + \mathfrak{y} + \vec{\mathfrak{z}} + \mathfrak{z}^{0}$$

- Infinitesimal rotations $\in R_p P \cong \mathfrak{k}$.
- Infinitesimal Lorentz boosts $\in B_{\rho}P \cong \mathfrak{y}$.
- Infinitesimal spatial translations $\in \vec{H}_p P \cong \vec{s}$.
- Infinitesimal temporal translations $\in H^0_p P \cong \mathfrak{z}^0$.

Cartan geometry of observer space

- Consider Lorentzian manifold (*M*, *g*).
- Future unit timelike vectors $O \subset TM$.
- Orthonormal frame bundle $\pi : P \rightarrow O$ is principal *K*-bundle.
- Split of the tangent spaces $T_p P \cong \mathfrak{g}$:

$$T_{\rho}P = R_{\rho}P + B_{\rho}P + \vec{H}_{\rho}P + H_{\rho}^{0}P$$

$$A_{\rho} = \Omega_{\rho} + b_{\rho} + \vec{e}_{\rho} + \vec{e}_{\rho} + e_{\rho}^{0}$$

$$g = t + y + \vec{z} + \vec{z}^{0}$$

- Infinitesimal rotations $\in R_p P \cong \mathfrak{k}$.
- Infinitesimal Lorentz boosts $\in B_{\rho}P \cong \mathfrak{y}$.
- Infinitesimal spatial translations $\in \vec{H}_p P \cong \vec{j}$.
- Infinitesimal temporal translations $\in H^0_{\rho}P \cong \mathfrak{z}^0$.
- Cartan connection $A = \Omega + b + \vec{e} + e^0 \in \Omega^1(P, \mathfrak{g})$.
- Fundamental vector fields $\underline{A} : \mathfrak{g} \to \Gamma(TP)$ as "inverse" of A.
- \Rightarrow Geometry of *M* encoded in *A* resp. <u>*A*</u>. [S. Gielen, D. Wise '12]

Outline

1. Introduction

2. Geometries

- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry

2.4 Relation between geometries

3. Application in physics

- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity

4. Conclusion

From pseudo-Riemannian to Finsler

• Metric-induced 2-homogeneous geometry function:

$$L(x,y)=g_{ab}(x)y^ay^b.$$

- \Rightarrow Finsler function $F(x, y) = \sqrt{|L(x, y)|}$.
- \Rightarrow Finsler metric

$$g^F(x,y) = egin{cases} -g(x,y) & ext{ for } y ext{ timelike,} \ g(x,y) & ext{ for } y ext{ spacelike.} \end{cases}$$

From pseudo-Riemannian to Finsler

• Metric-induced 2-homogeneous geometry function:

$$L(x,y) = g_{ab}(x)y^ay^b$$
.

- \Rightarrow Finsler function $F(x, y) = \sqrt{|L(x, y)|}$.
- \Rightarrow Finsler metric

$$g^{F}(x,y) = egin{cases} -g(x,y) & ext{ for } y ext{ timelike,} \ g(x,y) & ext{ for } y ext{ spacelike.} \end{cases}$$

 \Rightarrow Cartan non-linear connection:

$$N^a{}_b = \Gamma^a{}_{bc}y^c$$
.

 \Rightarrow Cartan linear connection:

$$F^a{}_{bc}=\Gamma^a{}_{bc}\,,\quad C^a{}_{bc}=0\,.$$

From Finsler to Cartan

- Need to construct $A \in \Omega^1(P, \mathfrak{g})$.
- Recall that

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{z} \\ \mathcal{A} = \omega + \mathbf{e}$$

• Definition of e: Use the solder form:

$$e^i = f^{-1}{}^i_a dx^a$$
.

• Definition of *ω*: Use the *Cartan linear connection*:

$$\omega_{j}^{i} = f^{-1}_{a} \left[df_{j}^{a} + f_{j}^{b} \left(dx^{c} F^{a}_{bc} + (dx^{d} N^{c}_{d} + df_{0}^{c}) C^{a}_{bc} \right) \right]$$

.

From Finsler to Cartan

- Need to construct $A \in \Omega^1(P, \mathfrak{g})$.
- Recall that

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{z} \\ \mathcal{A} = \omega + \mathbf{e}$$

• Definition of e: Use the solder form:

$$e^i=f^{-1}{}^i_adx^a.$$

• Definition of *ω*: Use the *Cartan linear connection*:

$$\omega_{j}^{i} = f_{a}^{-1i} \left[df_{j}^{a} + f_{j}^{b} \left(dx^{c} F_{bc}^{a} + (dx^{d} N_{d}^{c} + df_{0}^{c}) C_{bc}^{a} \right) \right]$$

- Let $a = z^i \mathcal{Z}_i + \frac{1}{2} h^i{}_j \mathcal{H}_i{}^j \in \mathfrak{g}$.
- Fundamental vector fields:

$$\underline{A}(a) = z^i f^a_i \left(\partial_a - f^b_j F^c_{ab} \bar{\partial}^j_c \right) + \left(h^i_{\ i} f^a_i - h^i_{\ 0} f^b_i f^c_j C^a_{\ bc} \right) \bar{\partial}^j_a.$$

Outline

1. Introduction

2. Geometries

- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries

3. Application in physics

- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity

4. Conclusion

Outline

1. Introduction

2. Geometries

- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries

3. Application in physics

3.1 Causality

- 3.2 Observers
- 3.3 Gravity

4. Conclusion

Causal structure

Metric geometry

Geometry function:

 $L = g_{ab} y^a y^b$

 y^a timelike for L < 0.

Causal structure

Metric geometry

Geometry function:

 $L = g_{ab} y^a y^b$

 y^a timelike for L < 0.

Finsler geometry

Fundamental geometry function *L* Hessian:

$$g_{ab}^{L}(x,y) = \frac{1}{2} \bar{\partial}_{a} \bar{\partial}_{b} L(x,y)$$

Use sign of L and signature of g^{L} .

Causal structure

Metric geometry

Geometry function:

 $L = g_{ab} y^a y^b$

 y^a timelike for L < 0.

Finsler geometry

Fundamental geometry function *L* Hessian:

sign L = 1

sign L = -

$$g_{ab}^{L}(x,y) = \frac{1}{2} \bar{\partial}_{a} \bar{\partial}_{b} L(x,y)$$

Use sign of *L* and signature of g^L .

sign L = 1

Cartan geometry

Observer space:

$$O=\bigcup_{x\in M}S_x$$

O contains only future unit timelike vectors.

Causality of Finsler spacetimes

"Unit timelike condition" required for Finsler spacetimes:
 For all *x* ∈ *M* the set

$$\Omega_{x} = \left\{ y \in T_{x}M \left| \left| L(x, y) \right| = 1, \operatorname{sig} \bar{\partial}_{a} \bar{\partial}_{b} L(x, y) = (\epsilon, -\epsilon, -\epsilon, -\epsilon) \right. \right\}$$

with $\epsilon = L(x, y)/|L(x, y)|$ contains a non-empty closed connected component $S_x \subseteq \Omega_x \subset T_x M$.

Causality of Finsler spacetimes

 "Unit timelike condition" required for Finsler spacetimes: For all *x* ∈ *M* the set

$$\Omega_{x} = \left\{ y \in T_{x}M \left| \left| L(x, y) \right| = 1, \operatorname{sig} \bar{\partial}_{a} \bar{\partial}_{b} L(x, y) = (\epsilon, -\epsilon, -\epsilon, -\epsilon) \right\} \right\}$$

with $\epsilon = L(x, y)/|L(x, y)|$ contains a non-empty closed connected component $S_x \subseteq \Omega_x \subset T_x M$.

The observer frame bundle

- Observer space of a Finsler spacetime:
 - Consider all allowed observer tangent vectors:

$$O = \bigcup_{x \in M} S_x$$
.

• Tangent vectors $y \in S_x$ satisfy $g_{ab}^{F}(x, y)y^ay^b = 1$.

- Observer space of a Finsler spacetime:
 - Consider all allowed observer tangent vectors:

$$O = \bigcup_{x \in M} S_x$$
.

- Tangent vectors $y \in S_x$ satisfy $g_{ab}^F(x, y)y^ay^b = 1$.
- Construct orthonormal observer frames:
 - \Rightarrow Complete $y = f_0$ to a frame f_i with $g_{ab}^F(x, y) f_i^a f_j^b = -\eta_{ij}$.
 - Let *P* be the space of all observer frames.
 - Natural projection $\pi: P \rightarrow O$ discards spatial frame components.

- Observer space of a Finsler spacetime:
 - Consider all allowed observer tangent vectors:

$$O = \bigcup_{x \in M} S_x$$
.

- Tangent vectors $y \in S_x$ satisfy $g_{ab}^{F}(x, y)y^ay^b = 1$.
- Construct orthonormal observer frames:
 - \Rightarrow Complete $y = f_0$ to a frame f_i with $g_{ab}^F(x, y) f_i^a f_j^b = -\eta_{ij}$.
 - Let *P* be the space of all observer frames.
 - Natural projection $\pi: \mathbf{P} \rightarrow \mathbf{O}$ discards spatial frame components.
- Group action on the frame bundle:
 - SO(3) acts on spatial frame components by rotations.
 - Action is free and transitive on fibers of $\pi: P \rightarrow O$.
 - $\Rightarrow \pi : \mathbf{P} \rightarrow \mathbf{O}$ is principal *K*-bundle.

Outline

1. Introduction

2. Geometries

- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries

3. Application in physics

- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity

4. Conclusion

Observers

Metric geometry

Timelike curve γ :

$$\begin{array}{rccc} \gamma & : & \mathbb{R} & \to & \boldsymbol{M} \\ & & \tau & \mapsto & \gamma(\tau) \end{array}$$

$$g_{ab}\dot{\gamma}^{a}\dot{\gamma}^{b}=-1$$

Orthonormal frame f:

$$f^{a}_{0}=\dot{\gamma}^{a}$$
 $g_{ab}f^{a}_{i}f^{b}_{j}=\eta_{ij}$

Observers

Metric geometry

Timelike curve γ :

$$\gamma : \mathbb{R} \to M$$

 $\tau \mapsto \gamma(\tau)$

$$g_{ab}\dot{\gamma}^a\dot{\gamma}^b=-1$$

Orthonormal frame f:

$$f^{a}_{0}=\dot{\gamma}^{a}$$
 $g_{ab}f^{a}_{i}f^{b}_{j}=\eta_{ij}$

Finsler geometry

Timelike curve γ :

$$egin{array}{rcc} \gamma & : & \mathbb{R} & o & \pmb{M} \ & au & \mapsto & \gamma(au) \end{array}$$

 $\dot{\gamma}(\tau) \in S_{\gamma(\tau)} \subset TM$ Canonical lift Γ :

 $\Gamma(\tau) = (\gamma(\tau), \dot{\gamma}(\tau))$

 $\Gamma(\tau) \in O \subset TM$ Orthonormal frame *f*:

$$f^a_0=\dot{\gamma}^a$$

 $g^F_{ab}f^a_if^b_j=-\eta_{ij}$

Observers

Metric geometry

Timelike curve γ :

$$\gamma : \mathbb{R} \to M$$

 $\tau \mapsto \gamma(\tau)$

$$g_{ab}\dot{\gamma}^a\dot{\gamma}^b=-1$$

Orthonormal frame f:

$$f^{m{a}}_0=\dot{\gamma}^{m{a}}$$
 $m{g}_{m{a}m{b}}f^{m{a}}_if^{m{b}}_j=\eta_{ij}$

Finsler geometry

Timelike curve γ :

$$\gamma : \mathbb{R} \to M$$

 $au \mapsto \gamma(au)$

 $\dot{\gamma}(\tau) \in S_{\gamma(\tau)} \subset TM$ Canonical lift Γ :

 $\Gamma(\tau) = (\gamma(\tau), \dot{\gamma}(\tau))$ $\Gamma(\tau) \in O \subset TM$

Orthonormal frame f:

$$f^a_0 = \dot{\gamma}^a$$

 $g^F_{ab} f^a_i f^b_j = -\eta_{ij}$

Cartan geometry

Observer curve Γ:

 $\begin{array}{rccc}
 \Gamma & : & \mathbb{R} &
ightarrow & O \\
 & au & \mapsto & \Gamma(au)
 \end{array}$

Lift condition:

 $\tilde{\pmb{e}}^i \dot{\Gamma}(\tau) = \delta_0^i$

Orthonormal frame f:

 $f\in\pi^{-1}(\Gamma(\tau))\subset P$

Inertial observers

Metric geometry

Minimize arc length integral:

$$\int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} dt$$

Geodesic equation:

$$\ddot{\gamma}^{a} + \Gamma^{a}{}_{bc}\dot{\gamma}^{b}\dot{\gamma}^{c} = 0$$

Inertial observers

Metric geometry

Minimize arc length integral:

$$\int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} dt$$

Geodesic equation:

 $\ddot{\gamma}^{a} + \Gamma^{a}{}_{bc} \dot{\gamma}^{b} \dot{\gamma}^{c} = 0$

Finsler geometry

Minimize arc length integral:

$$\int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt$$

Geodesic equation:

$$\ddot{\gamma}^{a} + N^{a}{}_{b}\dot{\gamma}^{b} = 0$$

Geodesic spray:

$$\mathbf{S}=y^a(\partial_a-N^b{}_a\bar\partial_b)$$

Integral curves:

$$\dot{\mathsf{\Gamma}}(\tau) = \mathbf{S}(\mathsf{\Gamma}(\tau))$$
Inertial observers

Metric geometry

Minimize arc length integral:

$$\int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} dt$$

Geodesic equation:

$$\ddot{\gamma}^{a} + \Gamma^{a}{}_{bc}\dot{\gamma}^{b}\dot{\gamma}^{c} = 0$$

Cartan geometry

Geodesic condition:

$$\tilde{b}^{lpha}\dot{\Gamma}(au)=0$$

Integral curves:

$$\dot{\Gamma}(\tau) = \underline{\tilde{e}}_0(\Gamma(\tau))$$

Finsler geometry

Minimize arc length integral:

$$\int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt$$

Geodesic equation:

$$\ddot{\gamma}^{a} + N^{a}{}_{b}\dot{\gamma}^{b} = 0$$

Geodesic spray:

$$\mathbf{S}=y^a(\partial_a-N^b{}_a\bar\partial_b)$$

Integral curves:

$$\dot{\mathsf{\Gamma}}(\tau) = \mathbf{S}(\mathsf{\Gamma}(\tau))$$

Manuel Honmann (University of Tartu)

• Observer trajectories:

- Observer trajectory γ in *M*.
- $\circ~\dot{\gamma}$ must be timelike and future-directed.

• Observer trajectories:

- Observer trajectory γ in *M*.
- $\circ~\dot{\gamma}$ must be timelike and future-directed.

Inertial observers:

• Minimize arc-length functional:

$$\int_{t_1}^{t_2} \sqrt{|g_{ab}(\gamma(t))\dot{\gamma}^a(t)\dot{\gamma}^b(t)|} dt \, .$$

 \Rightarrow Geodesic equation:

$$\ddot{\gamma}^{a} + \Gamma^{a}{}_{bc}\dot{\gamma}^{b}\dot{\gamma}^{c} = \mathbf{0}\,.$$

Observers on Finsler spacetimes

- Observer trajectories and canonical lifts:
 - Observer trajectory γ in *M*.
 - Lift γ to a curve $\Gamma = (\gamma, \dot{\gamma})$ in *TM*.
 - Curves Γ in TM are canonical lifts if and only if

$$\dot{\Gamma} \ \ dx^a = y^a$$
.

• Tangent vector $\dot{\gamma}(\tau) \in S_{\gamma(\tau)}$; Γ is curve in $O \subset TM$.

Observers on Finsler spacetimes

- Observer trajectories and canonical lifts:
 - Observer trajectory γ in *M*.
 - Lift γ to a curve $\Gamma = (\gamma, \dot{\gamma})$ in *TM*.
 - o Curves Γ in TM are canonical lifts if and only if

$$\dot{\Gamma} \ \ dx^a = y^a$$
.

• Tangent vector $\dot{\gamma}(\tau) \in S_{\gamma(\tau)}$; Γ is curve in $O \subset TM$.

Inertial observers:

• Minimize arc length functional:

$$\int_{t_1}^{t_2} F(\gamma(t), \dot{\gamma}(t)) dt \, .$$

⇒ Geodesic equation:

$$\ddot{\gamma}^a + N^a{}_b \dot{\gamma}^b = 0 \,.$$

 \Rightarrow Γ is integral curve of geodesic spray:

$$\dot{\Gamma} = \mathbf{S} = y^a \delta_a$$
.

Observers on Cartan observer space

- Observer curves:
 - Consider curve Γ in *O*.
 - ⇒ Tangent vector splits into translation and boost:

$$\dot{\Gamma} = \left(\boldsymbol{e}^{i}\dot{\Gamma}
ight) \underline{\boldsymbol{e}}_{i} + \left(\boldsymbol{b}^{lpha}\dot{\Gamma}
ight) \underline{\boldsymbol{b}}_{lpha} \,.$$

Observers on Cartan observer space

- Observer curves:
 - Consider curve Γ in *O*.
 - ⇒ Tangent vector splits into translation and boost:

$$\dot{\Gamma} = \left(\boldsymbol{e}^{i}\dot{\Gamma}
ight) \underline{\boldsymbol{e}}_{i} + \left(\boldsymbol{b}^{lpha}\dot{\Gamma}
ight) \underline{\boldsymbol{b}}_{lpha}$$

- Translational component of the tangent vector:
 - Split into time and space components:

$$\left(\mathbf{e}^{i}\dot{\Gamma}\right)\underline{\mathbf{e}}_{i}=\left(\mathbf{e}^{0}\dot{\Gamma}\right)\underline{\mathbf{e}}_{0}+\left(\mathbf{e}^{\alpha}\dot{\Gamma}\right)\underline{\mathbf{e}}_{\alpha}.$$

- · Components are relative to observer's frame.
- ⇒ Physical observer: translation corresponds to time direction:

$$e^{0}\dot{\Gamma} = 1 \wedge e^{lpha}\dot{\Gamma} = 0 \Leftrightarrow e^{i}\dot{\Gamma} = \delta_{0}^{i}$$
 .

Observers on Cartan observer space

- Observer curves:
 - Consider curve Γ in O.
 - ⇒ Tangent vector splits into translation and boost:

$$\dot{\Gamma} = \left(\boldsymbol{e}^{i}\dot{\Gamma}
ight) \underline{\boldsymbol{e}}_{i} + \left(\boldsymbol{b}^{lpha}\dot{\Gamma}
ight) \underline{\boldsymbol{b}}_{lpha}$$

- Translational component of the tangent vector:
 - Split into time and space components:

$$\left(\mathbf{e}^{i}\dot{\Gamma}\right)\underline{\mathbf{e}}_{i}=\left(\mathbf{e}^{0}\dot{\Gamma}\right)\underline{\mathbf{e}}_{0}+\left(\mathbf{e}^{\alpha}\dot{\Gamma}\right)\underline{\mathbf{e}}_{\alpha}.$$

- · Components are relative to observer's frame.
- Physical observer: translation corresponds to time direction:

$$e^{0}\dot{\Gamma} = 1 \wedge e^{lpha}\dot{\Gamma} = 0 \Leftrightarrow e^{i}\dot{\Gamma} = \delta_{0}^{i}$$
 .

- Boost component of the tangent vector:
 - Measures acceleration in observer's frame.
 - Inertial observers are non-accelerating: $b^{\alpha}\dot{\Gamma} = 0$.
 - ⇒ Inertial observers follow integral curves of time translation: $\dot{\Gamma} = \underline{e}_0$.

- Generating vector field on Finsler spacetimes:
 - Geodesic spray **S** preserves Finsler function: SF = 0.
 - \Rightarrow Geodesic spray **S** is tangent to observer space *O* (level set).
 - \rightsquigarrow Define Reeb vector field $\mathbf{r} = \mathbf{S}|_{O}$.
 - Coordinate expression: $\mathbf{r} = y^a (\partial_a N^b{}_a \bar{\partial}_b)$.

- Generating vector field on Finsler spacetimes:
 - Geodesic spray **S** preserves Finsler function: SF = 0.
 - \Rightarrow Geodesic spray **S** is tangent to observer space *O* (level set).
 - \rightsquigarrow Define Reeb vector field $\mathbf{r} = \mathbf{S}|_{O}$.
 - Coordinate expression: $\mathbf{r} = y^a (\partial_a N^b{}_a \bar{\partial}_b)$.
- Generating vector field on Cartan observer space:
 - Fundamental vector field induced by time translation:

$$\underline{e}_0 = f_0^a \left(\partial_a - f_j^b F^c{}_{ab} \bar{\partial}_c^j
ight) \,.$$

- Generating vector field on Finsler spacetimes:
 - Geodesic spray **S** preserves Finsler function: SF = 0.
 - \Rightarrow Geodesic spray **S** is tangent to observer space *O* (level set).
 - \rightsquigarrow Define Reeb vector field $\mathbf{r} = \mathbf{S}|_{O}$.
 - Coordinate expression: $\mathbf{r} = y^a (\partial_a N^b{}_a \bar{\partial}_b)$.
- Generating vector field on Cartan observer space:
 - Fundamental vector field induced by time translation:

$$\underline{\boldsymbol{e}}_{0} = \boldsymbol{y}^{\boldsymbol{a}} \left(\partial_{\boldsymbol{a}} - \boldsymbol{f}_{j}^{\boldsymbol{b}} \boldsymbol{F}^{\boldsymbol{c}}{}_{\boldsymbol{a}\boldsymbol{b}} \bar{\partial}_{\boldsymbol{c}}^{\boldsymbol{j}} \right) \,.$$

• Temporal frame component is observer velocity: $f_0^a = y^a$.

- Generating vector field on Finsler spacetimes:
 - Geodesic spray **S** preserves Finsler function: SF = 0.
 - \Rightarrow Geodesic spray **S** is tangent to observer space *O* (level set).
 - \rightsquigarrow Define Reeb vector field $\mathbf{r} = \mathbf{S}|_O$.
 - Coordinate expression: $\mathbf{r} = y^a (\partial_a N^b{}_a \bar{\partial}_b)$.
- Generating vector field on Cartan observer space:
 - Fundamental vector field induced by time translation:

$$\underline{e}_0 = \left(y^a \partial_a - f^b_j N^c{}_b \bar{\partial}^j_c
ight) \, .$$

- Temporal frame component is observer velocity: $f_0^a = y^a$.
- Relation between connections coefficients: $y^a F^c{}_{ab} = N^c{}_b$.

- Generating vector field on Finsler spacetimes:
 - Geodesic spray **S** preserves Finsler function: SF = 0.
 - \Rightarrow Geodesic spray **S** is tangent to observer space *O* (level set).
 - \rightsquigarrow Define Reeb vector field $\mathbf{r} = \mathbf{S}|_O$.
 - Coordinate expression: $\mathbf{r} = y^a (\partial_a N^b{}_a \bar{\partial}_b)$.
- Generating vector field on Cartan observer space:
 - Fundamental vector field induced by time translation:

$$\underline{e}_0 = \left(y^a \partial_a - f^b_j N^c{}_b \bar{\partial}^j_c
ight) \,.$$

- Temporal frame component is observer velocity: $f_0^a = y^a$.
- Relation between connections coefficients: $y^a F^c{}_{ab} = N^c{}_b$.

 \Rightarrow Observer trajectories Γ agree in Finsler and Cartan descriptions.

- Generating vector field on Finsler spacetimes:
 - Geodesic spray **S** preserves Finsler function: SF = 0.
 - \Rightarrow Geodesic spray **S** is tangent to observer space *O* (level set).
 - \rightsquigarrow Define Reeb vector field $\mathbf{r} = \mathbf{S}|_O$.
 - Coordinate expression: $\mathbf{r} = y^a (\partial_a N^b{}_a \bar{\partial}_b)$.
- Generating vector field on Cartan observer space:
 - Fundamental vector field induced by time translation:

$$\underline{e}_0 = \left(y^a \partial_a - f^b_j N^c{}_b \bar{\partial}^j_c
ight) \,.$$

- Temporal frame component is observer velocity: $f_0^a = y^a$.
- Relation between connections coefficients: $y^a F^c{}_{ab} = N^c{}_b$.
- \Rightarrow Observer trajectories Γ agree in Finsler and Cartan descriptions.
- \Rightarrow Cartan trajectories correspond to Finslerian parallel transport.

Outline

1. Introduction

2. Geometries

- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries

3. Application in physics

- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity

4. Conclusion

Metric geometry

Einstein-Hilbert action:

 $S_{\mathsf{EH}} = rac{1}{2\kappa} \int_M d^4 x \sqrt{-g} R$

Metric geometry

Einstein-Hilbert action:

$$S_{\mathsf{EH}} = rac{1}{2\kappa} \int_M d^4 x \sqrt{-g} \, R$$

Finsler geometry

Using non-linear connection:

$$S_{\mathsf{N}} = rac{1}{\kappa} \int_{\Sigma} \mathsf{Vol}_{\tilde{G}} \, R^{a}{}_{ab} y^{b}$$

Using linear connection:

$$S_{\mathsf{L}} = rac{1}{\kappa} \int_{\Sigma} \mathsf{Vol}_{\tilde{G}} \, g^{\mathsf{F} \, ab} R^c{}_{acb}$$

Metric geometry

Einstein-Hilbert action:

$$S_{\rm EH} = rac{1}{2\kappa} \int_M d^4 x \sqrt{-g} \, R$$

Finsler geometry

Using non-linear connection:

$$S_{\mathsf{N}} = rac{1}{\kappa} \int_{\Sigma} \mathsf{Vol}_{\tilde{G}} \, R^{a}{}_{ab} y^{b}$$

Using linear connection:

$$S_{\mathsf{L}} = rac{1}{\kappa} \int_{\Sigma} \mathsf{Vol}_{\tilde{G}} g^{\mathit{F} \, \mathit{ab}} R^{\mathit{c}}{}_{\mathit{acb}}$$

Cartan geometry

Using horizontal vector fields:

$$\mathcal{S}_{\mathsf{H}} = \int_{\mathcal{O}} \tilde{\textit{b}}^{lpha}([\underline{ ilde{e}}_{lpha}, \underline{ ilde{e}}_{0}]) \, \mathsf{Vol}_{\mathcal{O}}$$

Using Cartan curvature:

$$\mathcal{S}_{\mathsf{C}} = \int_{\mathcal{O}} \kappa_{\mathfrak{h}} (ilde{\mathcal{F}}_{\mathfrak{h}} \wedge ilde{\mathcal{F}}_{\mathfrak{h}}) \wedge \mathsf{Vol}_{\mathcal{S}}$$

Metric geometry

Einstein-Hilbert action:

$$S_{\mathsf{EH}} = rac{1}{2\kappa} \int_M d^4 x \sqrt{-g} \, R$$

Finsler geometry

Using non-linear connection:

$$S_{
m N}=rac{1}{\kappa}\int_{\Sigma}{
m Vol}_{\tilde{G}}\,{R^a}_{ab}y^b$$

Using linear connection:

$$S_{\mathsf{L}} = rac{1}{\kappa} \int_{\Sigma} \mathsf{Vol}_{\tilde{G}} \, g^{\mathit{F}\, \mathit{ab}} R^{\mathit{c}}{}_{\mathit{acb}}$$

Cartan geometry

Using horizontal vector fields:

$$\mathcal{S}_{\mathsf{H}} = \int_{\mathcal{O}} ilde{\mathcal{b}}^{lpha}([ilde{ extbf{e}}_{lpha}, ilde{ extbf{e}}_{0}]) \, \mathsf{Vol}_{\mathcal{O}}$$

Using Cartan curvature:

$$\mathcal{S}_{\mathsf{C}} = \int_{\mathcal{O}} \kappa_{\mathfrak{h}} (ilde{\mathcal{F}}_{\mathfrak{h}} \wedge ilde{\mathcal{F}}_{\mathfrak{h}}) \wedge \mathsf{Vol}_{\mathcal{S}}$$

Gravity from Cartan to Finsler

MacDowell-Mansouri gravity on observer space: [S. Gielen, D. Wise '12]

$$S_{G} = \int_{O} \epsilon_{lphaeta\gamma} \operatorname{tr}_{\mathfrak{h}}(F_{\mathfrak{h}} \wedge \star F_{\mathfrak{h}}) \wedge b^{lpha} \wedge b^{eta} \wedge b^{eta}$$

- Hodge operator \star on \mathfrak{h} .
- Non-degenerate *H*-invariant inner product $tr_{\mathfrak{h}}$ on \mathfrak{h} .
- Boost part $b \in \Omega_1(P, \mathfrak{y})$ of the Cartan connection.

Gravity from Cartan to Finsler

MacDowell-Mansouri gravity on observer space: [S. Gielen, D. Wise '12]

$$S_{G}=\int_{O}\epsilon_{lphaeta\gamma}\operatorname{tr}_{\mathfrak{h}}(F_{\mathfrak{h}}\wedge\star F_{\mathfrak{h}})\wedge b^{lpha}\wedge b^{eta}\wedge b^{eta}$$

- $\circ \ \ \text{Hodge operator} \star \text{ on } \mathfrak{h}.$
- Non-degenerate *H*-invariant inner product $tr_{\mathfrak{h}}$ on \mathfrak{h} .
- Boost part $b \in \Omega_1(P, \mathfrak{y})$ of the Cartan connection.
- Translate terms into Finsler language (with R = dω + ½[ω,ω]):
 Curvature scalar:

$$[e, e] \wedge \star R \rightsquigarrow g^{Fab} R^{c}_{acb} dV.$$

Cosmological constant:

$$[e, e] \wedge \star [e, e] \rightsquigarrow dV$$
.

• Gauss-Bonnet term:

$$m{R}\wedge \star m{R} \rightsquigarrow \epsilon^{abcd} \epsilon^{efgh} m{R}_{abef} m{R}_{cdgh} \, dV$$
 .

\Rightarrow Gravity theory on Finsler spacetime.

Manuel Hohmann (University of Tartu)

Gravity from Finsler to Cartan

• Finsler gravity action: [C. Pfeifer, M. Wohlfarth '11]

$$S_G = \int_O d^4x \, d^3y \, \sqrt{-\tilde{G}} R^a{}_{ab} y^b$$
 .

- Sasaki metric \tilde{G} on O.
- Non-linear curvature R^{a}_{ab} .

• Finsler gravity action: [C. Pfeifer, M. Wohlfarth '11]

$$S_G = \int_O d^4x \, d^3y \, \sqrt{-\tilde{G}} R^a{}_{ab} y^b$$
 .

- Sasaki metric \tilde{G} on O.
- Non-linear curvature *R^a_{ab}*.
- Translate terms into Cartan language:

$$d^{4}x \, d^{3}y \, \sqrt{-\tilde{G}} = \epsilon_{ijkl} \epsilon_{\alpha\beta\gamma} \, e^{i} \wedge e^{j} \wedge e^{k} \wedge e^{l} \wedge b^{\alpha} \wedge b^{\beta} \wedge b^{\gamma} \,,$$
$$R^{a}_{ab} y^{b} = b^{\alpha} [\underline{A}(\mathcal{Z}_{\alpha}), \underline{A}(\mathcal{Z}_{0})] \,.$$

 \Rightarrow Gravity theory on observer space.

Outline

1. Introduction

2. Geometries

- 2.1 Pseudo-Riemannian geometry
- 2.2 Finsler spacetime geometry
- 2.3 Observer space Cartan geometry
- 2.4 Relation between geometries

3. Application in physics

- 3.1 Causality
- 3.2 Observers
- 3.3 Gravity

4. Conclusion

Finsler spacetimes

- Generalization of pseudo-Riemannian spacetimes.
- Geometry defined by function *L* on *TM*.
- Lengths measured by Finsler function $F = |L|^{\frac{1}{n}}$.
- Metric generalized by Finsler metric g_{ab}^{F} .

Finsler spacetimes

- Generalization of pseudo-Riemannian spacetimes.
- Geometry defined by function *L* on *TM*.
- Lengths measured by Finsler function $F = |L|^{\frac{1}{n}}$.
- Metric generalized by Finsler metric g_{ab}^{F} .

Cartan geometry on observer space

- Can be obtained from Finsler spacetimes.
- Geometry on principal SO(3)-bundle $\pi: P \rightarrow O$.
- Space *O* of physical observer four-velocities.
- Space *P* of physical observer frames.
- Geometry defined by Cartan connection $A \in \Omega^1(P, \mathfrak{g})$.

Finsler spacetimes

- Generalization of pseudo-Riemannian spacetimes.
- Geometry defined by function *L* on *TM*.
- Lengths measured by Finsler function $F = |L|^{\frac{1}{n}}$.
- Metric generalized by Finsler metric g_{ab}^{F} .
- Cartan geometry on observer space
 - Can be obtained from Finsler spacetimes.
 - Geometry on principal SO(3)-bundle $\pi: P \rightarrow O$.
 - Space *O* of physical observer four-velocities.
 - Space *P* of physical observer frames.
 - Geometry defined by Cartan connection $A \in \Omega^1(P, \mathfrak{g})$.
- Different geometries provide compatible definitions of:
 - · Causality
 - Observers
 - Observables
 - o Gravity

- Observer space not most suitable for Lagrange theory:
 - Lagrangian defined on jet bundle over configuration bundle.
 - Critical sections: solutions of Euler-Lagrange equations.
 - Euler-Lagrange equations determined from variational calculus.
 - Variational calculus assumes fixed configuration bundle.
 - \oint Finsler observer space depends on length function *L*.

- Observer space not most suitable for Lagrange theory:
 - Lagrangian defined on jet bundle over configuration bundle.
 - Critical sections: solutions of Euler-Lagrange equations.
 - Euler-Lagrange equations determined from variational calculus.
 - Variational calculus assumes fixed configuration bundle.
 - \oint Finsler observer space depends on length function *L*.
- Proper approach uses positive projective tangent bundle:
 - ∘ *PTM*⁺: equivalence classes $[v] = \{\lambda v, \lambda \in \mathbb{R}^+\}$ of tangent vectors.
 - Finsler length function: section of associated bundle over *PTM*⁺.
 - ✓ Configuration bundle independent of dynamical geometry.

- Observer space not most suitable for Lagrange theory:
 - Lagrangian defined on jet bundle over configuration bundle.
 - Critical sections: solutions of Euler-Lagrange equations.
 - Euler-Lagrange equations determined from variational calculus.
 - Variational calculus assumes fixed configuration bundle.
 - \oint Finsler observer space depends on length function *L*.
- Proper approach uses positive projective tangent bundle:
 - ∘ *PTM*⁺: equivalence classes $[v] = \{\lambda v, \lambda \in \mathbb{R}^+\}$ of tangent vectors.
 - Finsler length function: section of associated bundle over *PTM*⁺.
 - $\checkmark\,$ Configuration bundle independent of dynamical geometry.
- Work done in projective bundle approach:
 - Finsler gravity action from variational completion [MH, Pfeifer, Voicu '18]
 - Relativistic kinetic gases [MH, Pfeifer, Voicu '19]
 - Cosmological Finsler spacetimes [MH, Pfeifer, Voicu '20]
 - Finsler spacetimes as backgrounds for field theories [MH, Pfeifer, Voicu '21?]

- Observer space not most suitable for Lagrange theory:
 - Lagrangian defined on jet bundle over configuration bundle.
 - Critical sections: solutions of Euler-Lagrange equations.
 - Euler-Lagrange equations determined from variational calculus.
 - Variational calculus assumes fixed configuration bundle.
 - \oint Finsler observer space depends on length function *L*.
- Proper approach uses positive projective tangent bundle:
 - ∘ *PTM*⁺: equivalence classes $[v] = \{\lambda v, \lambda \in \mathbb{R}^+\}$ of tangent vectors.
 - Finsler length function: section of associated bundle over *PTM*⁺.
 - $\checkmark\,$ Configuration bundle independent of dynamical geometry.
- Work done in projective bundle approach:
 - Finsler gravity action from variational completion [MH, Pfeifer, Voicu '18]
 - Relativistic kinetic gases [MH, Pfeifer, Voicu '19]
 - Cosmological Finsler spacetimes [MH, Pfeifer, Voicu '20]
 - Finsler spacetimes as backgrounds for field theories [MH, Pfeifer, Voicu '21?]
- Cartan geometry version of projective bundle approach?

M. Hohmann,

"Extensions of Lorentzian spacetime geometry: From Finsler to Cartan and vice versa,"

Phys. Rev. D 87 (2013) no.12, 124034 [arXiv:1304.5430 [gr-qc]].

M. Hohmann,

"Observer dependent geometries,"

in: "Mathematical Structures of the Universe", Copernicus Center Press, Krakow, 2014 [arXiv:1403.4005 [math-ph]].

M. Hohmann,

"Spacetime and observer space symmetries in the language of Cartan geometry,"

J. Math. Phys. **57** (2016) no.8, 082502 [arXiv:1505.07809 [math-ph]].