Finsler spacetimes, observer space and Cartan geometry

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

European Union European Regional Development Fund
 in your future

Geometry seminar - Transilvania University of Brașov June 16, 2021

Outline

1. Introduction

2. Geometries

2.1 Pseudo-Riemannian geometry
2.2 Finsler spacetime geometry
2.3 Observer space Cartan geometry
2.4 Relation between geometries
3. Application in physics
3.1 Causality
3.2 Observers
3.3 Gravity

4. Conclusion

Motivation

- Pseudo-Riemannian geometry of spacetime has multiple roles:
- Causality
- Observers, observables and observations
- Gravity

Motivation

- Pseudo-Riemannian geometry of spacetime has multiple roles:
- Causality
- Observers, observables and observations
- Gravity
- Geometry has implications for physical theories:
- Local Lorentz invariance
- General covariance

Motivation

- Pseudo-Riemannian geometry of spacetime has multiple roles:
- Causality
- Observers, observables and observations
- Gravity
- Geometry has implications for physical theories:
- Local Lorentz invariance
- General covariance
- Theories of quantum gravity may break these conditions:
- Loop quantum gravity
- Spin foam networks
- Causal dynamical triangulations

Motivation

- Pseudo-Riemannian geometry of spacetime has multiple roles:
- Causality
- Observers, observables and observations
- Gravity
- Geometry has implications for physical theories:
- Local Lorentz invariance
- General covariance
- Theories of quantum gravity may break these conditions:
- Loop quantum gravity
- Spin foam networks
- Causal dynamical triangulations
\Rightarrow Possible stronger, non-tensorial dependence of physical quantities on observer's motion.

Motivation

- Pseudo-Riemannian geometry of spacetime has multiple roles:
- Causality
- Observers, observables and observations
- Gravity
- Geometry has implications for physical theories:
- Local Lorentz invariance
- General covariance
- Theories of quantum gravity may break these conditions:
- Loop quantum gravity
- Spin foam networks
- Causal dynamical triangulations
\Rightarrow Possible stronger, non-tensorial dependence of physical quantities on observer's motion.
\Rightarrow More general, non-tensorial, "observer dependent" geometries:
- Finsler spacetimes
- Cartan geometry on observer space

Motivation

- Pseudo-Riemannian geometry of spacetime has multiple roles:
- Causality
- Observers, observables and observations
- Gravity
- Geometry has implications for physical theories:
- Local Lorentz invariance
- General covariance
- Theories of quantum gravity may break these conditions:
- Loop quantum gravity
- Spin foam networks
- Causal dynamical triangulations
\Rightarrow Possible stronger, non-tensorial dependence of physical quantities on observer's motion.
\Rightarrow More general, non-tensorial, "observer dependent" geometries:
- Finsler spacetimes
- Cartan geometry on observer space
- How to serve the same roles as pseudo-Riemannian geometry?

Why Finsler geometry of spacetimes?

- Finsler geometry of space widely used in physics:
- Approaches to quantum gravity
- Electrodynamics in anisotropic media
- Modeling of astronomical data

Why Finsler geometry of spacetimes?

- Finsler geometry of space widely used in physics:
- Approaches to quantum gravity
- Electrodynamics in anisotropic media
- Modeling of astronomical data
- Finsler geometry generalizes Riemannian geometry:
- Clock postulate: proper time equals arc length along trajectories.
- Geometry described by Finsler metric.
- Well-defined notions of connections, curvature, parallel transport. ..

Why Finsler geometry of spacetimes?

- Finsler geometry of space widely used in physics:
- Approaches to quantum gravity
- Electrodynamics in anisotropic media
- Modeling of astronomical data
- Finsler geometry generalizes Riemannian geometry:
- Clock postulate: proper time equals arc length along trajectories.
- Geometry described by Finsler metric.
- Well-defined notions of connections, curvature, parallel transport. . .
- Finsler spacetimes are suitable backgrounds for:
- Gravity
- Electrodynamics
- Fluid dynamics / kinetic gases
- Other matter field theories

Why Finsler geometry of spacetimes?

- Finsler geometry of space widely used in physics:
- Approaches to quantum gravity
- Electrodynamics in anisotropic media
- Modeling of astronomical data
- Finsler geometry generalizes Riemannian geometry:
- Clock postulate: proper time equals arc length along trajectories.
- Geometry described by Finsler metric.
- Well-defined notions of connections, curvature, parallel transport. . .
- Finsler spacetimes are suitable backgrounds for:
- Gravity
- Electrodynamics
- Fluid dynamics / kinetic gases
- Other matter field theories
? Possible explanations of yet unexplained phenomena:
? Galaxy rotation curves
? Accelerating expansion of the universe

Why Cartan geometry on observer space?

- Quantum gravity suggests breaking of...
- ... local Lorentz invariance.
- ...general covariance.

Why Cartan geometry on observer space?

- Quantum gravity suggests breaking of...
- ... local Lorentz invariance.
- ...general covariance.
- Possible breaking of symmetry through...
- ... preferred observers / timelike vector fields.
- ... preferred spatial foliations of spacetime.

Why Cartan geometry on observer space?

- Quantum gravity suggests breaking of. . .
- ... local Lorentz invariance.
- ...general covariance.
- Possible breaking of symmetry through...
- ... preferred observers / timelike vector fields.
- ... preferred spatial foliations of spacetime.
- Problems:
- Breaking of Copernican principle for observers.
- No observation of (strongly) broken symmetry.

Why Cartan geometry on observer space?

- Quantum gravity suggests breaking of...
- ... local Lorentz invariance.
- ...general covariance.
- Possible breaking of symmetry through...
- . . . preferred observers / timelike vector fields.
- ... preferred spatial foliations of spacetime.
- Problems:
- Breaking of Copernican principle for observers.
- No observation of (strongly) broken symmetry.
- Solution:
- Consider space O of all allowed observers.
- Describe experiments on observer space instead of spacetime.
\Rightarrow Observer dependence of physical quantities follows naturally.
\Rightarrow No preferred observers.
- Geometry of observer space modeled by Cartan geometry.

Geometrical structures

Metric geometry

Manifold M
Lorentzian metric g
Orientation

Time orientation

Finsler geometry

Tangent bundle TM
Geometry function
$L: T M \rightarrow \mathbb{R}$
Finsler function
$F: T M \rightarrow \mathbb{R}$
Finsler metric $g^{F}(x, y)$
Cartan non-linear connection $N^{a}{ }_{b}$
Cartan linear connection ∇

Cartan geometry

Lie group
$G=\operatorname{ISO}_{0}(3,1)$
Closed subgroup
$K=\mathrm{SO}(3)$
Principal K-bundle
$\pi: P \rightarrow O$
Cartan connection
$A \in \Omega^{1}(P, \mathfrak{g})$

Geometrical structures

Metric geometry

Manifold M
Lorentzian metric g
Orientation
Time orientation

Finsler geometry

Tangent bundle TM
Geometry function
$L: T M \rightarrow \mathbb{R}$
Finsler function
$F: T M \rightarrow \mathbb{R}$
Finsler metric $g^{F}(x, y)$
Cartan non-linear connection $N^{a}{ }_{b}$
Cartan linear connection ∇

Cartan geometry

Lie group $G=\operatorname{ISO}_{0}(3,1)$
Closed subgroup $K=\mathrm{SO}(3)$
Principal K-bundle $\pi: P \rightarrow O$
Cartan connection $A \in \Omega^{1}(P, \mathfrak{g})$

From metric to Finsler
Coordinates (x^{a}) on M Coordinates (x^{a}, y^{a}) on TM Define $L(x, y)=g_{a b}(x) y^{a} y^{b}$

From Finsler to Cartan

Space O of observer 4 -velocities
Space P of observer frames
Define A from connection ∇

Outline

1. Introduction
2. Geometries
2.1 Pseudo-Riemannian geometry
2.2 Finsler spacetime geometry
2.3 Observer space Cartan geometry2.4 Relation between geometries
3. Application in physics
3.1 Causality
3.2 Observers3.3 Gravity
4. Conclusion

Outline

1. Introduction
2. Geometries
2.1 Pseudo-Riemannian geometry
2.2 Finsler spacetime geometry
2.3 Observer space Cartan geometry
2.4 Relation between geometries
3. Application in physics
3.1 Causality
3.2 Observers
3.3 Gravity
4. Conclusion

Pseudo-Riemannian spacetime geometry

- Ingredients of pseudo-Riemannian spacetime geometry:
- 4-dimensional spacetime manifold M.
- Metric $g_{a b}$ of Lorentzian signature $(-,+,+,+)$.
- Orientation and time orientation of frames.

Pseudo-Riemannian spacetime geometry

- Ingredients of pseudo-Riemannian spacetime geometry:
- 4-dimensional spacetime manifold M.
- Metric $g_{a b}$ of Lorentzian signature $(-,+,+,+)$.
- Orientation and time orientation of frames.
- Clock postulate: proper time measured by arc length.
\Rightarrow Arc length for curves $t \mapsto \gamma(t) \in M$ defined by the metric:

$$
\tau_{2}-\tau_{1}=\int_{t_{1}}^{t_{2}} \sqrt{\left|g_{a b}(\gamma(t)) \dot{\gamma}^{a}(t) \dot{\gamma}^{b}(t)\right|} d t
$$

Pseudo-Riemannian spacetime geometry

- Ingredients of pseudo-Riemannian spacetime geometry:
- 4-dimensional spacetime manifold M.
- Metric $g_{a b}$ of Lorentzian signature $(-,+,+,+)$.
- Orientation and time orientation of frames.
- Clock postulate: proper time measured by arc length.
\Rightarrow Arc length for curves $t \mapsto \gamma(t) \in M$ defined by the metric:

$$
\tau_{2}-\tau_{1}=\int_{t_{1}}^{t_{2}} \sqrt{\left|g_{a b}(\gamma(t)) \dot{\gamma}^{a}(t) \dot{\gamma}^{b}(t)\right|} d t
$$

- Observables are components of tensor fields.
- Tensor components must be expressed in suitable basis.
\Rightarrow Metric provides notion of orthonormal frames:

$$
g_{a b} f_{i}^{a} f_{j}^{b}=\eta_{i j}
$$

\Rightarrow Orthogonal frame bundle $\tilde{\pi}: P \rightarrow M$ is principal $\mathrm{SO}(1,3)$-bundle.

Outline

1. Introduction
2. Geometries
2.1 Pseudo-Riemannian geometry
2.2 Finsler spacetime geometry
2.3 Observer space Cartan geometry
2.4 Relation between geometries
3. Application in physics
3.1 Causality
3.2 Observers
3.3 Gravity
4. Conclusion

Basics of Finsler spacetimes

- Finsler geometry defined by length functional for curve γ :

$$
\tau_{2}-\tau_{1}=\int_{t_{1}}^{t_{2}} F(\gamma(t), \dot{\gamma}(t)) d t
$$

- Finsler function $F: T M \rightarrow \mathbb{R}^{+}$.
- Finsler geometries suitable for spacetimes exist. [c. Pfeifer, M. Wohliarth '11]

Basics of Finsler spacetimes

- Finsler geometry defined by length functional for curve γ :

$$
\tau_{2}-\tau_{1}=\int_{t_{1}}^{t_{2}} F(\gamma(t), \dot{\gamma}(t)) d t
$$

- Finsler function $F: T M \rightarrow \mathbb{R}^{+}$.
- Finsler geometries suitable for spacetimes exist. [c. Pfeierer, M. Wohlfarth'11]
- Introduce manifold-induced coordinates $\left(x^{a}, y^{a}\right)$ on TM:
- Coordinates x^{a} on M.
- Define coordinates y^{a} for $y^{a} \frac{\partial}{\partial x^{a}} \in T_{x} M$.
- Tangent bundle TTM spanned by $\left\{\partial_{a}=\frac{\partial}{\partial x^{a}}, \bar{\partial}_{a}=\frac{\partial}{\partial y^{a}}\right\}$.

Basics of Finsler spacetimes

- Finsler geometry defined by length functional for curve γ :

$$
\tau_{2}-\tau_{1}=\int_{t_{1}}^{t_{2}} F(\gamma(t), \dot{\gamma}(t)) d t
$$

- Finsler function $F: T M \rightarrow \mathbb{R}^{+}$.
- Finsler geometries suitable for spacetimes exist. [c. Pfeierer, M. Wohlfarth'11]
- Introduce manifold-induced coordinates $\left(x^{a}, y^{a}\right)$ on TM:
- Coordinates x^{a} on M.
- Define coordinates y^{a} for $y^{a} \frac{\partial}{\partial x^{a}} \in T_{x} M$.
- Tangent bundle TTM spanned by $\left\{\partial_{a}=\frac{\partial}{\partial x^{a}}, \bar{\partial}_{a}=\frac{\partial}{\partial y^{a}}\right\}$.
- n-homogeneous functions on TM: $f(x, \lambda y)=\lambda^{n} f(x, y)$.
- n-homogeneous smooth geometry function $L: T M \rightarrow \mathbb{R}$.
\Rightarrow 1-homogeneous Finsler function $F=|L|^{\frac{1}{n}}$.
\Rightarrow Finsler metric with Lorentz signature:

$$
g_{a b}^{F}(x, y)=\frac{1}{2} \bar{\partial}_{a} \bar{\partial}_{b} F^{2}(x, y)
$$

Connections on Finsler spacetimes

- Cartan non-linear connection:

$$
N^{a}{ }_{b}=\frac{1}{4} \bar{\partial}_{b}\left[g^{F a c}\left(y^{d} \partial_{d} \bar{\partial}_{c} F^{2}-\partial_{c} F^{2}\right)\right]
$$

\Rightarrow Berwald basis of TTM:

$$
\left\{\delta_{a}=\partial_{a}-N^{b}{ }_{a} \bar{\partial}_{b}, \bar{\partial}_{a}\right\}
$$

\Rightarrow Dual Berwald basis of $T^{*} T M$:

$$
\left\{d x^{a}, \delta y^{a}=d y^{a}+N^{a}{ }_{b} d x^{b}\right\} .
$$

\Rightarrow Splits $T T M=H T M \oplus V T M$ and $T^{*} T M=H^{*} T M \oplus V^{*} T M$.

Connections on Finsler spacetimes

- Cartan non-linear connection:

$$
N^{a}{ }_{b}=\frac{1}{4} \bar{\partial}_{b}\left[g^{F a c}\left(y^{d} \partial_{d} \bar{\partial}_{c} F^{2}-\partial_{c} F^{2}\right)\right]
$$

\Rightarrow Berwald basis of TTM:

$$
\left\{\delta_{a}=\partial_{a}-N^{b}{ }_{a} \bar{\partial}_{b}, \bar{\partial}_{a}\right\}
$$

\Rightarrow Dual Berwald basis of $T^{*} T M$:

$$
\left\{d x^{a}, \delta y^{a}=d y^{a}+N^{a}{ }_{b} d x^{b}\right\} .
$$

\Rightarrow Splits $T T M=H T M \oplus V T M$ and $T^{*} T M=H^{*} T M \oplus V^{*} T M$.

- Cartan linear connection:

$$
\begin{gathered}
\nabla_{\delta_{a}} \delta_{b}=F_{a b}^{c} \delta_{c}, \nabla_{\delta_{a}} \bar{\partial}_{b}=F^{c}{ }_{a b} \bar{\partial}_{c}, \nabla_{\bar{\partial}_{a}} \delta_{b}=C_{a b}^{c} \delta_{c}, \nabla_{\bar{\partial}_{a}} \bar{\partial}_{b}=C_{a b}^{c} \bar{\partial}_{c} \\
F_{a b}^{c}=\frac{1}{2} g^{F c d}\left(\delta_{a} g_{b d}^{F}+\delta_{b} g_{a d}^{F}-\delta_{d} g_{a b}^{F}\right) \\
C_{a b}^{c}=\frac{1}{2} g^{F c d}\left(\bar{\partial}_{a} g_{b d}^{F}+\bar{\partial}_{b} g_{a d}^{F}-\bar{\partial}_{d} g_{a b}^{F}\right)
\end{gathered}
$$

Outline

1. Introduction
2. Geometries
2.1 Pseudo-Riemannian geometry
2.2 Finsler spacetime geometry
2.3 Observer space Cartan geometry
2.4 Relation between geometries
3. Application in physics
3.1 Causality
3.2 Observers
3.3 Gravity
4. Conclusion

Introduction to Cartan geometry

- Cartan geometry modeled on Klein geometry G / H :
- G and H are Lie groups.
- $H \subset G$ is a closed subgroup of G.
\Rightarrow Coset space G / H is a homogeneous space acted upon by G.

Introduction to Cartan geometry

- Cartan geometry modeled on Klein geometry G / H :
- G and H are Lie groups.
- $H \subset G$ is a closed subgroup of G.
\Rightarrow Coset space G / H is a homogeneous space acted upon by G.
- Principal H-bundle $\pi: P \rightarrow M$:
- Right action • : P $\times H \rightarrow P,(p, h) \mapsto p \cdot h=R_{h}(p)$ of H.
- Action generated by fundamental vector fields ã for $a \in \mathfrak{h}$.

Introduction to Cartan geometry

- Cartan geometry modeled on Klein geometry G / H :
- G and H are Lie groups.
- $H \subset G$ is a closed subgroup of G.
\Rightarrow Coset space G / H is a homogeneous space acted upon by G.
- Principal H-bundle $\pi: P \rightarrow M$:
- Right action • : P $\times H \rightarrow P,(p, h) \mapsto p \cdot h=R_{h}(p)$ of H.
- Action generated by fundamental vector fields ã for $a \in \mathfrak{h}$.
- Cartan connection $A \in \Omega^{1}(P, \mathfrak{g})$ satisfying:

1. For each $p \in P, A_{p}=\left.A\right|_{T_{p} P}: T_{p} P \rightarrow \mathfrak{g}$ is a linear isomorphism.
2. A is H-equivariant: $\left(R_{h}\right)^{*} A=\operatorname{Ad}\left(h^{-1}\right) \circ A$ for all $h \in H$.
3. $A(\tilde{a})=a$ for all $a \in \mathfrak{h}$.

Introduction to Cartan geometry

- Cartan geometry modeled on Klein geometry G / H :
- G and H are Lie groups.
- $H \subset G$ is a closed subgroup of G.
\Rightarrow Coset space G / H is a homogeneous space acted upon by G.
- Principal H-bundle $\pi: P \rightarrow M$:
- Right action • : P $\times H \rightarrow P,(p, h) \mapsto p \cdot h=R_{h}(p)$ of H.
- Action generated by fundamental vector fields ã for $a \in \mathfrak{h}$.
- Cartan connection $A \in \Omega^{1}(P, \mathfrak{g})$ satisfying:

1. For each $p \in P, A_{p}=\left.A\right|_{T_{p} P}: T_{p} P \rightarrow \mathfrak{g}$ is a linear isomorphism.
2. A is H-equivariant: $\left(R_{h}\right)^{*} A=\operatorname{Ad}\left(h^{-1}\right) \circ A$ for all $h \in H$.
3. $A(\tilde{a})=a$ for all $a \in \mathfrak{h}$.
\Rightarrow Dimensions of Cartan and Klein geometry are related:

- Dimension of the fibers: $\operatorname{dim} P-\operatorname{dim} M=\operatorname{dim} H$.

Introduction to Cartan geometry

- Cartan geometry modeled on Klein geometry G / H :
- G and H are Lie groups.
- $H \subset G$ is a closed subgroup of G.
\Rightarrow Coset space G / H is a homogeneous space acted upon by G.
- Principal H-bundle $\pi: P \rightarrow M$:
- Right action • : $P \times H \rightarrow P,(p, h) \mapsto p \cdot h=R_{h}(p)$ of H.
- Action generated by fundamental vector fields ã for $a \in \mathfrak{h}$.
- Cartan connection $A \in \Omega^{1}(P, \mathfrak{g})$ satisfying:

1. For each $p \in P, A_{p}=\left.A\right|_{T_{p} P}: T_{p} P \rightarrow \mathfrak{g}$ is a linear isomorphism.
2. A is H-equivariant: $\left(R_{h}\right)^{*} A=\operatorname{Ad}\left(h^{-1}\right) \circ A$ for all $h \in H$.
3. $A(\tilde{a})=a$ for all $a \in \mathfrak{h}$.
\Rightarrow Dimensions of Cartan and Klein geometry are related:

- Dimension of the fibers: $\operatorname{dim} P-\operatorname{dim} M=\operatorname{dim} H$.
- Dimension of the total space: $\operatorname{dim} P=\operatorname{dim} G$.

Introduction to Cartan geometry

- Cartan geometry modeled on Klein geometry G / H :
- G and H are Lie groups.
- $H \subset G$ is a closed subgroup of G.
\Rightarrow Coset space G / H is a homogeneous space acted upon by G.
- Principal H-bundle $\pi: P \rightarrow M$:
- Right action • : $P \times H \rightarrow P,(p, h) \mapsto p \cdot h=R_{h}(p)$ of H.
- Action generated by fundamental vector fields ã for $a \in \mathfrak{h}$.
- Cartan connection $A \in \Omega^{1}(P, \mathfrak{g})$ satisfying:

1. For each $p \in P, A_{p}=\left.A\right|_{T_{p} P}: T_{p} P \rightarrow \mathfrak{g}$ is a linear isomorphism.
2. A is H-equivariant: $\left(R_{h}\right)^{*} A=\operatorname{Ad}\left(h^{-1}\right) \circ A$ for all $h \in H$.
3. $A(\tilde{a})=a$ for all $a \in \mathfrak{h}$.
\Rightarrow Dimensions of Cartan and Klein geometry are related:

- Dimension of the fibers: $\operatorname{dim} P-\operatorname{dim} M=\operatorname{dim} H$.
- Dimension of the total space: $\operatorname{dim} P=\operatorname{dim} G$.
\Rightarrow Dimension of the base manifold: $\operatorname{dim} M=\operatorname{dim} G-\operatorname{dim} H=\operatorname{dim} G / H$.

Toy model for Cartan geometry: The hamster ball

- Consider a hamster ball on a two-dimensional surface:
- Two-dimensional Riemannian manifold (M, g).
- Orthonormal frame bundle $\pi: P \rightarrow M$ is principal SO(2)-bundle.
- Hamster position and orientation marks frame $p \in P$.

Toy model for Cartan geometry: The hamster ball

- Consider a hamster ball on a two-dimensional surface:
- Two-dimensional Riemannian manifold (M, g).
- Orthonormal frame bundle $\pi: P \rightarrow M$ is principal SO(2)-bundle.
- Hamster position and orientation marks frame $p \in P$.
- Hamster's degrees of freedom $\in T_{p} P$:
- Rotations around its position $x=\pi(p)$.
- "Rolling without slippling" over M.

Toy model for Cartan geometry: The hamster ball

- Consider a hamster ball on a two-dimensional surface:
- Two-dimensional Riemannian manifold (M, g).
- Orthonormal frame bundle $\pi: P \rightarrow M$ is principal SO(2)-bundle.
- Hamster position and orientation marks frame $p \in P$.
- Hamster's degrees of freedom $\in T_{p} P \sim$ ball motions $\in \mathfrak{g}=\mathfrak{s o}(3)$:
- Rotations around its position $x=\pi(p)$: subalgebra $\mathfrak{h}=\mathfrak{s o}(2)$.
- "Rolling without slippling" over M: quotient space $\mathfrak{z}=\mathfrak{s o}(3) / \mathfrak{s o}(2)$.

Toy model for Cartan geometry: The hamster ball

- Consider a hamster ball on a two-dimensional surface:
- Two-dimensional Riemannian manifold (M, g).
- Orthonormal frame bundle $\pi: P \rightarrow M$ is principal SO(2)-bundle.
- Hamster position and orientation marks frame $p \in P$.
- Hamster's degrees of freedom $\in T_{p} P \sim$ ball motions $\in \mathfrak{g}=\mathfrak{s o}(3)$:
- Rotations around its position $x=\pi(p)$: subalgebra $\mathfrak{h}=\mathfrak{s o}(2)$.
- "Rolling without slippling" over M: quotient space $\mathfrak{z}=\mathfrak{s o}(3) / \mathfrak{s o}(2)$.
\Rightarrow Surface M "traced" by $S^{2} \cong \mathrm{SO}(3) / \mathrm{SO}(2)=G / H$.
\Rightarrow Geometry of M fully described by Hamster ball motion.

Klein geometries for spacetime and observer space

- Consider groups $G \supset H \supset K$:
- "Inhomogeneous group" - symmetry group of homogeneous space:

$$
G_{\Lambda}=\left\{\begin{array}{ll}
\mathrm{SO}_{0}(4,1) & \Lambda=1 \\
\mathrm{ISO}_{0}(3,1) & \Lambda=0 \\
\operatorname{SO}_{0}(3,2) & \Lambda=-1
\end{array} .\right.
$$

- "Homogeneous group" $H=\mathrm{SO}_{0}(3,1)$ - stabilizer of a point.
- "Observer group" $K=\operatorname{SO}(3)$ - stabilizer of a tangent vector.

Klein geometries for spacetime and observer space

- Consider groups $G \supset H \supset K$:
- "Inhomogeneous group" - symmetry group of homogeneous space:

$$
G_{\Lambda}=\left\{\begin{array}{ll}
\mathrm{SO}_{0}(4,1) & \Lambda=1 \\
\mathrm{ISO}_{0}(3,1) & \Lambda=0 \\
\operatorname{SO}_{0}(3,2) & \Lambda=-1
\end{array} .\right.
$$

- "Homogeneous group" $H=\mathrm{SO}_{0}(3,1)$ - stabilizer of a point.
- "Observer group" $K=S O(3)$ - stabilizer of a tangent vector.
- Induced split of Lie algebra \mathfrak{g} via Ad:
- Irreducible representations of $H \subset G$ on \mathfrak{g} :

- Irreducible representations of $K \subset G$ on \mathfrak{g} :

$$
\mathfrak{h}=\underbrace{\mathfrak{k}}_{\text {rotations }} \oplus \underbrace{\mathfrak{y}}_{\text {boosts }}, \quad \mathfrak{z}=\underbrace{\overrightarrow{\mathfrak{z}}}_{\text {spatial translations }} \oplus \underbrace{\mathfrak{z}^{0}}_{\text {temporal translations }} .
$$

Cartan geometry of spacetime

- Consider Lorentzian manifold (M, g).
- Orthonormal frame bundle $\tilde{\pi}: P \rightarrow M$.

Cartan geometry of spacetime

- Consider Lorentzian manifold (M, g).
- Orthonormal frame bundle $\tilde{\pi}: P \rightarrow M$.
- Split of the tangent spaces $T_{p} P$:

$$
T_{p} P=V_{p} P+H_{p} P
$$

- Infinitesimal Lorentz transforms $\in V_{p} P$.
- Infinitesimal translations $\in H_{p} P$.

Cartan geometry of spacetime

- Consider Lorentzian manifold (M, g).
- Orthonormal frame bundle $\tilde{\pi}: P \rightarrow M$ is principal H-bundle.
- Split of the tangent spaces $T_{p} P \cong \mathfrak{g}$:

- Infinitesimal Lorentz transforms $\in V_{p} P \cong \mathfrak{h}$.
- Infinitesimal translations $\in H_{p} P \cong \mathfrak{z}$.
- Corresponding split of Poincaré algebra \mathfrak{g} :
- Lorentz algebra \mathfrak{h}.
- Translations \mathfrak{z}.

Cartan geometry of spacetime

- Consider Lorentzian manifold (M, g).
- Orthonormal frame bundle $\tilde{\pi}: P \rightarrow M$ is principal H-bundle.
- Split of the tangent spaces $T_{p} P \cong \mathfrak{g}$:

$$
\begin{aligned}
T_{p} P & =V_{p} P+H_{p} P \\
A_{p}\lceil & =\omega_{p}\left[e_{p}+{ }_{\Downarrow}\right. \\
\Downarrow & =\mathfrak{h}+\mathfrak{z}
\end{aligned}
$$

- Infinitesimal Lorentz transforms $\in V_{p} P \cong \mathfrak{h}$.
- Infinitesimal translations $\in H_{p} P \cong \mathfrak{z}$.
- Corresponding split of Poincaré algebra \mathfrak{g} :
- Lorentz algebra \mathfrak{h}.
- Translations \mathfrak{z}.
- Cartan connection $A=\omega+e \in \Omega^{1}(P, \mathfrak{g})$.

Cartan geometry of spacetime

- Consider Lorentzian manifold (M, g).
- Orthonormal frame bundle $\tilde{\pi}: P \rightarrow M$ is principal H-bundle.
- Split of the tangent spaces $T_{p} P \cong \mathfrak{g}$:

$$
\begin{aligned}
T_{p} P & =V_{p} P+H_{p} P \\
A_{p} \uparrow & \uparrow \\
\int_{\mathfrak{g}} & =\bigcup_{\mathfrak{h}}+\jmath_{\mathfrak{z}}
\end{aligned}
$$

- Infinitesimal Lorentz transforms $\in V_{p} P \cong \mathfrak{h}$.
- Infinitesimal translations $\in H_{p} P \cong \mathfrak{z}$.
- Corresponding split of Poincaré algebra \mathfrak{g} :
- Lorentz algebra \mathfrak{h}.
- Translations \mathfrak{z}.
- Cartan connection $A=\omega+e \in \Omega^{1}(P, \mathfrak{g})$.
- Fundamental vector fields $\underline{A}: \mathfrak{g} \rightarrow \Gamma(T P)$ as "inverse" of A.

Cartan geometry of spacetime

- Consider Lorentzian manifold (M, g).
- Orthonormal frame bundle $\tilde{\pi}: P \rightarrow M$ is principal H-bundle.
- Split of the tangent spaces $T_{p} P \cong \mathfrak{g}$:

$$
\begin{aligned}
& T_{p} P=V_{p} P+H_{p} P \\
&{A_{p}}^{\uparrow}{\underset{\mathfrak{g}}{ }}=\jmath_{\mathfrak{h}}+\jmath_{\mathfrak{z}}
\end{aligned}
$$

- Infinitesimal Lorentz transforms $\in V_{p} P \cong \mathfrak{h}$.
- Infinitesimal translations $\in H_{p} P \cong \mathfrak{z}$.
- Corresponding split of Poincaré algebra \mathfrak{g} :
- Lorentz algebra \mathfrak{h}.
- Translations \mathfrak{z}.
- Cartan connection $A=\omega+e \in \Omega^{1}(P, \mathfrak{g})$.
- Fundamental vector fields $\underline{A}: \mathfrak{g} \rightarrow \Gamma(T P)$ as "inverse" of A.
\Rightarrow Geometry of M encoded in A resp. \underline{A}.

Cartan geometry of observer space

- Consider Lorentzian manifold (M, g).
- Future unit timelike vectors $O \subset T M$.
- Orthonormal frame bundle $\pi: P \rightarrow O$.

Cartan geometry of observer space

- Consider Lorentzian manifold (M, g).
- Future unit timelike vectors $O \subset T M$.
- Orthonormal frame bundle $\pi: P \rightarrow O$ is principal K-bundle.
- Split of the tangent spaces $T_{p} P \cong \mathfrak{g}$:

- Infinitesimal rotations $\in R_{p} P \cong \mathfrak{k}$.
- Infinitesimal Lorentz boosts $\in B_{p} P \cong \mathfrak{y}$.
- Infinitesimal spatial translations $\in \vec{H}_{p} P \cong \overrightarrow{3}$.
- Infinitesimal temporal translations $\in H_{p}^{0} P \cong \mathfrak{z}^{0}$.

Cartan geometry of observer space

- Consider Lorentzian manifold (M, g).
- Future unit timelike vectors $O \subset T M$.
- Orthonormal frame bundle $\pi: P \rightarrow O$ is principal K-bundle.
- Split of the tangent spaces $T_{p} P \cong \mathfrak{g}$:

- Infinitesimal rotations $\in R_{p} P \cong \mathfrak{k}$.
- Infinitesimal Lorentz boosts $\in B_{p} P \cong \mathfrak{y}$.
- Infinitesimal spatial translations $\in \vec{H}_{p} P \cong \overrightarrow{\mathfrak{z}}$.
- Infinitesimal temporal translations $\in H_{p}^{0} P \cong \mathfrak{z}^{0}$.
- Cartan connection $A=\Omega+b+\vec{e}+e^{0} \in \Omega^{1}(P, \mathfrak{g})$.
- Fundamental vector fields $\underline{A}: \mathfrak{g} \rightarrow \Gamma(T P)$ as "inverse" of A.
\Rightarrow Geometry of M encoded in A resp. \underline{A}. [s. Gielen, D. Wise '12]

Outline

1. Introduction
2. Geometries
2.1 Pseudo-Riemannian geometry
2.2 Finsler spacetime geometry
2.3 Observer space Cartan geometry
2.4 Relation between geometries
3. Application in physics
3.1 Causality
3.2 Observers
3.3 Gravity
4. Conclusion

From pseudo-Riemannian to Finsler

- Metric-induced 2-homogeneous geometry function:

$$
L(x, y)=g_{a b}(x) y^{a} y^{b}
$$

\Rightarrow Finsler function $F(x, y)=\sqrt{|L(x, y)|}$.
\Rightarrow Finsler metric

$$
g^{F}(x, y)= \begin{cases}-g(x, y) & \text { for } y \text { timelike } \\ g(x, y) & \text { for } y \text { spacelike }\end{cases}
$$

From pseudo-Riemannian to Finsler

- Metric-induced 2-homogeneous geometry function:

$$
L(x, y)=g_{a b}(x) y^{a} y^{b}
$$

\Rightarrow Finsler function $F(x, y)=\sqrt{|L(x, y)|}$.
\Rightarrow Finsler metric

$$
g^{F}(x, y)= \begin{cases}-g(x, y) & \text { for } y \text { timelike } \\ g(x, y) & \text { for } y \text { spacelike }\end{cases}
$$

\Rightarrow Cartan non-linear connection:

$$
N^{a}{ }_{b}=\Gamma^{a}{ }_{b c} y^{c} .
$$

\Rightarrow Cartan linear connection:

$$
F^{a}{ }_{b c}=\Gamma^{a}{ }_{b c}, \quad C^{a}{ }_{b c}=0
$$

From Finsler to Cartan

- Need to construct $A \in \Omega^{1}(P, \mathfrak{g})$.
- Recall that

$$
\begin{aligned}
& \mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z} \\
& \boldsymbol{A}=\omega+e
\end{aligned}
$$

- Definition of e : Use the solder form:

$$
e^{i}=f^{-1 i}{ }_{a} d x^{a}
$$

- Definition of ω : Use the Cartan linear connection:

$$
\omega_{j}^{i}=f_{a}^{-1 i}\left[d f_{j}^{a}+f_{j}^{b}\left(d x^{c} F_{b c}^{a}+\left(d x^{d} N_{d}^{c}+d f_{0}^{c}\right) C_{b c}^{a}\right)\right] .
$$

From Finsler to Cartan

- Need to construct $A \in \Omega^{1}(P, \mathfrak{g})$.
- Recall that

$$
\begin{aligned}
& \mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z} \\
& \boldsymbol{A}=\omega+e
\end{aligned}
$$

- Definition of e : Use the solder form:

$$
e^{i}=f^{-1 i}{ }_{a} d x^{a}
$$

- Definition of ω : Use the Cartan linear connection:

$$
\omega_{j}^{i}=f_{a}^{-1 i}\left[d f_{j}^{a}+f_{j}^{b}\left(d x^{c} F_{b c}^{a}+\left(d x^{d} N_{d}^{c}+d f_{0}^{c}\right) C_{b c}^{a}\right)\right]
$$

- Let $a=z^{i} \mathcal{Z}_{i}+\frac{1}{2} h^{i}{ }_{j} \mathcal{H}_{i}{ }^{j} \in \mathfrak{g}$.
- Fundamental vector fields:

$$
\underline{A}(a)=z^{i} f_{i}^{a}\left(\partial_{a}-f_{j}^{b} F_{a b}^{c} \bar{\partial}_{c}^{j}\right)+\left(h_{j}^{i} f_{i}^{a}-h_{0}^{i} f_{i}^{b} f_{j}^{c} C_{b c}^{a}\right) \bar{\partial}_{a}^{j}
$$

Outline

1. Introduction
 2. Geometries
 2.1 Pseudo-Riemannian geometry
 2.2 Finsler spacetime geometry
 2.3 Observer space Cartan geometry
 2.4 Relation between geometries

3. Application in physics
3.1 Causality
3.2 Observers
3.3 Gravity

4. Conclusion

Outline

1. Introduction
2. Geometries
2.1 Pseudo-Riemannian geometry
2.2 Finsler spacetime geometry
2.3 Observer space Cartan geometry
2.4 Relation between geometries
3. Application in physics
3.1 Causality
3.2 Observers
3.3 Gravity
4. Conclusion

Causal structure

Metric geometry

Geometry function:

$$
L=g_{a b} y^{a} y^{b}
$$

y^{a} timelike for $L<0$.

Causal structure

Metric geometry

Geometry function:

$$
L=g_{a b} y^{a} y^{b}
$$

y^{a} timelike for $L<0$.

Finsler geometry

Fundamental geometty function L Hessian:

$$
g_{a b}^{L}(x, y)=\frac{1}{2} \bar{\partial}_{a} \bar{\partial}_{b} L(x, y)
$$

Use sign of L and signature of g^{L}.

Causal structure

Metric geometry

Geometry function:

$$
L=g_{a b} y^{a} y^{b}
$$

y^{a} timelike for $L<0$.

Cartan geometry

Observer space:

$$
O=\bigcup_{x \in M} S_{x}
$$

O contains only future unit timelike vectors.

Finsler geometry

Fundamental geometly function L Hessian:

$$
g_{a b}^{L}(x, y)=\frac{1}{2} \bar{\partial}_{a} \bar{\partial}_{b} L(x, y)
$$

Use sign of L and signature of g^{L}.

Causality of Finsler spacetimes

- "Unit timelike condition" required for Finsler spacetimes: For all $x \in M$ the set

$$
\Omega_{x}=\left\{y \in T_{x} M| | L(x, y) \mid=1, \operatorname{sig} \bar{\partial}_{a} \bar{\partial}_{b} L(x, y)=(\epsilon,-\epsilon,-\epsilon,-\epsilon)\right\}
$$

with $\epsilon=L(x, y) /|L(x, y)|$ contains a non-empty closed connected component $S_{x} \subseteq \Omega_{x} \subset T_{x} M$.

Causality of Finsler spacetimes

- "Unit timelike condition" required for Finsler spacetimes:

For all $x \in M$ the set

$$
\Omega_{x}=\left\{y \in T_{x} M| | L(x, y) \mid=1, \operatorname{sig} \bar{\partial}_{a} \bar{\partial}_{b} L(x, y)=(\epsilon,-\epsilon,-\epsilon,-\epsilon)\right\}
$$

with $\epsilon=L(x, y) /|L(x, y)|$ contains a non-empty closed connected component $S_{x} \subseteq \Omega_{x} \subset T_{x} M$.
$\Rightarrow S_{x}$ contains physical observers.
$\Rightarrow \mathbb{R}^{+} S_{x}$ is convex cone.

The observer frame bundle

- Observer space of a Finsler spacetime:
- Consider all allowed observer tangent vectors:

$$
O=\bigcup_{x \in M} S_{x}
$$

- Tangent vectors $y \in S_{x}$ satisfy $g_{a b}^{F}(x, y) y^{a} y^{b}=1$.

The observer frame bundle

- Observer space of a Finsler spacetime:
- Consider all allowed observer tangent vectors:

$$
O=\bigcup_{x \in M} S_{x}
$$

- Tangent vectors $y \in S_{x}$ satisfy $g_{a b}^{F}(x, y) y^{a} y^{b}=1$.
- Construct orthonormal observer frames:
\Rightarrow Complete $y=f_{0}$ to a frame f_{i} with $g_{a b}^{F}(x, y) f_{i}^{a} f_{j}^{b}=-\eta_{i j}$.
- Let P be the space of all observer frames.
- Natural projection $\pi: P \rightarrow O$ discards spatial frame components.

The observer frame bundle

- Observer space of a Finsler spacetime:
- Consider all allowed observer tangent vectors:

$$
O=\bigcup_{x \in M} S_{x}
$$

- Tangent vectors $y \in S_{x}$ satisfy $g_{a b}^{F}(x, y) y^{a} y^{b}=1$.
- Construct orthonormal observer frames:
\Rightarrow Complete $y=f_{0}$ to a frame f_{i} with $g_{a b}^{F}(x, y) f_{i}^{a} f_{j}^{b}=-\eta_{i j}$.
- Let P be the space of all observer frames.
- Natural projection $\pi: P \rightarrow O$ discards spatial frame components.
- Group action on the frame bundle:
- SO(3) acts on spatial frame components by rotations.
- Action is free and transitive on fibers of $\pi: P \rightarrow O$.
$\Rightarrow \pi: P \rightarrow O$ is principal K-bundle.

Outline

1. Introduction
2. Geometries
2.1 Pseudo-Riemannian geometry
2.2 Finsler spacetime geometry
2.3 Observer space Cartan geometry
2.4 Relation between geometries
3. Application in physics
3.1 Causality
3.2 Observers
3.3 Gravity
4. Conclusion

Observers

Metric geometry

Timelike curve γ :

$$
\begin{array}{rllc}
\gamma: & \mathbb{R} & \rightarrow & M \\
\tau & \mapsto & \gamma(\tau)
\end{array}
$$

$$
g_{a b} \dot{\gamma}^{a} \dot{\gamma}^{b}=-1
$$

Orthonormal frame f :

$$
\begin{gathered}
f_{0}^{a}=\dot{\gamma}^{a} \\
g_{a b} f_{i}^{a} f_{j}^{b}=\eta_{i j}
\end{gathered}
$$

Observers

Metric geometry

Timelike curve γ :

$$
\begin{array}{rllc}
\gamma: & \mathbb{R} & \rightarrow & M \\
\tau & \mapsto & \gamma(\tau)
\end{array}
$$

$$
g_{a b} \dot{\gamma}^{a} \dot{\gamma}^{b}=-1
$$

Orthonormal frame f :

$$
\begin{gathered}
f_{0}^{a}=\dot{\gamma}^{a} \\
g_{a b} f_{i}^{a} f_{j}^{b}=\eta_{i j}
\end{gathered}
$$

Finsler geometry

Timelike curve γ :

$$
\begin{array}{rllc}
\gamma: & \mathbb{R} & \rightarrow & M \\
\tau & \mapsto & \gamma(\tau)
\end{array}
$$

$$
\dot{\gamma}(\tau) \in S_{\gamma(\tau)} \subset T M
$$

Canonical lift Γ :

$$
\begin{gathered}
\Gamma(\tau)=(\gamma(\tau), \dot{\gamma}(\tau)) \\
\Gamma(\tau) \in O \subset T M
\end{gathered}
$$

Orthonormal frame f :

$$
\begin{gathered}
f_{0}^{a}=\dot{\gamma}^{a} \\
g_{a b}^{F} f_{i}^{a} f_{j}^{b}=-\eta_{i j}
\end{gathered}
$$

Observers

Metric geometry

Timelike curve γ :

$$
\begin{array}{rllc}
\gamma: & \mathbb{R} & \rightarrow & M \\
& \tau & \mapsto & \gamma(\tau)
\end{array}
$$

$$
g_{a b} \dot{\gamma}^{a} \dot{\gamma}^{b}=-1
$$

Orthonormal frame f :

$$
\begin{gathered}
f_{0}^{a}=\dot{\gamma}^{a} \\
g_{a b} f_{i}^{a} f_{j}^{b}=\eta_{i j}
\end{gathered}
$$

Finsler geometry

Timelike curve γ :

$$
\begin{array}{rllc}
\gamma: & \mathbb{R} & \rightarrow & M \\
& \tau & \mapsto & \gamma(\tau)
\end{array}
$$

$$
\dot{\gamma}(\tau) \in S_{\gamma(\tau)} \subset T M
$$

Canonical lift Γ :

$$
\begin{gathered}
\Gamma(\tau)=(\gamma(\tau), \dot{\gamma}(\tau)) \\
\Gamma(\tau) \in O \subset T M
\end{gathered}
$$

Orthonormal frame f :

$$
\begin{gathered}
f_{0}^{a}=\dot{\gamma}^{a} \\
g_{a b}^{F} f_{i}^{a} f_{j}^{b}=-\eta_{i j}
\end{gathered}
$$

Cartan geometry

Observer curve Γ :

$$
\begin{array}{rllc}
\Gamma: & \mathbb{R} & \rightarrow & O \\
\tau & \mapsto & \Gamma(\tau)
\end{array}
$$

Lift condition:

$$
\tilde{e}^{i} \dot{\Gamma}(\tau)=\delta_{0}^{i}
$$

Orthonormal frame f :

$$
f \in \pi^{-1}(\Gamma(\tau)) \subset P
$$

Inertial observers

Metric geometry

Minimize arc length integral:

$$
\int_{t_{1}}^{t_{2}} \sqrt{\left|g_{a b}(\gamma(t)) \dot{\gamma}^{a}(t) \dot{\gamma}^{b}(t)\right|} d t
$$

Geodesic equation:

$$
\ddot{\gamma}^{a}+\Gamma^{a}{ }_{b c} \dot{\gamma}^{b} \dot{\gamma}^{c}=0
$$

Inertial observers

Metric geometry

Minimize arc length integral:

$$
\int_{t_{1}}^{t_{2}} \sqrt{\left|g_{a b}(\gamma(t)) \dot{\gamma}^{a}(t) \dot{\gamma}^{b}(t)\right|} d t
$$

Geodesic equation:

$$
\ddot{\gamma}^{a}+\Gamma^{a}{ }_{b c} \dot{\gamma}^{b} \dot{\gamma}^{c}=0
$$

Finsler geometry

Minimize arc length integral:

$$
\int_{t_{1}}^{t_{2}} F(\gamma(t), \dot{\gamma}(t)) d t
$$

Geodesic equation:

$$
\ddot{\gamma}^{a}+N^{a}{ }_{b} \dot{\gamma}^{b}=0
$$

Geodesic spray:

$$
\mathbf{S}=y^{a}\left(\partial_{a}-N_{a}^{b}{ }_{a} \bar{\partial}_{b}\right)
$$

Integral curves:

$$
\dot{\Gamma}(\tau)=\mathbf{S}(\Gamma(\tau))
$$

Inertial observers

Metric geometry

Minimize arc length integral:

$$
\int_{t_{1}}^{t_{2}} \sqrt{\left|g_{a b}(\gamma(t)) \dot{\gamma}^{a}(t) \dot{\gamma}^{b}(t)\right|} d t
$$

Geodesic equation:

$$
\ddot{\gamma}^{a}+\Gamma^{a}{ }_{b c} \dot{\gamma}^{b} \dot{\gamma}^{c}=0
$$

Cartan geometry

Geodesic condition:

$$
\tilde{b}^{\alpha} \dot{\Gamma}(\tau)=0
$$

Integral curves:

$$
\dot{\Gamma}(\tau)=\tilde{\underline{e}}_{0}(\Gamma(\tau))
$$

Finsler geometry

Minimize arc length integral:

$$
\int_{t_{1}}^{t_{2}} F(\gamma(t), \dot{\gamma}(t)) d t
$$

Geodesic equation:

$$
\ddot{\gamma}^{a}+N^{a}{ }_{b} \dot{\gamma}^{b}=0
$$

Geodesic spray:

$$
\mathbf{S}=y^{a}\left(\partial_{a}-N_{a}^{b}{ }_{a} \bar{\partial}_{b}\right)
$$

Integral curves:

$$
\dot{\Gamma}(\tau)=\mathbf{S}(\Gamma(\tau))
$$

Observers on metric spacetimes

- Observer trajectories:
- Observer trajectory γ in M.
- $\dot{\gamma}$ must be timelike and future-directed.

Observers on metric spacetimes

- Observer trajectories:
- Observer trajectory γ in M.
- $\dot{\gamma}$ must be timelike and future-directed.
- Inertial observers:
- Minimize arc-length functional:

$$
\int_{t_{1}}^{t_{2}} \sqrt{\left|g_{a b}(\gamma(t)) \dot{\gamma}^{a}(t) \dot{\gamma}^{b}(t)\right|} d t
$$

\Rightarrow Geodesic equation:

$$
\ddot{\gamma}^{a}+\Gamma^{a}{ }_{b c} \dot{\gamma}^{b} \dot{\gamma}^{c}=0 .
$$

Observers on Finsler spacetimes

- Observer trajectories and canonical lifts:
- Observer trajectory γ in M.
- Lift γ to a curve $\Gamma=(\gamma, \dot{\gamma})$ in $T M$.
- Curves Γ in TM are canonical lifts if and only if

$$
\dot{\Gamma}\lrcorner d x^{a}=y^{a}
$$

- Tangent vector $\dot{\gamma}(\tau) \in S_{\gamma(\tau)} ; \Gamma$ is curve in $O \subset T M$.

Observers on Finsler spacetimes

- Observer trajectories and canonical lifts:
- Observer trajectory γ in M.
- Lift γ to a curve $\Gamma=(\gamma, \dot{\gamma})$ in TM.
- Curves Γ in $T M$ are canonical lifts if and only if

$$
\dot{\Gamma}\lrcorner d x^{a}=y^{a} .
$$

- Tangent vector $\dot{\gamma}(\tau) \in S_{\gamma(\tau)} ; \Gamma$ is curve in $O \subset T M$.
- Inertial observers:
- Minimize arc length functional:

$$
\int_{t_{1}}^{t_{2}} F(\gamma(t), \dot{\gamma}(t)) d t
$$

\Rightarrow Geodesic equation:

$$
\ddot{\gamma}^{a}+N^{a}{ }_{b} \dot{\gamma}^{b}=0 .
$$

\Rightarrow 「 is integral curve of geodesic spray:

$$
\dot{\Gamma}=\mathbf{S}=y^{\mathrm{a}} \delta_{a} .
$$

Observers on Cartan observer space

- Observer curves:
- Consider curve 「 in O.
\Rightarrow Tangent vector splits into translation and boost:

$$
\dot{\Gamma}=\left(e^{i} \dot{\Gamma}\right) \underline{e}_{i}+\left(b^{\alpha} \dot{\Gamma}\right) \underline{b}_{\alpha}
$$

Observers on Cartan observer space

- Observer curves:
- Consider curve 「 in O.
\Rightarrow Tangent vector splits into translation and boost:

$$
\dot{\Gamma}=\left(e^{i} \dot{\Gamma}\right) \underline{e}_{i}+\left(b^{\alpha} \dot{\Gamma}\right) \underline{b}_{\alpha} .
$$

- Translational component of the tangent vector:
- Split into time and space components:

$$
\left(e^{i} \dot{\Gamma}\right) \underline{e}_{i}=\left(e^{0} \dot{\Gamma}\right) \underline{e}_{0}+\left(e^{\alpha} \dot{\Gamma}\right) \underline{e}_{\alpha}
$$

- Components are relative to observer's frame.
\Rightarrow Physical observer: translation corresponds to time direction:

$$
e^{0} \dot{\Gamma}=1 \wedge e^{\alpha} \dot{\Gamma}=0 \Leftrightarrow e^{i} \dot{\Gamma}=\delta_{0}^{i}
$$

Observers on Cartan observer space

- Observer curves:
- Consider curve 「 in O.
\Rightarrow Tangent vector splits into translation and boost:

$$
\dot{\Gamma}=\left(e^{i} \dot{\Gamma}\right) \underline{e}_{i}+\left(b^{\alpha} \dot{\Gamma}\right) \underline{b}_{\alpha}
$$

- Translational component of the tangent vector:
- Split into time and space components:

$$
\left(e^{i} \dot{\Gamma}\right) \underline{e}_{i}=\left(e^{0} \dot{\Gamma}\right) \underline{e}_{0}+\left(e^{\alpha} \dot{\Gamma}\right) \underline{e}_{\alpha}
$$

- Components are relative to observer's frame.
\Rightarrow Physical observer: translation corresponds to time direction:

$$
e^{0} \dot{\Gamma}=1 \wedge e^{\alpha} \dot{\Gamma}=0 \Leftrightarrow e^{i} \dot{\Gamma}=\delta_{0}^{i}
$$

- Boost component of the tangent vector:
- Measures acceleration in observer's frame.
- Inertial observers are non-accelerating: $b^{\alpha} \dot{\Gamma}=0$.
\Rightarrow Inertial observers follow integral curves of time translation: $\dot{\Gamma}=\underline{e}_{0}$.

Observers from Finsler to Cartan

- Generating vector field on Finsler spacetimes:
- Geodesic spray S preserves Finsler function: $\mathbf{S} F=0$.
\Rightarrow Geodesic spray \mathbf{S} is tangent to observer space O (level set).
\rightsquigarrow Define Reeb vector field $\mathbf{r}=\left.\mathbf{S}\right|_{o}$.
- Coordinate expression: $\mathbf{r}=y^{a}\left(\partial_{a}-N^{b}{ }_{a} \bar{\partial}_{b}\right)$.

Observers from Finsler to Cartan

- Generating vector field on Finsler spacetimes:
- Geodesic spray S preserves Finsler function: $\mathbf{S} F=0$.
\Rightarrow Geodesic spray \mathbf{S} is tangent to observer space O (level set).
\rightsquigarrow Define Reeb vector field $\mathbf{r}=\left.\mathbf{S}\right|_{o}$.
- Coordinate expression: $\mathbf{r}=y^{a}\left(\partial_{a}-N^{b}{ }_{a} \bar{\partial}_{b}\right)$.
- Generating vector field on Cartan observer space:
- Fundamental vector field induced by time translation:

$$
\underline{e}_{0}=f_{0}^{a}\left(\partial_{a}-f_{j}^{b} F_{a b}^{c} \bar{\partial}_{c}^{j}\right) .
$$

Observers from Finsler to Cartan

- Generating vector field on Finsler spacetimes:
- Geodesic spray S preserves Finsler function: $\mathbf{S} F=0$.
\Rightarrow Geodesic spray \mathbf{S} is tangent to observer space O (level set).
\rightsquigarrow Define Reeb vector field $\mathbf{r}=\left.\mathbf{S}\right|_{o}$.
- Coordinate expression: $\mathbf{r}=y^{a}\left(\partial_{a}-N^{b}{ }_{a} \bar{\partial}_{b}\right)$.
- Generating vector field on Cartan observer space:
- Fundamental vector field induced by time translation:

$$
\underline{e}_{0}=y^{a}\left(\partial_{a}-f_{j}^{b} F_{a b}^{c} \bar{\partial}_{c}\right) .
$$

- Temporal frame component is observer velocity: $f_{0}^{a}=y^{a}$.

Observers from Finsler to Cartan

- Generating vector field on Finsler spacetimes:
- Geodesic spray S preserves Finsler function: $\mathbf{S F}=0$.
\Rightarrow Geodesic spray \mathbf{S} is tangent to observer space O (level set).
\rightsquigarrow Define Reeb vector field $\mathbf{r}=\left.\mathbf{S}\right|_{o}$.
- Coordinate expression: $\mathbf{r}=y^{a}\left(\partial_{a}-N^{b}{ }_{a} \bar{\partial}_{b}\right)$.
- Generating vector field on Cartan observer space:
- Fundamental vector field induced by time translation:

$$
\underline{e}_{0}=\left(y^{a} \partial_{a}-f_{j}^{b} N^{c}{ }_{b} \bar{\partial}_{c}^{j}\right) .
$$

- Temporal frame component is observer velocity: $f_{0}^{a}=y^{a}$.
- Relation between connections coefficients: $y^{a} F^{c}{ }_{a b}=N^{c}{ }_{b}$.

Observers from Finsler to Cartan

- Generating vector field on Finsler spacetimes:
- Geodesic spray S preserves Finsler function: $\mathbf{S} F=0$.
\Rightarrow Geodesic spray \mathbf{S} is tangent to observer space O (level set).
\rightsquigarrow Define Reeb vector field $\mathbf{r}=\left.\mathbf{S}\right|_{o}$.
- Coordinate expression: $\mathbf{r}=y^{a}\left(\partial_{a}-N^{b}{ }_{a} \bar{\partial}_{b}\right)$.
- Generating vector field on Cartan observer space:
- Fundamental vector field induced by time translation:

$$
\underline{e}_{0}=\left(y^{a} \partial_{a}-f_{j}^{b} N^{c}{ }_{b} \bar{\partial}_{c}^{j}\right) .
$$

- Temporal frame component is observer velocity: $f_{0}^{a}=y^{a}$.
- Relation between connections coefficients: $y^{a} F^{c}{ }_{a b}=N^{c}{ }_{b}$.
\Rightarrow Observer trajectories Γ agree in Finsler and Cartan descriptions.

Observers from Finsler to Cartan

- Generating vector field on Finsler spacetimes:
- Geodesic spray S preserves Finsler function: $\mathbf{S} F=0$.
\Rightarrow Geodesic spray \mathbf{S} is tangent to observer space O (level set).
\rightsquigarrow Define Reeb vector field $\mathbf{r}=\left.\mathbf{S}\right|_{o}$.
- Coordinate expression: $\mathbf{r}=y^{a}\left(\partial_{a}-N^{b}{ }_{a} \bar{\partial}_{b}\right)$.
- Generating vector field on Cartan observer space:
- Fundamental vector field induced by time translation:

$$
\underline{e}_{0}=\left(y^{a} \partial_{a}-f_{j}^{b} N^{c}{ }_{b} \bar{\partial}_{c}^{j}\right) .
$$

- Temporal frame component is observer velocity: $f_{0}^{a}=y^{a}$.
- Relation between connections coefficients: $y^{a} F^{c}{ }_{a b}=N^{c}{ }_{b}$.
\Rightarrow Observer trajectories 「 agree in Finsler and Cartan descriptions.
\Rightarrow Cartan trajectories correspond to Finslerian parallel transport.

Outline

1. Introduction
2. Geometries
2.1 Pseudo-Riemannian geometry
2.2 Finsler spacetime geometry
2.3 Observer space Cartan geometry
2.4 Relation between geometries
3. Application in physics
3.1 Causality
3.2 Observers
3.3 Gravity
4. Conclusion

Gravity

Metric geometry

Einstein-Hilbert action:

$$
S_{\mathrm{EH}}=\frac{1}{2 \kappa} \int_{M} d^{4} x \sqrt{-g} R
$$

Gravity

Metric geometry

Einstein-Hilbert action:

$$
S_{\mathrm{EH}}=\frac{1}{2 \kappa} \int_{M} d^{4} x \sqrt{-g} R
$$

Finsler geometry

Using non-linear connection:

$$
S_{N}=\frac{1}{\kappa} \int_{\Sigma} \operatorname{Vol}_{\tilde{G}} R_{a b}^{a} y^{b}
$$

Using linear connection:

$$
S_{\mathrm{L}}=\frac{1}{\kappa} \int_{\Sigma} \operatorname{Vol}_{\tilde{G}} g^{F a b} R_{a c b}^{c}
$$

Gravity

Metric geometry

Einstein-Hilbert action:

$$
S_{\mathrm{EH}}=\frac{1}{2 \kappa} \int_{M} d^{4} x \sqrt{-g} R
$$

Finsler geometry

Using non-linear connection:

$$
S_{N}=\frac{1}{\kappa} \int_{\Sigma} \operatorname{Vol}_{\tilde{G}} R_{a b}^{a} y^{b}
$$

Using linear connection:

$$
S_{\mathrm{L}}=\frac{1}{\kappa} \int_{\Sigma} \operatorname{Vol}_{\tilde{G}} g^{F a b} R_{a c b}^{c}
$$

Cartan geometry

Using horizontal vector fields:

$$
S_{\mathrm{H}}=\int_{O} \tilde{b}^{\alpha}\left(\left[\tilde{\underline{\underline{e}}}_{\alpha}, \tilde{\underline{e}}_{0}\right]\right) \text { Volo }
$$

Using Cartan curvature:

$$
S_{\mathrm{C}}=\int_{0} \kappa_{\mathfrak{h}}\left(\tilde{F}_{\mathfrak{h}} \wedge \tilde{F}_{\mathfrak{h}}\right) \wedge \mathrm{Vol}_{S}
$$

Gravity

Metric geometry

Einstein-Hilbert action:

$$
S_{\mathrm{EH}}=\frac{1}{2 \kappa} \int_{M} d^{4} x \sqrt{-g} R
$$

Finsler geometry

Using non-linear connection:

$$
S_{N}=\frac{1}{\kappa} \int_{\Sigma} \operatorname{Vol}_{\tilde{G}} R_{a b}^{a} y^{b}
$$

Using linear connection:

$$
S_{\mathrm{L}}=\frac{1}{\kappa} \int_{\Sigma} \operatorname{Vol}_{\tilde{G}} g^{F a b} R_{a c b}^{c}
$$

Cartan geometry

Using horizontal vector fields:

$$
S_{\mathrm{H}}=\int_{O} \tilde{b}^{\alpha}\left(\left[\tilde{\underline{e}}_{\alpha}, \tilde{\underline{e}}_{0}\right]\right) \text { Volo }
$$

Using Cartan curvature:

$$
S_{\mathrm{C}}=\int_{0} \kappa_{\mathfrak{h}}\left(\tilde{F}_{\mathfrak{h}} \wedge \tilde{F}_{\mathfrak{h}}\right) \wedge \mathrm{Vol}_{S}
$$

Gravity from Cartan to Finsler

- MacDowell-Mansouri gravity on observer space: [s. Gielen, D. Wise '12]

$$
S_{G}=\int_{O} \epsilon_{\alpha \beta \gamma} \operatorname{tr}_{\mathfrak{h}}\left(F_{\mathfrak{h}} \wedge \star F_{\mathfrak{h}}\right) \wedge b^{\alpha} \wedge b^{\beta} \wedge b^{\gamma}
$$

- Hodge operator \star on \mathfrak{h}.
- Non-degenerate H-invariant inner product $\operatorname{tr}_{\mathfrak{h}}$ on \mathfrak{h}.
- Boost part $b \in \Omega_{1}(P, \mathfrak{y})$ of the Cartan connection.

Gravity from Cartan to Finsler

- MacDowell-Mansouri gravity on observer space: [s. Gielen, D. Wise '12]

$$
S_{G}=\int_{O} \epsilon_{\alpha \beta \gamma} \operatorname{tr}_{\mathfrak{h}}\left(F_{\mathfrak{h}} \wedge \star F_{\mathfrak{h}}\right) \wedge b^{\alpha} \wedge b^{\beta} \wedge b^{\gamma}
$$

- Hodge operator \star on \mathfrak{h}.
- Non-degenerate H-invariant inner product $\operatorname{tr}_{\mathfrak{h}}$ on \mathfrak{h}.
- Boost part $b \in \Omega_{1}(P, \mathfrak{y})$ of the Cartan connection.
- Translate terms into Finsler language (with $R=d \omega+\frac{1}{2}[\omega, \omega]$):
- Curvature scalar:

$$
[e, e] \wedge \star R \rightsquigarrow g^{F a b} R_{a c b}^{c} d V
$$

- Cosmological constant:

$$
[e, e] \wedge \star[e, e] \rightsquigarrow d V .
$$

- Gauss-Bonnet term:

$$
R \wedge \star R \rightsquigarrow \epsilon^{a b c d} \epsilon^{e f g h} R_{a b e f} R_{c d g h} d V .
$$

\Rightarrow Gravity theory on Finsler spacetime.

Gravity from Finsler to Cartan

- Finsler gravity action: [c. Pefeifer, M. Wohlfarth'11]

$$
S_{G}=\int_{O} d^{4} x d^{3} y \sqrt{-\tilde{G}} R^{a} a b y^{b} .
$$

- Sasaki metric \mathfrak{G} on O.
- Non-linear curvature $R^{a}{ }_{a b}$.

Gravity from Finsler to Cartan

- Finsler gravity action: [c. Pefierer, M. Wohlfarth'11]

$$
S_{G}=\int_{O} d^{4} x d^{3} y \sqrt{-\tilde{G}} R_{a b}^{a} y^{b}
$$

- Sasaki metric \tilde{G} on O.
- Non-linear curvature $R^{a}{ }_{a b}$.
- Translate terms into Cartan language:

$$
\begin{aligned}
d^{4} x d^{3} y \sqrt{-\tilde{G}} & =\epsilon_{i j k \mid} \epsilon_{\alpha \beta \gamma} e^{i} \wedge e^{j} \wedge e^{k} \wedge e^{\prime} \wedge b^{\alpha} \wedge b^{\beta} \wedge b^{\gamma} \\
R^{a}{ }_{a b} y^{b} & =b^{\alpha}\left[\underline{A}\left(\mathcal{Z}_{\alpha}\right), \underline{A}\left(\mathcal{Z}_{0}\right)\right]
\end{aligned}
$$

\Rightarrow Gravity theory on observer space.

Outline

1. Introduction

2. Geometries

2.1 Pseudo-Riemannian geometry
2.2 Finsler spacetime geometry
2.3 Observer space Cartan geometry
2.4 Relation between geometries
3. Application in physics
3.1 Causality
3.2 Observers
3.3 Gravity
4. Conclusion

Summary

- Finsler spacetimes
- Generalization of pseudo-Riemannian spacetimes.
- Geometry defined by function L on TM.
- Lengths measured by Finsler function $F=|L|^{\frac{1}{n}}$.
- Metric generalized by Finsler metric $g_{a b}^{F}$.

Summary

- Finsler spacetimes
- Generalization of pseudo-Riemannian spacetimes.
- Geometry defined by function L on TM.
- Lengths measured by Finsler function $F=|L|^{\frac{1}{n}}$.
- Metric generalized by Finsler metric $g_{a b}^{F}$.
- Cartan geometry on observer space
- Can be obtained from Finsler spacetimes.
- Geometry on principal SO(3)-bundle $\pi: P \rightarrow O$.
- Space O of physical observer four-velocities.
- Space P of physical observer frames.
- Geometry defined by Cartan connection $A \in \Omega^{1}(P, \mathfrak{g})$.

Summary

- Finsler spacetimes
- Generalization of pseudo-Riemannian spacetimes.
- Geometry defined by function L on TM.
- Lengths measured by Finsler function $F=|L|^{\frac{1}{n}}$.
- Metric generalized by Finsler metric $g_{a b}^{F}$.
- Cartan geometry on observer space
- Can be obtained from Finsler spacetimes.
- Geometry on principal SO(3)-bundle $\pi: P \rightarrow O$.
- Space O of physical observer four-velocities.
- Space P of physical observer frames.
- Geometry defined by Cartan connection $A \in \Omega^{1}(P, \mathfrak{g})$.
- Different geometries provide compatible definitions of:
- Causality
- Observers
- Observables
- Gravity

Caveats and outlook

- Observer space not most suitable for Lagrange theory:
- Lagrangian defined on jet bundle over configuration bundle.
- Critical sections: solutions of Euler-Lagrange equations.
- Euler-Lagrange equations determined from variational calculus.
- Variational calculus assumes fixed configuration bundle.
\& Finsler observer space depends on length function L.

Caveats and outlook

- Observer space not most suitable for Lagrange theory:
- Lagrangian defined on jet bundle over configuration bundle.
- Critical sections: solutions of Euler-Lagrange equations.
- Euler-Lagrange equations determined from variational calculus.
- Variational calculus assumes fixed configuration bundle.
\& Finsler observer space depends on length function L.
- Proper approach uses positive projective tangent bundle:
- $P T M^{+}$: equivalence classes $[v]=\left\{\lambda v, \lambda \in \mathbb{R}^{+}\right\}$of tangent vectors.
- Finsler length function: section of associated bundle over PTM ${ }^{+}$.
\checkmark Configuration bundle independent of dynamical geometry.

Caveats and outlook

- Observer space not most suitable for Lagrange theory:
- Lagrangian defined on jet bundle over configuration bundle.
- Critical sections: solutions of Euler-Lagrange equations.
- Euler-Lagrange equations determined from variational calculus.
- Variational calculus assumes fixed configuration bundle.
\& Finsler observer space depends on length function L.
- Proper approach uses positive projective tangent bundle:
- $P T M^{+}$: equivalence classes $[v]=\left\{\lambda v, \lambda \in \mathbb{R}^{+}\right\}$of tangent vectors.
- Finsler length function: section of associated bundle over PTM ${ }^{+}$.
\checkmark Configuration bundle independent of dynamical geometry.
- Work done in projective bundle approach:
- Finsler gravity action from variational completion [Mн, Pefierer, Voicu' '18]
- Relativistic kinetic gases [MH, Pefeier, Voicu '19]
- Cosmological Finsler spacetimes [мн, Peifier, Voicu '20]
- Finsler spacetimes as backgrounds for field theories [мल, Pefiefer, Voicu '21?]

Caveats and outlook

- Observer space not most suitable for Lagrange theory:
- Lagrangian defined on jet bundle over configuration bundle.
- Critical sections: solutions of Euler-Lagrange equations.
- Euler-Lagrange equations determined from variational calculus.
- Variational calculus assumes fixed configuration bundle.
\& Finsler observer space depends on length function L.
- Proper approach uses positive projective tangent bundle:
- $P T M^{+}$: equivalence classes $[v]=\left\{\lambda v, \lambda \in \mathbb{R}^{+}\right\}$of tangent vectors.
- Finsler length function: section of associated bundle over PTM ${ }^{+}$.
\checkmark Configuration bundle independent of dynamical geometry.
- Work done in projective bundle approach:
- Finsler gravity action from variational completion [Mн, Peieier, Voicu' '18]
- Relativistic kinetic gases [MH, Pefeier, Voicu '19]
- Cosmological Finsler spacetimes [мн, Peifier, Voicu '20]
- Finsler spacetimes as backgrounds for field theories [мн, Pfeifer, Voicu '21?]
- Cartan geometry version of projective bundle approach?

References

园
M. Hohmann,
"Extensions of Lorentzian spacetime geometry: From Finsler to Cartan and vice versa,"
Phys. Rev. D 87 (2013) no.12, 124034 [arXiv:1304.5430 [gr-qc]].
圊 M. Hohmann,
"Observer dependent geometries,"
in: "Mathematical Structures of the Universe", Copernicus Center
Press, Krakow, 2014 [arXiv:1403.4005 [math-ph]].
(1) M. Hohmann,
"Spacetime and observer space symmetries in the language of
Cartan geometry,"
J. Math. Phys. 57 (2016) no.8, 082502 [arXiv:1505.07809 [math-ph]].

