
Beyond fluids
Generalized matter models and their gravitational interaction

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu
Center of Excellence “The Dark Side of the Universe”

Dark

U

nivers

e European Union
European Regional 
Development Fund

Investing
in your future

8. October 2021
Tuorla-Tartu meeting - Interaction of the cosmic matter

Manuel Hohmann (University of Tartu) Beyond fluids Tuorla-Tartu - 8. October 2021 1 / 23



Outline

1 Motivation

2 Dynamics of the kinetic gas

3 Kinetic gases and gravity

4 Applications to cosmology

5 Conclusion

Manuel Hohmann (University of Tartu) Beyond fluids Tuorla-Tartu - 8. October 2021 2 / 23



Outline

1 Motivation

2 Dynamics of the kinetic gas

3 Kinetic gases and gravity

4 Applications to cosmology

5 Conclusion

Manuel Hohmann (University of Tartu) Beyond fluids Tuorla-Tartu - 8. October 2021 3 / 23



Problems in gravity and cosmology

● So far unexplained cosmological observations:
○ Accelerating expansion of the universe
○ Homogeneity of cosmic microwave background

● Models for explaining these observations:
○ ΛCDM model / dark energy
○ Inflation

● Physical mechanisms are not understood:
○ Unknown type of matter?
○ Modification of the laws of gravity?
○ Scalar field in addition to metric mediating gravity?
○ Quantum gravity effects?

● Idea here: modification of the geometrical structure of spacetime!
○ Replace metric spacetime geometry by Finsler geometry.
○ Similarly: replacing flat spacetime by curved spacetime led to GR.

○ Replace perfect fluid model by velocity-dependent distribution of particles.

● Questions arising from new matter model:
✓ How does a kinetic gas react to a gravitational field?
? How does a kinetic gas create a gravitational field?
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Examples of fluids

● Perfect fluid:
○ Most general energy-momentum tensor compatible with cosmological symmetry.
○ No shear stress, no friction.
○ Characterized by density ρ and pressure p.

⋆ Dust, dark matter: p = 0.
⋆ Radiation: p = 1

3ρ.
⋆ Dark energy: p < − 1

3ρ.

● Collisionless fluid:
○ Model for dark matter.
○ “Dust” - non-interacting point masses (stars, galaxies etc.).

● Interacting fluid:
○ Maxwell-Boltzmann gas: gas with non-vanishing pressure.
○ Plasma (fluid with multiple types of electrically charged particles).

● Imperfect fluids:
○ Include shear, friction, viscosity.
○ Dissipation of kinetic energy into heat.

● Hyperfluid:
○ Additional coupling to affine connection generates hypermomentum.
○ Intrinsic property of matter, e.g., spin.
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Why study matter beyond fluids?

● Dynamical friction:
○ Massive object passes distribution of light objects.
⇒ Gravity of massive object changes positions of lighter objects.
⇒ Perturbation of light objects asserts gravity on massive object.
○ Example: globular cluster passing through galaxy.

● Splashback:
○ Gravitational collapse of galaxy cluster.
○ Galaxies pass each other near center of collapse.

● Stellar streams:
○ Globular cluster orbiting galaxy disrupted by tidal force.
○ Constituting stars continue orbiting galaxy.

● Galaxies changing their environment:
○ Galaxy collisions: colliding gas, passing stars.
○ Galaxy entering filament or galaxy cluster.

● Dynamics of intergalactic medium:
○ Cosmic gas highways: gas in and near filaments
○ Crossing sheets in collapse and structure formation.
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Definition of kinetic gas
● Single-component gas:

○ Constituted by classical, relativistic particles.
○ Particles have equal properties (mass, charge, . . . ).
○ Particles follow piecewise geodesic curves.
○ Endpoints of geodesics are interactions with other particles.

● Collisionless gas:
○ Particles do not interact with other particles.
⇒ Particles follow geodesics.

● Multi-component gas: multiple types of particles.
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One-particle distribution function

● Kinetic gas described by density in velocity space:
○ Consider space O of physical (unit, timelike, future pointing) four-velocities.
○ Consider density on physical velocity space.

● Define one-particle distribution function φ ∶ O → R+ such that:

For every hypersurface σ ⊂ O,

N[σ] = ∫
σ
φΩ

# of particle trajectories through σ.

○
○ Counting of particle trajectories respects hypersurface orientation.

● For multi-component fluids: φi for each component i .
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Collisions & the Liouville equation

● Collision in spacetime ↭ interruption in observer space.

↭

● For any open set V ∈ O,

∫
∂V
φΩ = ∫

V
d(φΩ) = ∫

V
LrφΣ

# of outbound trajectories - # of inbound trajectories.
⇒ Collision density measured by Lrφ.
● Collisionless fluid: trajectories have no endpoints, Lrφ = 0.
⇒ Simple, first order equation of motion for collisionless fluid.
⇒ φ is constant along integral curves of r.
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Some (very) pictorial examples
Geodesic dust fluid:
φ(x ,y) ∼ δ(y − u(x)) .

“Jenkka”

Collisionless fluid:
Lrφ = 0 .

“Polkka”

Interacting fluid:
Lrφ ≠ 0 .

“Humppa”
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Example: collisionless dust fluid

● Variables describing a classical dust fluid:
○ Mass density ρ ∶ M → R+.
○ Velocity u ∶ M → O.

● Particle density function:

φ(x ,y) ∼ ρ(x)δSx (y ,u(x)) .

● Apply Liouville equation:
0 = ∇ua = ub∂bua + ubNa

b ,

0 = ∇δa(ρua) = ∂a(ρua) + 1
2
ρuagF bc (∂agF

bc −Nd
a∂̄dgF

bc) .

⇒ Generalized (pressureless) Euler equations to Finsler geometry [MH ’15].
● Metric limit F 2(x ,y) = ∣gab(x)yayb∣ yields Euler equations:

ub∇bua = 0 , ∇a(ρua) = 0 .
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Action of a kinetic gas

Action for a single point particle:

S = m∫
t

0
(F ○ c1)(τ)dτ .

Assume arc length parameter τ :

S = mt . c1(0)

c1(t)
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Action of a kinetic gas

Action for P point particles:

Sgas = m
P
∑
i=1
∫

t

0
(F ○ ci)(τ)dτ .

Assume arc length parameter τ :

Sgas = Pmt . c1(0)

c1(t)

c2(0)

c2(t)

c3(0)

c3(t)

c4(0)

c4(t)
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Action of a kinetic gas

● Hypersurface of starting points:

ci(0) ∈ σ0 .

● Hypersurface of end points:

ci(t) ∈ σt .

● Number of particle trajectories:

P = N[στ ] = ∫
στ
φΩ .

σ0

c1(0)

c1(t)

c2(0)

c2(t)

c3(0)

c3(t)

c4(0)

c4(t)
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Gravitational action

● Gravitational part of the action:

Sgrav =
1

2κ2 ∫V
R0Σ .

● Finsler Ricci scalar R0 = L−1Ra
abyb from curvature of non-linear connection:

Ra
bc ∂̄a = (δbNa

c − δcNa
b)∂̄a = [δb, δc] .

! Unique action obtained from variational completion of Rutz equation [MH, Pfeifer, Voicu ’18].
⇒ Reduces to Einstein-Hilbert action for metric geometry.

Manuel Hohmann (University of Tartu) Beyond fluids Tuorla-Tartu - 8. October 2021 15 / 23



Gravitational action

● Gravitational part of the action:

Sgrav =
1

2κ2 ∫V
R0Σ .

● Finsler Ricci scalar R0 = L−1Ra
abyb from curvature of non-linear connection:

Ra
bc ∂̄a = (δbNa

c − δcNa
b)∂̄a = [δb, δc] .

! Unique action obtained from variational completion of Rutz equation [MH, Pfeifer, Voicu ’18].
⇒ Reduces to Einstein-Hilbert action for metric geometry.

Manuel Hohmann (University of Tartu) Beyond fluids Tuorla-Tartu - 8. October 2021 15 / 23



Gravitational action

● Gravitational part of the action:

Sgrav =
1

2κ2 ∫V
R0Σ .

● Finsler Ricci scalar R0 = L−1Ra
abyb from curvature of non-linear connection:

Ra
bc ∂̄a = (δbNa

c − δcNa
b)∂̄a = [δb, δc] .

! Unique action obtained from variational completion of Rutz equation [MH, Pfeifer, Voicu ’18].

⇒ Reduces to Einstein-Hilbert action for metric geometry.

Manuel Hohmann (University of Tartu) Beyond fluids Tuorla-Tartu - 8. October 2021 15 / 23



Gravitational action

● Gravitational part of the action:

Sgrav =
1

2κ2 ∫V
R0Σ .

● Finsler Ricci scalar R0 = L−1Ra
abyb from curvature of non-linear connection:

Ra
bc ∂̄a = (δbNa

c − δcNa
b)∂̄a = [δb, δc] .

! Unique action obtained from variational completion of Rutz equation [MH, Pfeifer, Voicu ’18].
⇒ Reduces to Einstein-Hilbert action for metric geometry.

Manuel Hohmann (University of Tartu) Beyond fluids Tuorla-Tartu - 8. October 2021 15 / 23



Variation and field equations

● Variation of the kinetic gas action:

δF Sgas = ∫
V
φ
δF
F

Σ .

● Variation of the Finsler gravity action:

δF Sgrav = 2∫
V
[1

2
gF ab∂̄a∂̄b(F 2R0) − 3R0 − gF ab(∇δaPb −PaPb + ∂̄a(∇Pb))]

δF
F

Σ .

● Landsberg tensor measures deviation from metric geometry:

Pa
bc = ∂̄cNa

b − Γa
cb , Pa = Pb

ba .

⇒ Gravitational field equations with kinetic gas matter [MH, Pfeifer, Voicu ’19]:

1
2

gF ab∂̄a∂̄b(F 2R0) − 3R0 − gF ab(∇δaPb −PaPb + ∂̄a(∇Pb)) = −κ2φ
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Physical implications

● There are no metric non-vacuum solutions to the field equations.
○ Field equations in case of a metric geometry F 2 = gab(x)yayb:

3rab(x)yayb − r(x)gab(x)yayb = −κ2φgab(x)yayb .

○ Second derivative with respect to velocities ya and yb:

3rab(x) − r(x)gab(x) = −κ2φgab(x) .

⇒ 1-PDF φ must depend only on x , i.e., independent of velocities y .
☇ Unphysical velocity distribution: uniform over all (arbitrarily high) velocities!

⇒ Gravitational field of a kinetic gas always depends on the velocity of the observer.
○ For observers whose velocity exceeds that of any gas particles:

1
2

gF ab∂̄a∂̄b(F 2R0) − 3R0 − gF ab(∇δaPb −PaPb + ∂̄a(∇Pb))→ 0

○ Solution of the differential equation still depends on φ via boundary conditions.
⇒ Observers at velocities beyond gas velocities are still affected, but differently.
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Cosmological symmetry

● Introduce suitable coordinates on TM:

t , r , θ, ϕ,y t ,y r ,yθ,yϕ .

● Most general Finsler function obeying cosmological symmetry:

F = F(t ,y t ,w) , w2 = (y r)2

1 − kr2 + r2 ((yθ)2 + sin2 θ(yϕ)2) .

● Homogeneity of Finsler function F(t ,y t ,w) = y t F̃(t ,w/y t).
● Introduce new coordinates: ỹ = y t F̃(t ,w/y t), w̃ = w/y t .
⇒ Coordinates on observer space O with ỹ ≡ 1.
⇒ Geometry function F̃(t , w̃) on O.
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Cosmological fluid dynamics

● Most general fluid obeying cosmological symmetry:

φ = φ(t , w̃) .

● Collisionless fluid satisfies Liouville equation [MH ’15]:

0 = Lrφ =
1
F̃

⎛
⎝
∂tφ −

∂t∂w̃ F̃
∂2

w̃ F̃
∂w̃φ

⎞
⎠
.

● Example: collisionless dust fluid φ(x ,y) ∼ ρ(x)δSx (y ,u(x)):

u(t) = 1
F̃(t ,0)

∂t , ∂t (ρ(t)
√

gF (t ,0)) = 0 .

● Next task: solve cosmological field equations with kinetic gas.
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Conclusion
● Summary:

○ Kinetic gas dynamics:
⋆ Model many-particle systems defined by individual point mass trajectories.
⋆ Consider space O of physical four-velocities (future unit timelike vectors).
⋆ Define one particle distribution function as function φ on velocity space.
⋆ Collisionless fluid satisfies Liouville equation Lrφ = 0.

○ Kinetic gases and gravity on Finsler spacetimes:
⋆ Finsler gravity action obtained uniquely by using variational completion method.
⋆ Kinetic gas action derived by summing over individual particle actions.
⋆ Coupling of kinetic gas to gravity arises naturally.
⋆ Geometry induced by gravitating kinetic gas is necessarily Finslerian.

○ Applications to cosmology:
⋆ Both geometry and one-particle distribution function depend on 2 coordinates.
⋆ Simple Liouville equation for kinetic gas dynamics.
☇ Gravitational field equations still rather involved.

● Outlook:
○ Cosmological solutions with non-metric geometry: Dark energy? Inflation?
○ Weak field limit: Newtonian, post-Newtonian. . .
○ Dynamical friction?
○ Stellar streams?
○ Dynamics of heterogeneous systems: stars + gas in galaxies?
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