Beyond fluids

Generalized matter models and their gravitational interaction

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

8. October 2021 Tuorla-Tartu meeting - Interaction of the cosmic matter

Motivation

- 2 Dynamics of the kinetic gas
- 8 Kinetic gases and gravity
- 4 Applications to cosmology

Motivation

- Dynamics of the kinetic gas
- 3 Kinetic gases and gravity
- 4 Applications to cosmology
- 5 Conclusion

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe
 - Homogeneity of cosmic microwave background

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe
 - Homogeneity of cosmic microwave background
- Models for explaining these observations:
 - ACDM model / dark energy
 - Inflation

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe
 - Homogeneity of cosmic microwave background
- Models for explaining these observations:
 - ACDM model / dark energy
 - Inflation
- Physical mechanisms are not understood:
 - Unknown type of matter?
 - Modification of the laws of gravity?
 - Scalar field in addition to metric mediating gravity?
 - Quantum gravity effects?

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe
 - Homogeneity of cosmic microwave background
- Models for explaining these observations:
 - ACDM model / dark energy
 - Inflation
- Physical mechanisms are not understood:
 - Unknown type of matter?
 - Modification of the laws of gravity?
 - Scalar field in addition to metric mediating gravity?
 - Quantum gravity effects?
- Idea here: modification of the geometrical structure of spacetime!
 - Replace metric spacetime geometry by Finsler geometry.
 - Similarly: replacing flat spacetime by curved spacetime led to GR.
 - Replace perfect fluid model by velocity-dependent distribution of particles.

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe
 - Homogeneity of cosmic microwave background
- Models for explaining these observations:
 - ACDM model / dark energy
 - Inflation
- Physical mechanisms are not understood:
 - Unknown type of matter?
 - Modification of the laws of gravity?
 - Scalar field in addition to metric mediating gravity?
 - Quantum gravity effects?
- Idea here: modification of the geometrical structure of spacetime!
 - Replace metric spacetime geometry by Finsler geometry.
 - Similarly: replacing flat spacetime by curved spacetime led to GR.
 - Replace perfect fluid model by velocity-dependent distribution of particles.
- Questions arising from new matter model:
 - ✓ How does a kinetic gas react to a gravitational field?
 - ? How does a kinetic gas create a gravitational field?

- Perfect fluid:
 - Most general energy-momentum tensor compatible with cosmological symmetry.
 - No shear stress, no friction.
 - Characterized by density ρ and pressure p.
 - * Dust, dark matter: p = 0.
 - * Radiation: $p = \frac{1}{3}\rho$.
 - * Dark energy: $p < -\frac{1}{3}\rho$.

- Perfect fluid:
 - Most general energy-momentum tensor compatible with cosmological symmetry.
 - No shear stress, no friction.
 - Characterized by density ρ and pressure p.
 - * Dust, dark matter: p = 0.
 - * Radiation: $p = \frac{1}{3}\rho$.
 - * Dark energy: $p < -\frac{1}{3}\rho$.
- Collisionless fluid:
 - Model for dark matter.
 - "Dust" non-interacting point masses (stars, galaxies etc.).

- Perfect fluid:
 - Most general energy-momentum tensor compatible with cosmological symmetry.
 - No shear stress, no friction.
 - Characterized by density ρ and pressure p.
 - * Dust, dark matter: p = 0.
 - * Radiation: $p = \frac{1}{3}\rho$.
 - * Dark energy: $p < -\frac{1}{3}\rho$.
- Collisionless fluid:
 - Model for dark matter.
 - "Dust" non-interacting point masses (stars, galaxies etc.).
- Interacting fluid:
 - Maxwell-Boltzmann gas: gas with non-vanishing pressure.
 - Plasma (fluid with multiple types of electrically charged particles).

- Perfect fluid:
 - Most general energy-momentum tensor compatible with cosmological symmetry.
 - No shear stress, no friction.
 - Characterized by density ρ and pressure p.
 - * Dust, dark matter: p = 0.
 - * Radiation: $p = \frac{1}{3}\rho$.
 - * Dark energy: $p < -\frac{1}{3}\rho$.
- Collisionless fluid:
 - Model for dark matter.
 - "Dust" non-interacting point masses (stars, galaxies etc.).
- Interacting fluid:
 - Maxwell-Boltzmann gas: gas with non-vanishing pressure.
 - Plasma (fluid with multiple types of electrically charged particles).
- Imperfect fluids:
 - Include shear, friction, viscosity.
 - Dissipation of kinetic energy into heat.

- Perfect fluid:
 - Most general energy-momentum tensor compatible with cosmological symmetry.
 - No shear stress, no friction.
 - Characterized by density ρ and pressure p.
 - ⋆ Dust, dark matter: p = 0.
 - * Radiation: $p = \frac{1}{3}\rho$.
 - * Dark energy: $p < -\frac{1}{3}\rho$.
- Collisionless fluid:
 - Model for dark matter.
 - "Dust" non-interacting point masses (stars, galaxies etc.).
- Interacting fluid:
 - Maxwell-Boltzmann gas: gas with non-vanishing pressure.
 - Plasma (fluid with multiple types of electrically charged particles).
- Imperfect fluids:
 - Include shear, friction, viscosity.
 - Dissipation of kinetic energy into heat.
- Hyperfluid:
 - Additional coupling to affine connection generates hypermomentum.
 - Intrinsic property of matter, e.g., spin.

- Dynamical friction:
 - Massive object passes distribution of light objects.
 - ⇒ Gravity of massive object changes positions of lighter objects.
 - ⇒ Perturbation of light objects asserts gravity on massive object.
 - Example: globular cluster passing through galaxy.

- Dynamical friction:
 - Massive object passes distribution of light objects.
 - ⇒ Gravity of massive object changes positions of lighter objects.
 - ⇒ Perturbation of light objects asserts gravity on massive object.
 - Example: globular cluster passing through galaxy.
- Splashback:
 - Gravitational collapse of galaxy cluster.
 - Galaxies pass each other near center of collapse.

- Dynamical friction:
 - Massive object passes distribution of light objects.
 - ⇒ Gravity of massive object changes positions of lighter objects.
 - ⇒ Perturbation of light objects asserts gravity on massive object.
 - Example: globular cluster passing through galaxy.
- Splashback:
 - Gravitational collapse of galaxy cluster.
 - Galaxies pass each other near center of collapse.
- Stellar streams:
 - Globular cluster orbiting galaxy disrupted by tidal force.
 - Constituting stars continue orbiting galaxy.

- Dynamical friction:
 - Massive object passes distribution of light objects.
 - ⇒ Gravity of massive object changes positions of lighter objects.
 - ⇒ Perturbation of light objects asserts gravity on massive object.
 - Example: globular cluster passing through galaxy.
- Splashback:
 - Gravitational collapse of galaxy cluster.
 - Galaxies pass each other near center of collapse.
- Stellar streams:
 - Globular cluster orbiting galaxy disrupted by tidal force.
 - Constituting stars continue orbiting galaxy.
- Galaxies changing their environment:
 - Galaxy collisions: colliding gas, passing stars.
 - Galaxy entering filament or galaxy cluster.

- Dynamical friction:
 - Massive object passes distribution of light objects.
 - ⇒ Gravity of massive object changes positions of lighter objects.
 - ⇒ Perturbation of light objects asserts gravity on massive object.
 - Example: globular cluster passing through galaxy.
- Splashback:
 - Gravitational collapse of galaxy cluster.
 - Galaxies pass each other near center of collapse.
- Stellar streams:
 - Globular cluster orbiting galaxy disrupted by tidal force.
 - Constituting stars continue orbiting galaxy.
- Galaxies changing their environment:
 - Galaxy collisions: colliding gas, passing stars.
 - Galaxy entering filament or galaxy cluster.
- Dynamics of intergalactic medium:
 - · Cosmic gas highways: gas in and near filaments
 - Crossing sheets in collapse and structure formation.

Motivation

2 Dynamics of the kinetic gas

Kinetic gases and gravity

4 Applications to cosmology

5 Conclusion

Definition of kinetic gas

- Single-component gas:
 - Constituted by classical, relativistic particles.
 - Particles have equal properties (mass, charge, ...).
 - Particles follow piecewise geodesic curves.
 - Endpoints of geodesics are interactions with other particles.

Definition of kinetic gas

- Single-component gas:
 - Constituted by classical, relativistic particles.
 - Particles have equal properties (mass, charge, ...).
 - Particles follow piecewise geodesic curves.
 - Endpoints of geodesics are interactions with other particles.
- Collisionless gas:
 - Particles do not interact with other particles.
 - ⇒ Particles follow geodesics.

Definition of kinetic gas

- Single-component gas:
 - Constituted by classical, relativistic particles.
 - Particles have equal properties (mass, charge, ...).
 - Particles follow piecewise geodesic curves.
 - Endpoints of geodesics are interactions with other particles.
- Collisionless gas:
 - Particles do not interact with other particles.
 - ⇒ Particles follow geodesics.
- Multi-component gas: multiple types of particles.

- Kinetic gas described by density in velocity space:
 - Consider space *O* of physical (unit, timelike, future pointing) four-velocities.
 - Consider density on physical velocity space.

One-particle distribution function

- Kinetic gas described by density in velocity space:
 - Consider space O of physical (unit, timelike, future pointing) four-velocities.
 - · Consider density on physical velocity space.
- Define one-particle distribution function $\phi : O \to \mathbb{R}^+$ such that:

For every hypersurface $\sigma \subset O$,

 $N[\sigma] = \int_{\sigma} \phi \Omega$

of particle trajectories through σ .

0

Counting of particle trajectories respects hypersurface orientation.

One-particle distribution function

- Kinetic gas described by density in velocity space:
 - Consider space O of physical (unit, timelike, future pointing) four-velocities.
 - · Consider density on physical velocity space.
- Define one-particle distribution function $\phi : O \to \mathbb{R}^+$ such that:

For every hypersurface $\sigma \subset O$,

 $N[\sigma] = \int_{\sigma} \phi \Omega$

of particle trajectories through σ .

0

Counting of particle trajectories respects hypersurface orientation.

• For multi-component fluids: ϕ_i for each component *i*.

Collisions & the Liouville equation

• Collision in spacetime <>> interruption in observer space.

Collisions & the Liouville equation

• Collision in spacetime <>> interruption in observer space.

• For any open set $V \in O$,

$$\int_{\partial V} \phi \Omega = \int_{V} \boldsymbol{d}(\phi \Omega) = \int_{V} \mathcal{L}_{\mathbf{r}} \phi \Sigma$$

of outbound trajectories - # of inbound trajectories. \Rightarrow Collision density measured by $\mathcal{L}_{r}\phi$.

Collisions & the Liouville equation

• Collision in spacetime <>> interruption in observer space.

• For any open set $V \in O$,

$$\int_{\partial V} \phi \Omega = \int_{V} \boldsymbol{d}(\phi \Omega) = \int_{V} \mathcal{L}_{\mathbf{r}} \phi \Sigma$$

of outbound trajectories - # of inbound trajectories.

- \Rightarrow Collision density measured by $\mathcal{L}_{\mathbf{r}}\phi$.
- Collisionless fluid: trajectories have no endpoints, $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.
- ⇒ Simple, first order equation of motion for collisionless fluid.
- $\Rightarrow \phi$ is constant along integral curves of **r**.

Geodesic dust fluid:

 $\phi(\mathbf{x},\mathbf{y})\sim\delta(\mathbf{y}-\mathbf{u}(\mathbf{x}))\,.$

Geodesic dust fluid:

 $\phi(\mathbf{x},\mathbf{y}) \sim \delta(\mathbf{y} - \mathbf{u}(\mathbf{x})) \,.$

Geodesic dust fluid: $\phi(x, y) \sim \delta(y - u(x))$.

Collisionless fluid:

 $\mathcal{L}_{\mathbf{r}}\phi$ = 0.

Geodesic dust fluid: $\phi(\mathbf{x},\mathbf{y}) \sim \delta(\mathbf{y} - \mathbf{u}(\mathbf{x})) \, .$ "Jenkka"

Manuel Hohmann (University of Tartu)

Beyond fluids

Geodesic dust fluid: $\phi(x, y) \sim \delta(y - u(x))$.

Collisionless fluid:

 $\mathcal{L}_{\mathbf{r}}\phi$ = 0 .

Interacting fluid:

 $\mathcal{L}_{\mathbf{r}}\phi \neq \mathbf{0}$.

Manuel Hohmann (University of Tartu)

Beyond fluids

Manuel Hohmann (University of Tartu)

Example: collisionless dust fluid

- Variables describing a classical dust fluid:
 - Mass density $\rho: M \to \mathbb{R}^+$.
 - Velocity $u: M \to O$.

Example: collisionless dust fluid

- Variables describing a classical dust fluid:
 - Mass density $\rho: M \to \mathbb{R}^+$.
 - Velocity $u: M \to O$.
- Particle density function:

 $\phi(\mathbf{x},\mathbf{y}) \sim \rho(\mathbf{x})\delta_{\mathcal{S}_{\mathbf{x}}}(\mathbf{y},\mathbf{u}(\mathbf{x})).$
Example: collisionless dust fluid

- Variables describing a classical dust fluid:
 - Mass density $\rho: M \to \mathbb{R}^+$.
 - Velocity $u: M \to O$.
- Particle density function:

$$\phi(\mathbf{x},\mathbf{y}) \sim \rho(\mathbf{x})\delta_{\mathcal{S}_{\mathbf{x}}}(\mathbf{y},\mathbf{u}(\mathbf{x})).$$

Apply Liouville equation:

$$0 = \nabla u^{a} = u^{b} \partial_{b} u^{a} + u^{b} N^{a}{}_{b},$$
$$0 = \nabla_{\delta_{a}}(\rho u^{a}) = \partial_{a}(\rho u^{a}) + \frac{1}{2} \rho u^{a} g^{Fbc} \left(\partial_{a} g^{F}_{bc} - N^{d}{}_{a} \bar{\partial}_{d} g^{F}_{bc} \right).$$

Example: collisionless dust fluid

- Variables describing a classical dust fluid:
 - Mass density $\rho: M \to \mathbb{R}^+$.
 - Velocity $u: M \to O$.
- Particle density function:

$$\phi(\mathbf{x},\mathbf{y}) \sim \rho(\mathbf{x})\delta_{\mathcal{S}_{\mathbf{x}}}(\mathbf{y},\mathbf{u}(\mathbf{x})).$$

• Apply Liouville equation:

$$\begin{split} 0 &= \nabla u^a = u^b \partial_b u^a + u^b N^a{}_b \,, \\ 0 &= \nabla_{\delta_a}(\rho u^a) = \partial_a(\rho u^a) + \frac{1}{2} \rho u^a g^{Fbc} \left(\partial_a g^F_{bc} - N^d{}_a \bar{\partial}_d g^F_{bc} \right) \,. \end{split}$$

⇒ Generalized (pressureless) Euler equations to Finsler geometry [MH 15].

Example: collisionless dust fluid

- Variables describing a classical dust fluid:
 - Mass density $\rho: M \to \mathbb{R}^+$.
 - Velocity $u: M \to O$.
- Particle density function:

$$\phi(\mathbf{x},\mathbf{y}) \sim \rho(\mathbf{x})\delta_{\mathcal{S}_{\mathbf{x}}}(\mathbf{y},\mathbf{u}(\mathbf{x})).$$

Apply Liouville equation:

$$\begin{split} 0 &= \nabla u^a = u^b \partial_b u^a + u^b N^a{}_b \,, \\ 0 &= \nabla_{\delta_a}(\rho u^a) = \partial_a(\rho u^a) + \frac{1}{2} \rho u^a g^{Fbc} \left(\partial_a g^F_{bc} - N^d{}_a \bar{\partial}_d g^F_{bc} \right) \,. \end{split}$$

- ⇒ Generalized (pressureless) Euler equations to Finsler geometry [MH 15].
- Metric limit $F^2(x, y) = |g_{ab}(x)y^ay^b|$ yields Euler equations:

$$u^b \nabla_b u^a = 0$$
, $\nabla_a (\rho u^a) = 0$.

Motivation

- Dynamics of the kinetic gas
- 8 Kinetic gases and gravity
- 4 Applications to cosmology

Action for a single point particle:

$$S=m\int_0^t(F\circ c_1)(\tau)\,d\tau\,.$$

Assume arc length parameter τ :

$$S = mt$$
.

 $c_{1}(t)$

Action for *P* point particles:

$$S_{\text{gas}} = m \sum_{i=1}^{P} \int_{0}^{t} (F \circ c_i)(\tau) \, d\tau \, .$$

Assume arc length parameter τ :

$$S_{\text{gas}} = Pmt$$
.

$$\begin{array}{c} c_{1}(t) \\ c_{1}(t) \\ c_{1}(0) \end{array} \begin{pmatrix} c_{2}(t) \\ c_{2}(0) \\ c_{2}(0) \\ c_{3}(0) \\ c_{3}(0) \\ c_{4}(0) \\ c_{4}(0) \\ c_{5}(0) \\ c_$$

1

1

• Hypersurface of starting points:

 $c_i(0) \in \sigma_0$.

Consider volume

$$\mathbf{V} = \bigcup_{\tau=0}^{t} \sigma_{\tau}$$

.

Consider volume

$$\mathbf{V} = \bigcup_{\tau=0}^{t} \sigma_{\tau} \, .$$

• Recall particle action integral:

$$\begin{split} S_{\text{gas}} &= Pmt = m \int_0^t \left(\int_{\sigma_\tau} \phi \Omega \right) d\tau \\ &= m \int_V \phi \Omega \wedge \omega \\ &= m \int_V \phi \Sigma \,. \end{split}$$

```
Defined through 1-PDF \phi
```

[MH, Pfeifer, Voicu '19].

Consider volume

$$\boldsymbol{V} = \bigcup_{\tau=0}^t \sigma_{\tau} \, .$$

• Recall particle action integral:

$$S_{gas} = Pmt = m \int_0^t \left(\int_{\sigma_\tau} \phi \Omega \right) d\tau$$
$$= m \int_V \phi \Omega \wedge \omega$$
$$= m \int_V \phi \Sigma .$$

Defined through 1-PDF ϕ

[MH, Pfeifer, Voicu '19].

⇒ Forget particle trajectories!

$$S_{\rm grav} = {1\over 2\kappa^2} \int_V R_0 \Sigma$$
 .

$$S_{\rm grav} = {1\over 2\kappa^2} \int_V R_0 \Sigma$$

• Finsler Ricci scalar $R_0 = L^{-1}R^a_{ab}y^b$ from curvature of non-linear connection:

$$\boldsymbol{R}^{\boldsymbol{a}}_{\boldsymbol{b}\boldsymbol{c}}\bar{\partial}_{\boldsymbol{a}} = (\delta_{\boldsymbol{b}}\boldsymbol{N}^{\boldsymbol{a}}_{\boldsymbol{c}} - \delta_{\boldsymbol{c}}\boldsymbol{N}^{\boldsymbol{a}}_{\boldsymbol{b}})\bar{\partial}_{\boldsymbol{a}} = [\delta_{\boldsymbol{b}}, \delta_{\boldsymbol{c}}].$$

$$S_{\rm grav} = {1\over 2\kappa^2} \int_V R_0 \Sigma$$
.

• Finsler Ricci scalar $R_0 = L^{-1}R^a_{ab}y^b$ from curvature of non-linear connection:

$$\boldsymbol{R}^{\boldsymbol{a}}{}_{\boldsymbol{b}\boldsymbol{c}}\bar{\partial}_{\boldsymbol{a}} = (\delta_{\boldsymbol{b}}\boldsymbol{N}^{\boldsymbol{a}}{}_{\boldsymbol{c}} - \delta_{\boldsymbol{c}}\boldsymbol{N}^{\boldsymbol{a}}{}_{\boldsymbol{b}})\bar{\partial}_{\boldsymbol{a}} = [\delta_{\boldsymbol{b}}, \delta_{\boldsymbol{c}}].$$

! Unique action obtained from variational completion of Rutz equation [MH, Pfeifer, Voicu '18].

$$S_{\rm grav} = {1\over 2\kappa^2} \int_V R_0 \Sigma$$
.

• Finsler Ricci scalar $R_0 = L^{-1}R^a{}_{ab}y^b$ from curvature of non-linear connection:

$$R^{a}{}_{bc}\bar{\partial}_{a} = (\delta_{b}N^{a}{}_{c} - \delta_{c}N^{a}{}_{b})\bar{\partial}_{a} = [\delta_{b}, \delta_{c}].$$

- ! Unique action obtained from variational completion of Rutz equation [MH, Pfeifer, Voicu '18].
- ⇒ Reduces to Einstein-Hilbert action for metric geometry.

• Variation of the kinetic gas action:

$$\delta_F S_{\text{gas}} = \int_V \phi \frac{\delta F}{F} \Sigma.$$

• Variation of the kinetic gas action:

$$\delta_F S_{\text{gas}} = \int_V \phi \frac{\delta F}{F} \Sigma.$$

• Variation of the Finsler gravity action:

$$\delta_{F}S_{grav} = 2\int_{V} \left[\frac{1}{2}g^{Fab}\bar{\partial}_{a}\bar{\partial}_{b}(F^{2}R_{0}) - 3R_{0} - g^{Fab}(\nabla_{\delta_{a}}P_{b} - P_{a}P_{b} + \bar{\partial}_{a}(\nabla P_{b}))\right]\frac{\delta F}{F}\Sigma.$$

• Variation of the kinetic gas action:

$$\delta_F S_{\text{gas}} = \int_V \phi \frac{\delta F}{F} \Sigma.$$

• Variation of the Finsler gravity action:

$$\delta_{F}S_{\text{grav}} = 2\int_{V} \left[\frac{1}{2}g^{Fab}\bar{\partial}_{a}\bar{\partial}_{b}(F^{2}R_{0}) - 3R_{0} - g^{Fab}(\nabla_{\delta_{a}}P_{b} - P_{a}P_{b} + \bar{\partial}_{a}(\nabla P_{b}))\right]\frac{\delta F}{F}\Sigma.$$

• Landsberg tensor measures deviation from metric geometry:

$$P^{a}_{bc} = \bar{\partial}_{c} N^{a}_{b} - \Gamma^{a}_{cb}, \quad P_{a} = P^{b}_{ba}.$$

• Variation of the kinetic gas action:

$$\delta_F S_{\text{gas}} = \int_V \phi \frac{\delta F}{F} \Sigma$$
.

• Variation of the Finsler gravity action:

$$\delta_{F}S_{\text{grav}} = 2\int_{V} \left[\frac{1}{2}g^{Fab}\bar{\partial}_{a}\bar{\partial}_{b}(F^{2}R_{0}) - 3R_{0} - g^{Fab}(\nabla_{\delta_{a}}P_{b} - P_{a}P_{b} + \bar{\partial}_{a}(\nabla P_{b}))\right]\frac{\delta F}{F}\Sigma.$$

• Landsberg tensor measures deviation from metric geometry:

$$P^{a}_{bc} = \bar{\partial}_{c} N^{a}_{b} - \Gamma^{a}_{cb}, \quad P_{a} = P^{b}_{ba}.$$

⇒ Gravitational field equations with kinetic gas matter [MH, Pfeifer, Voicu '19]:

$$\frac{1}{2}g^{Fab}\bar{\partial}_{a}\bar{\partial}_{b}(F^{2}R_{0}) - 3R_{0} - g^{Fab}(\nabla_{\delta_{a}}P_{b} - P_{a}P_{b} + \bar{\partial}_{a}(\nabla P_{b})) = -\kappa^{2}\phi$$

Physical implications

- There are no metric non-vacuum solutions to the field equations.
 - Field equations in case of a metric geometry $F^2 = g_{ab}(x)y^ay^b$:

$$3r_{ab}(x)y^{a}y^{b}-r(x)g_{ab}(x)y^{a}y^{b}=-\kappa^{2}\phi g_{ab}(x)y^{a}y^{b}.$$

• Second derivative with respect to velocities y^a and y^b :

$$3r_{ab}(x) - r(x)g_{ab}(x) = -\kappa^2 \phi g_{ab}(x).$$

- ⇒ 1-PDF ϕ must depend only on *x*, i.e., independent of velocities *y*.
- Unphysical velocity distribution: uniform over all (arbitrarily high) velocities!

Physical implications

- There are no metric non-vacuum solutions to the field equations.
 - Field equations in case of a metric geometry $F^2 = g_{ab}(x)y^ay^b$:

$$3r_{ab}(x)y^{a}y^{b}-r(x)g_{ab}(x)y^{a}y^{b}=-\kappa^{2}\phi g_{ab}(x)y^{a}y^{b}.$$

• Second derivative with respect to velocities y^a and y^b :

$$3r_{ab}(x) - r(x)g_{ab}(x) = -\kappa^2 \phi g_{ab}(x).$$

- ⇒ 1-PDF ϕ must depend only on *x*, i.e., independent of velocities *y*.
- Unphysical velocity distribution: uniform over all (arbitrarily high) velocities!
- ⇒ Gravitational field of a kinetic gas always depends on the velocity of the observer.
 - For observers whose velocity exceeds that of any gas particles:

$$\frac{1}{2}g^{Fab}\bar{\partial}_{a}\bar{\partial}_{b}(F^{2}R_{0}) - 3R_{0} - g^{Fab}(\nabla_{\delta_{a}}P_{b} - P_{a}P_{b} + \bar{\partial}_{a}(\nabla P_{b})) \to 0$$

• Solution of the differential equation still depends on ϕ via boundary conditions.

⇒ Observers at velocities beyond gas velocities are still affected, but differently.

Motivation

- 2 Dynamics of the kinetic gas
- 3 Kinetic gases and gravity
- Applications to cosmology

Cosmological symmetry

• Introduce suitable coordinates on TM:

$$t, r, \theta, \varphi, y^t, y^r, y^{\theta}, y^{\varphi}.$$

Cosmological symmetry

• Introduce suitable coordinates on TM:

$$t, r, \theta, \varphi, y^t, y^r, y^{\theta}, y^{\varphi}.$$

• Most general Finsler function obeying cosmological symmetry:

$$F = F(t, y^{t}, w), \quad w^{2} = \frac{(y^{r})^{2}}{1 - kr^{2}} + r^{2} \left((y^{\theta})^{2} + \sin^{2} \theta (y^{\varphi})^{2} \right).$$

• Homogeneity of Finsler function $F(t, y^t, w) = y^t \tilde{F}(t, w/y^t)$.

Cosmological symmetry

• Introduce suitable coordinates on TM:

$$t, r, \theta, \varphi, y^t, y^r, y^{\theta}, y^{\varphi}.$$

• Most general Finsler function obeying cosmological symmetry:

$$F = F(t, y^{t}, w), \quad w^{2} = \frac{(y^{r})^{2}}{1 - kr^{2}} + r^{2} \left((y^{\theta})^{2} + \sin^{2} \theta (y^{\varphi})^{2} \right).$$

- Homogeneity of Finsler function $F(t, y^t, w) = y^t \tilde{F}(t, w/y^t)$.
- Introduce new coordinates: $\tilde{y} = y^t \tilde{F}(t, w/y^t)$, $\tilde{w} = w/y^t$.
- ⇒ Coordinates on observer space *O* with $\tilde{y} \equiv 1$.
- ⇒ Geometry function $\tilde{F}(t, \tilde{w})$ on *O*.

• Most general fluid obeying cosmological symmetry:

 $\phi = \phi(t, \tilde{w}).$

• Most general fluid obeying cosmological symmetry:

 $\phi = \phi(t, \tilde{W}).$

• Collisionless fluid satisfies Liouville equation [MH 15]:

$$\mathbf{0} = \mathcal{L}_{\mathbf{r}}\phi = \frac{1}{\tilde{F}}\left(\partial_t\phi - \frac{\partial_t\partial_{\tilde{w}}\tilde{F}}{\partial_{\tilde{w}}^2\tilde{F}}\partial_{\tilde{w}}\phi\right).$$

Most general fluid obeying cosmological symmetry:

 $\phi = \phi(t, \tilde{W}).$

• Collisionless fluid satisfies Liouville equation [MH 15]:

$$\mathbf{0} = \mathcal{L}_{\mathbf{r}}\phi = \frac{1}{\tilde{F}}\left(\partial_t\phi - \frac{\partial_t\partial_{\tilde{w}}\tilde{F}}{\partial_{\tilde{w}}^2\tilde{F}}\partial_{\tilde{w}}\phi\right).$$

• Example: collisionless dust fluid $\phi(x, y) \sim \rho(x)\delta_{S_x}(y, u(x))$:

$$u(t) = \frac{1}{\tilde{F}(t,0)} \partial_t, \quad \partial_t \left(\rho(t) \sqrt{g^F(t,0)} \right) = 0.$$

Most general fluid obeying cosmological symmetry:

 $\phi = \phi(t, \tilde{W}) \,.$

• Collisionless fluid satisfies Liouville equation [MH 15]:

$$\mathbf{0} = \mathcal{L}_{\mathbf{r}}\phi = \frac{1}{\tilde{F}}\left(\partial_t\phi - \frac{\partial_t\partial_{\tilde{w}}\tilde{F}}{\partial_{\tilde{w}}^2\tilde{F}}\partial_{\tilde{w}}\phi\right).$$

• Example: collisionless dust fluid $\phi(x, y) \sim \rho(x)\delta_{S_x}(y, u(x))$:

$$u(t) = \frac{1}{\tilde{F}(t,0)} \partial_t, \quad \partial_t \left(\rho(t) \sqrt{g^F(t,0)} \right) = 0.$$

• Next task: solve cosmological field equations with kinetic gas.

Motivation

- Dynamics of the kinetic gas
- 3 Kinetic gases and gravity
- 4 Applications to cosmology

- Summary:
 - Kinetic gas dynamics:
 - * Model many-particle systems defined by individual point mass trajectories.
 - * Consider space O of physical four-velocities (future unit timelike vectors).
 - $\star~$ Define one particle distribution function as function ϕ on velocity space.
 - * Collisionless fluid satisfies Liouville equation $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.

- Summary:
 - Kinetic gas dynamics:
 - * Model many-particle systems defined by individual point mass trajectories.
 - * Consider space O of physical four-velocities (future unit timelike vectors).
 - $\star~$ Define one particle distribution function as function ϕ on velocity space.
 - * Collisionless fluid satisfies Liouville equation $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.
 - Kinetic gases and gravity on Finsler spacetimes:
 - * Finsler gravity action obtained uniquely by using variational completion method.
 - * Kinetic gas action derived by summing over individual particle actions.
 - * Coupling of kinetic gas to gravity arises naturally.
 - * Geometry induced by gravitating kinetic gas is necessarily Finslerian.

- Summary:
 - Kinetic gas dynamics:
 - * Model many-particle systems defined by individual point mass trajectories.
 - * Consider space O of physical four-velocities (future unit timelike vectors).
 - * Define one particle distribution function as function ϕ on velocity space.
 - * Collisionless fluid satisfies Liouville equation $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.
 - Kinetic gases and gravity on Finsler spacetimes:
 - * Finsler gravity action obtained uniquely by using variational completion method.
 - * Kinetic gas action derived by summing over individual particle actions.
 - Coupling of kinetic gas to gravity arises naturally.
 - * Geometry induced by gravitating kinetic gas is necessarily Finslerian.
 - Applications to cosmology:
 - * Both geometry and one-particle distribution function depend on 2 coordinates.
 - * Simple Liouville equation for kinetic gas dynamics.
 - Gravitational field equations still rather involved.

- Summary:
 - Kinetic gas dynamics:
 - * Model many-particle systems defined by individual point mass trajectories.
 - * Consider space O of physical four-velocities (future unit timelike vectors).
 - $\star~$ Define one particle distribution function as function ϕ on velocity space.
 - * Collisionless fluid satisfies Liouville equation $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.
 - Kinetic gases and gravity on Finsler spacetimes:
 - * Finsler gravity action obtained uniquely by using variational completion method.
 - * Kinetic gas action derived by summing over individual particle actions.
 - * Coupling of kinetic gas to gravity arises naturally.
 - * Geometry induced by gravitating kinetic gas is necessarily Finslerian.
 - Applications to cosmology:
 - * Both geometry and one-particle distribution function depend on 2 coordinates.
 - * Simple Liouville equation for kinetic gas dynamics.
 - Gravitational field equations still rather involved.
- Outlook:
 - · Cosmological solutions with non-metric geometry: Dark energy? Inflation?
 - Weak field limit: Newtonian, post-Newtonian...
 - Dynamical friction?
 - Stellar streams?
 - Dynamics of heterogeneous systems: stars + gas in galaxies?

References

- Kinetic theory on the tangent bundle:
 - J. Ehlers, in: "General Relativity and Cosmology", pp 1–70, Academic Press, New York / London, 1971.
 - O. Sarbach and T. Zannias, AIP Conf. Proc. 1548 (2013) 134 [arXiv:1303.2899 [gr-qc]].
 - O. Sarbach and T. Zannias,

Class. Quant. Grav. 31 (2014) 085013 [arXiv:1309.2036 [gr-qc]].

- Finsler observer space and fluids:
 - MH,

"Mathematical structures of the Universe" (2014) 13 [arXiv:1403.4005 [math-ph]].

• MH,

Int. J. Mod. Phys. A 31 (2016) 1641012 [arXiv:1508.03304 [gr-qc]].

• MH,

14th Marcel Grossmann meeting [arXiv:1512.07927 [gr-qc]].

- MH, C. Pfeifer and N. Voicu, Phys. Rev. D 100 (2019) 064035 [arXiv:1812.11161 [gr-qc]].
- MH, C. Pfeifer and N. Voicu, Phys. Rev. D 101 (2020) 024062 [arXiv:1910.14044 [gr-qc]].
- MH, C. Pfeifer and N. Voicu, Eur. Phys. J. C 80 (2020) 809 [arXiv:2005.13561 [gr-qc]].