Observables from spherically symmetric modified dispersion relations

D. Läänemets, MH and C. Pfeifer, arXiv:2201.04694 [gr-qc]

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

6. May 2022

Tartu-Tuorla meeting - Galaxy dynamics and beyond

Outline

(1) Spherically symmetric modified dispersion relations
(2) Circular photon orbits
(3) Shapiro delay
(4) Light deflection

(5) Conclusion

Why study modified dispersion relations?

- Observations in astronomy and cosmology rely on "messengers":
- Photons - wide energy range from radio to gamma.
- Other particles (predominantly protons and neutrinos).
- Gravitational waves.

Why study modified dispersion relations?

- Observations in astronomy and cosmology rely on "messengers":
- Photons - wide energy range from radio to gamma.
- Other particles (predominantly protons and neutrinos).
- Gravitational waves.
- Propagation of messengers governed by dispersion relation.

Why study modified dispersion relations?

- Observations in astronomy and cosmology rely on "messengers":
- Photons - wide energy range from radio to gamma.
- Other particles (predominantly protons and neutrinos).
- Gravitational waves.
- Propagation of messengers governed by dispersion relation.
- Most common dispersion relation derived from general relativity.

Why study modified dispersion relations?

- Observations in astronomy and cosmology rely on "messengers":
- Photons - wide energy range from radio to gamma.
- Other particles (predominantly protons and neutrinos).
- Gravitational waves.
- Propagation of messengers governed by dispersion relation.
- Most common dispersion relation derived from general relativity.
- Reasons to study modified dispersion relations (MDR):
- Interacting matter halos around astrophysical sources.
- Quantum gravity phenomenology and spacetime substructure.
- Modified theories of gravity and extra fields.

Why study modified dispersion relations?

- Observations in astronomy and cosmology rely on "messengers":
- Photons - wide energy range from radio to gamma.
- Other particles (predominantly protons and neutrinos).
- Gravitational waves.
- Propagation of messengers governed by dispersion relation.
- Most common dispersion relation derived from general relativity.
- Reasons to study modified dispersion relations (MDR):
- Interacting matter halos around astrophysical sources.
- Quantum gravity phenomenology and spacetime substructure.
- Modified theories of gravity and extra fields.
- Effects on messenger propagation by spherical sources:
- Circular orbits and "shadows" of compact objects.
- Shapiro time delay.
- Deflection angles and gravitational lensing.

Why study modified dispersion relations?

- Observations in astronomy and cosmology rely on "messengers":
- Photons - wide energy range from radio to gamma.
- Other particles (predominantly protons and neutrinos).
- Gravitational waves.
- Propagation of messengers governed by dispersion relation.
- Most common dispersion relation derived from general relativity.
- Reasons to study modified dispersion relations (MDR):
- Interacting matter halos around astrophysical sources.
- Quantum gravity phenomenology and spacetime substructure.
- Modified theories of gravity and extra fields.
- Effects on messenger propagation by spherical sources:
- Circular orbits and "shadows" of compact objects.
- Shapiro time delay.
- Deflection angles and gravitational lensing.
- MDR may in general introduce energy-dependence of these effects.

Outline

(1) Spherically symmetric modified dispersion relations
(2) Circular photon orbits
(3) Shapiro delay
4. Light deflection
(5) Conclusion

Dispersion relations as Hamiltonians

- Hamiltonian picture of point mass dynamics:
- Describe particle motion in position-momentum variables $\left(x^{\mu}, p_{\mu}\right)$.
- Variables are coordinates on the cotangent bundle $T^{*} M$ of spacetime M.
- Introduce abbreviations:

$$
\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}, \quad \bar{\partial}^{\mu}=\frac{\partial}{\partial p_{\mu}} .
$$

Dispersion relations as Hamiltonians

- Hamiltonian picture of point mass dynamics:
- Describe particle motion in position-momentum variables $\left(x^{\mu}, p_{\mu}\right)$.
- Variables are coordinates on the cotangent bundle $T^{*} M$ of spacetime M.
- Introduce abbreviations:

$$
\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}, \quad \bar{\partial}^{\mu}=\frac{\partial}{\partial p_{\mu}} .
$$

- Dynamics governed by Hamiltonian $H(x, p)$:
- Dispersion relation defines "mass shell" of point mass:

$$
H(x, p)=-\frac{m^{2}}{2}
$$

- Hamiltonian equations of motion:

$$
\dot{p}_{\mu}=-\partial_{\mu} H, \quad \dot{x}^{\mu}=\bar{\partial}^{\mu} H .
$$

- Mass m is constant of motion \Rightarrow motion confined to mass shell.

Dispersion relations as Hamiltonians

- Hamiltonian picture of point mass dynamics:
- Describe particle motion in position-momentum variables $\left(x^{\mu}, p_{\mu}\right)$.
- Variables are coordinates on the cotangent bundle $T^{*} M$ of spacetime M.
- Introduce abbreviations:

$$
\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}, \quad \bar{\partial}^{\mu}=\frac{\partial}{\partial p_{\mu}} .
$$

- Dynamics governed by Hamiltonian $H(x, p)$:
- Dispersion relation defines "mass shell" of point mass:

$$
H(x, p)=-\frac{m^{2}}{2} .
$$

- Hamiltonian equations of motion:

$$
\dot{p}_{\mu}=-\partial_{\mu} H, \quad \dot{x}^{\mu}=\bar{\partial}^{\mu} H .
$$

- Mass m is constant of motion \Rightarrow motion confined to mass shell.
- Point mass Hamiltonian in general relativity:
- Metric $g_{\mu \nu}(x)$ defines $H(x, p)=\frac{1}{2} g^{\mu \nu}(x) p_{\mu} p_{\nu}$.
\Rightarrow Equations of motion give geodesic equation.

Static spherically symmetric modified dispersion relations

- Introduce spherical position-momentum variables:

$$
\left(x^{\mu}\right)=(t, r, \theta, \phi), \quad\left(p_{\mu}\right)=\left(p_{t}, p_{r}, p_{\theta}, p_{\phi}\right)
$$

Static spherically symmetric modified dispersion relations

- Introduce spherical position-momentum variables:

$$
\left(x^{\mu}\right)=(t, r, \theta, \phi), \quad\left(p_{\mu}\right)=\left(p_{t}, p_{r}, p_{\theta}, p_{\phi}\right)
$$

- Consider static, spherically symmetric Hamiltonian:

$$
H=H\left(r, p_{t}, p_{r}, w\right), \quad w^{2}=p_{\theta}^{2}+\frac{p_{\phi}^{2}}{\sin ^{2} \theta}
$$

Static spherically symmetric modified dispersion relations

- Introduce spherical position-momentum variables:

$$
\left(x^{\mu}\right)=(t, r, \theta, \phi), \quad\left(p_{\mu}\right)=\left(p_{t}, p_{r}, p_{\theta}, p_{\phi}\right) .
$$

- Consider static, spherically symmetric Hamiltonian:

$$
H=H\left(r, p_{t}, p_{r}, w\right), \quad w^{2}=p_{\theta}^{2}+\frac{p_{\phi}^{2}}{\sin ^{2} \theta}
$$

\Rightarrow Constants of motion:

- Energy $\mathcal{E}=p_{t}$:

$$
\partial_{t} H=0 \quad \Rightarrow \quad 0=\dot{p}_{t} .
$$

- Angular momentum $\mathcal{L}=p_{\phi}$:

$$
\partial_{\phi} H=0 \quad \Rightarrow \quad 0=\dot{p}_{\phi} .
$$

Static spherically symmetric modified dispersion relations

- Introduce spherical position-momentum variables:

$$
\left(x^{\mu}\right)=(t, r, \theta, \phi), \quad\left(p_{\mu}\right)=\left(p_{t}, p_{r}, p_{\theta}, p_{\phi}\right)
$$

- Consider static, spherically symmetric Hamiltonian:

$$
H=H\left(r, p_{t}, p_{r}, w\right), \quad w^{2}=p_{\theta}^{2}+\frac{p_{\phi}^{2}}{\sin ^{2} \theta}
$$

\Rightarrow Constants of motion:

- Energy $\mathcal{E}=p_{t}$:

$$
\partial_{t} H=0 \quad \Rightarrow \quad 0=\dot{p}_{t} .
$$

- Angular momentum $\mathcal{L}=p_{\phi}$:

$$
\partial_{\phi} H=0 \quad \Rightarrow \quad 0=\dot{p}_{\phi} .
$$

\Rightarrow Angular equations of motion solved by equatorial motion $\theta=\frac{\pi}{2}, p_{\theta}=0$:

$$
\dot{\theta}=\frac{\partial H}{\partial w} \frac{1}{w} p_{\theta}, \quad \dot{p}_{\theta}=\frac{\partial H}{\partial w} \frac{1}{w} \frac{\cos \theta}{\sin ^{3} \theta} p_{\phi}^{2} .
$$

General linear modified dispersion relation

- Consider linear perturbation of metric dispersion relation:

$$
H(x, p)=\frac{1}{2} g^{\mu \nu}(x) p_{\mu} p_{\nu}+\epsilon h(x, p) .
$$

General linear modified dispersion relation

- Consider linear perturbation of metric dispersion relation:

$$
H(x, p)=\frac{1}{2} g^{\mu \nu}(x) p_{\mu} p_{\nu}+\epsilon h(x, p)
$$

- Impose spherical symmetry:

$$
H(x, p)=\frac{1}{2}\left(-a(r) p_{t}^{2}+b(r) p_{r}^{2}+\frac{w^{2}}{r^{2}}\right)+\epsilon h\left(r, p_{t}, p_{r}, w\right)
$$

General linear modified dispersion relation

- Consider linear perturbation of metric dispersion relation:

$$
H(x, p)=\frac{1}{2} g^{\mu \nu}(x) p_{\mu} p_{\nu}+\epsilon h(x, p)
$$

- Impose spherical symmetry:

$$
H(x, p)=\frac{1}{2}\left(-a(r) p_{t}^{2}+b(r) p_{r}^{2}+\frac{w^{2}}{r^{2}}\right)+\epsilon h\left(r, p_{t}, p_{r}, w\right)
$$

- General relativity in vacuum implies Schwarzschild spacetime:

$$
b=a^{-1}=1-\frac{r_{s}}{r} .
$$

κ-Poincaré dispersion relation

- General form with Planck length ℓ and vector field Z^{μ} satisfying $g_{\mu \nu} Z^{\mu} Z^{\nu}=-1$:

$$
H(x, p)=-\frac{2}{\ell^{2}} \sinh \left(\frac{\ell}{2} Z^{\mu}(x) p_{\mu}\right)^{2}+\frac{1}{2} e^{\ell Z^{\mu}(x) p_{\mu}}\left[g^{\mu \nu}(x) p_{\mu} p_{\nu}+\left(Z^{\mu}(x) p_{\mu}\right)^{2}\right] .
$$

κ-Poincaré dispersion relation

- General form with Planck length ℓ and vector field Z^{μ} satisfying $g_{\mu \nu} Z^{\mu} Z^{\nu}=-1$:

$$
H(x, p)=-\frac{2}{\ell^{2}} \sinh \left(\frac{\ell}{2} Z^{\mu}(x) p_{\mu}\right)^{2}+\frac{1}{2} e^{\ell Z^{\mu}(x) p_{\mu}}\left[g^{\mu \nu}(x) p_{\mu} p_{\nu}+\left(Z^{\mu}(x) p_{\mu}\right)^{2}\right]
$$

- Impose spherical symmetry:

$$
\begin{aligned}
& H(x, p)=-\frac{2}{\ell^{2}} \sinh \left[\frac{\ell}{2}\left(c(r) p_{t}+d(r) p_{r}\right)\right]^{2} \\
& \quad+\frac{e^{\ell\left(c(r) p_{t}+d(r) p_{r}\right)}}{2}\left[\left(-a(r)+c^{2}(r)\right) p_{t}^{2}+2 c(r) d(r) p_{r} p_{t}+\left(b(r)+d^{2}(r)\right) p_{r}^{2}+\frac{w^{2}}{r^{2}}\right] .
\end{aligned}
$$

κ-Poincaré dispersion relation

- General form with Planck length ℓ and vector field Z^{μ} satisfying $g_{\mu \nu} Z^{\mu} Z^{\nu}=-1$:

$$
H(x, p)=-\frac{2}{\ell^{2}} \sinh \left(\frac{\ell}{2} Z^{\mu}(x) p_{\mu}\right)^{2}+\frac{1}{2} e^{\ell Z^{\mu}(x) p_{\mu}}\left[g^{\mu \nu}(x) p_{\mu} p_{\nu}+\left(Z^{\mu}(x) p_{\mu}\right)^{2}\right]
$$

- Impose spherical symmetry:

$$
\begin{aligned}
& H(x, p)=-\frac{2}{\ell^{2}} \sinh \left[\frac{\ell}{2}\left(c(r) p_{t}+d(r) p_{r}\right)\right]^{2} \\
& \quad+\frac{e^{\ell\left(c(r) p_{t}+d(r) p_{r}\right)}}{2}\left[\left(-a(r)+c^{2}(r)\right) p_{t}^{2}+2 c(r) d(r) p_{r} p_{t}+\left(b(r)+d^{2}(r)\right) p_{r}^{2}+\frac{w^{2}}{r^{2}}\right] .
\end{aligned}
$$

- Condition on vector field:

$$
-\frac{c^{2}}{a}+\frac{d^{2}}{b}=-1
$$

κ-Poincaré dispersion relation

- General form with Planck length ℓ and vector field Z^{μ} satisfying $g_{\mu \nu} Z^{\mu} Z^{\nu}=-1$:

$$
H(x, p)=-\frac{2}{\ell^{2}} \sinh \left(\frac{\ell}{2} Z^{\mu}(x) p_{\mu}\right)^{2}+\frac{1}{2} e^{\ell Z^{\mu}(x) p_{\mu}}\left[g^{\mu \nu}(x) p_{\mu} p_{\nu}+\left(Z^{\mu}(x) p_{\mu}\right)^{2}\right] .
$$

- Impose spherical symmetry:

$$
\begin{aligned}
& H(x, p)=-\frac{2}{\ell^{2}} \sinh \left[\frac{\ell}{2}\left(c(r) p_{t}+d(r) p_{r}\right)\right]^{2} \\
& \quad+\frac{e^{\ell\left(c(r) p_{t}+d(r) p_{r}\right)}}{2}\left[\left(-a(r)+c^{2}(r)\right) p_{t}^{2}+2 c(r) d(r) p_{r} p_{t}+\left(b(r)+d^{2}(r)\right) p_{r}^{2}+\frac{w^{2}}{r^{2}}\right] .
\end{aligned}
$$

- Condition on vector field:

$$
-\frac{c^{2}}{a}+\frac{d^{2}}{b}=-1 .
$$

- Possible choice: $c=\sqrt{a}, d=0$.

Outline

(1) Spherically symmetric modified dispersion relations
(2) Circular photon orbits
(3) Shapiro delay
4. Light deflection
(5) Conclusion

General solution method

- Circular orbits defined by constant radial coordinate:

$$
0=\dot{r}=\bar{\partial}^{r} H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right) .
$$

General solution method

- Circular orbits defined by constant radial coordinate:

$$
0=\dot{r}=\bar{\partial}^{r} H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right) .
$$

\Rightarrow Solve equation for p_{r} in terms of other constants $r, \mathcal{E}, \mathcal{L}$.

General solution method

- Circular orbits defined by constant radial coordinate:

$$
0=\dot{r}=\bar{\partial}^{r} H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right) .
$$

\Rightarrow Solve equation for p_{r} in terms of other constants $r, \mathcal{E}, \mathcal{L}$.

- Solve massless dispersion relation for photon energy \mathcal{E} :

$$
H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right)=0
$$

General solution method

- Circular orbits defined by constant radial coordinate:

$$
0=\dot{r}=\bar{\partial}^{r} H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right) .
$$

\Rightarrow Solve equation for p_{r} in terms of other constants $r, \mathcal{E}, \mathcal{L}$.

- Solve massless dispersion relation for photon energy \mathcal{E} :

$$
H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right)=0 .
$$

- Use condition that p_{r} must be constant to determine allowed radii r :

$$
0=\dot{p}_{r}=-\partial_{r} H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right) .
$$

General solution method

- Circular orbits defined by constant radial coordinate:

$$
0=\dot{r}=\bar{\partial}^{r} H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right) .
$$

\Rightarrow Solve equation for p_{r} in terms of other constants $r, \mathcal{E}, \mathcal{L}$.

- Solve massless dispersion relation for photon energy \mathcal{E} :

$$
H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right)=0 .
$$

- Use condition that p_{r} must be constant to determine allowed radii r :

$$
0=\dot{p}_{r}=-\partial_{r} H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right) .
$$

\Rightarrow Radius will in general depend on angular momentum: $r=r(\mathcal{L})$.

General solution method

- Circular orbits defined by constant radial coordinate:

$$
0=\dot{r}=\bar{\partial}^{r} H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right) .
$$

\Rightarrow Solve equation for p_{r} in terms of other constants $r, \mathcal{E}, \mathcal{L}$.

- Solve massless dispersion relation for photon energy \mathcal{E} :

$$
H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right)=0 .
$$

- Use condition that p_{r} must be constant to determine allowed radii r :

$$
0=\dot{p}_{r}=-\partial_{r} H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right) .
$$

\Rightarrow Radius will in general depend on angular momentum: $r=r(\mathcal{L})$.
\Rightarrow Photon orbit radius determines "shadow" \Rightarrow observable signature.

General linear modified dispersion relation

- Express photon orbit radius as perturbation: $r=r_{0}+\epsilon r_{1}$.

General linear modified dispersion relation

- Express photon orbit radius as perturbation: $r=r_{0}+\epsilon r_{1}$.
- Photon orbit for general spherically symmetric background:
- Background value independent of photon momentum:

$$
r_{0}=-2 \frac{a_{0}}{a_{0}^{\prime}}
$$

- First order correction depends on photon momentum:

$$
r_{1}=\frac{2 r_{0}^{4}\left(a_{0}^{2} \partial_{r} h_{0}-a_{0} a_{0}^{\prime} h_{0}\right)}{\mathcal{L}_{0}^{2}\left(r_{0}^{2} a_{0} a_{0}^{\prime \prime}-r_{0}^{2} a_{0}^{\prime 2}-2 r_{0} a_{0} a_{0}^{\prime}-6 a_{0}^{2}\right)}
$$

General linear modified dispersion relation

- Express photon orbit radius as perturbation: $r=r_{0}+\epsilon r_{1}$.
- Photon orbit for general spherically symmetric background:
- Background value independent of photon momentum:

$$
r_{0}=-2 \frac{a_{0}}{a_{0}^{\prime}}
$$

- First order correction depends on photon momentum:

$$
r_{1}=\frac{2 r_{0}^{4}\left(a_{0}^{2} \partial_{r} h_{0}-a_{0} a_{0}^{\prime} h_{0}\right)}{\mathcal{L}_{0}^{2}\left(r_{0}^{2} a_{0} a_{0}^{\prime \prime}-r_{0}^{2} a_{0}^{\prime 2}-2 r_{0} a_{0} a_{0}^{\prime}-6 a_{0}^{2}\right)} .
$$

- Consider Schwarzschild background:
- Background value independent of photon momentum:

$$
r_{0}=\frac{3}{2} r_{s} .
$$

- First order correction depends on photon momentum:

$$
r_{1}=\frac{9 r_{s}^{3}}{16 \mathcal{L}_{0}^{2}}\left(4 h_{0}+3 r_{s} \partial_{r} h_{0}\right)
$$

κ-Poincaré dispersion relation

- Photon orbits determined from transcendental equation:

$$
\frac{2 \mathcal{L}}{r \pm \ell \mathcal{L}} \mp \frac{r a^{\prime}}{\ell a} \ln \left(\frac{r}{r \pm \ell \mathcal{L}}\right)=0 .
$$

κ-Poincaré dispersion relation

- Photon orbits determined from transcendental equation:

$$
\frac{2 \mathcal{L}}{r \pm \ell \mathcal{L}} \mp \frac{r a^{\prime}}{\ell a} \ln \left(\frac{r}{r \pm \ell \mathcal{L}}\right)=0 .
$$

- Perturbative expansion $r=r_{0}+\ell r_{1}$:

$$
r_{0}=-2 \frac{a_{0}}{a_{0}^{\prime}}, \quad r_{1}=\frac{\mathcal{L}}{6} .
$$

κ-Poincaré dispersion relation

- Photon orbits determined from transcendental equation:

$$
\frac{2 \mathcal{L}}{r \pm \ell \mathcal{L}} \mp \frac{r a^{\prime}}{\ell a} \ln \left(\frac{r}{r \pm \ell \mathcal{L}}\right)=0 .
$$

- Perturbative expansion $r=r_{0}+\ell r_{1}$:

$$
r_{0}=-2 \frac{a_{0}}{a_{0}^{\prime}}, \quad r_{1}=\frac{\mathcal{L}}{6} .
$$

- Consider Schwarzschild background:

$$
r_{0}=\frac{3}{2} r_{s} .
$$

κ-Poincaré dispersion relation

- Photon orbits determined from transcendental equation:

$$
\frac{2 \mathcal{L}}{r \pm \ell \mathcal{L}} \mp \frac{r a^{\prime}}{\ell a} \ln \left(\frac{r}{r \pm \ell \mathcal{L}}\right)=0 .
$$

- Perturbative expansion $r=r_{0}+\ell r_{1}$:

$$
r_{0}=-2 \frac{a_{0}}{a_{0}^{\prime}}, \quad r_{1}=\frac{\mathcal{L}}{6} .
$$

- Consider Schwarzschild background:

$$
r_{0}=\frac{3}{2} r_{s} .
$$

\Rightarrow Momentum-dependent modification of order $\sim \ell \mathcal{L}$.

Outline

(1) Spherically symmetric modified dispersion relations
(2) Circular photon orbits
(3) Shapiro delay
4. Light deflection
(5) Conclusion

General solution method

- Model Shapiro delay with radar experiment:
- Signal emitted at radial coordinate $r=r_{e}$.
- Point of closest approach at $r=r_{c}$.
- Signal reflected at mirror at $r=r_{m}$.
- Signal takes same path back to detector again at $r=r_{e}$.

General solution method

- Model Shapiro delay with radar experiment:
- Signal emitted at radial coordinate $r=r_{e}$.
- Point of closest approach at $r=r_{c}$.
- Signal reflected at mirror at $r=r_{m}$.
- Signal takes same path back to detector again at $r=r_{e}$.
- Total signal travel time:

$$
\Delta t=\left.\int_{r_{e}}^{r_{c}} \mathrm{~d} r \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\dot{r}<0}+\left.\int_{r_{c}}^{r_{m}} \mathrm{~d} r \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{r>0}+\left.\int_{r_{m}}^{r_{c}} \mathrm{~d} r \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\dot{r}<0}+\left.\int_{r_{c}}^{r_{e}} \mathrm{~d} r \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\dot{r}>0} .
$$

General solution method

- Model Shapiro delay with radar experiment:
- Signal emitted at radial coordinate $r=r_{e}$.
- Point of closest approach at $r=r_{c}$.
- Signal reflected at mirror at $r=r_{m}$.
- Signal takes same path back to detector again at $r=r_{e}$.
- Total signal travel time:

$$
\Delta t=\left.\int_{r_{e}}^{r_{c}} \mathrm{~d} r \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\dot{r}<0}+\left.\int_{r_{c}}^{r_{m}} \mathrm{~d} r \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{r>0}+\left.\int_{r_{m}}^{r_{c}} \mathrm{~d} r \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\dot{r}<0}+\left.\int_{r_{c}}^{r_{e}} \mathrm{~d} r \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\dot{r}>0} .
$$

- Use ratio of four-velocity components:

$$
\frac{\mathrm{d} t}{\mathrm{~d} r}=\frac{\dot{t}}{\dot{r}}
$$

General solution method

- Model Shapiro delay with radar experiment:
- Signal emitted at radial coordinate $r=r_{e}$.
- Point of closest approach at $r=r_{c}$.
- Signal reflected at mirror at $r=r_{m}$.
- Signal takes same path back to detector again at $r=r_{e}$.
- Total signal travel time:

$$
\Delta t=\left.\int_{r_{e}}^{r_{c}} \mathrm{~d} r \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\dot{r}<0}+\left.\int_{r_{c}}^{r_{m}} \mathrm{~d} r \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{r>0}+\left.\int_{r_{m}}^{r_{c}} \mathrm{~d} r \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\dot{r}<0}+\left.\int_{r_{c}}^{r_{e}} \mathrm{~d} r \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\dot{r}>0} .
$$

- Use ratio of four-velocity components:

$$
\frac{\mathrm{d} t}{\mathrm{~d} r}=\frac{\dot{t}}{\dot{r}}
$$

- Pay attention to divergence $\dot{r}=0$ at point $r=r_{c}$ of closest approach!

General linear modified dispersion relation

- Use condition $\dot{r}=0$ to determine closest approach r_{c} :

$$
0=\left.\dot{r}\right|_{r_{c}}=b\left(r_{c}\right) p_{r}+\epsilon \bar{\partial} r h\left(r_{c}, \mathcal{E}, p_{r}, \mathcal{L}\right) .
$$

General linear modified dispersion relation

- Use condition $\dot{r}=0$ to determine closest approach r_{c} :

$$
0=\left.\dot{r}\right|_{r_{c}}=b\left(r_{c}\right) p_{r}+\epsilon \overline{\partial^{r}} h\left(r_{c}, \mathcal{E}, p_{r}, \mathcal{L}\right)
$$

\Rightarrow Solve for p_{r} at $r=r_{c}$.

General linear modified dispersion relation

- Use condition $\dot{r}=0$ to determine closest approach r_{c} :

$$
0=\left.\dot{r}\right|_{r_{c}}=b\left(r_{c}\right) p_{r}+\epsilon \bar{\partial}^{r} h\left(r_{c}, \mathcal{E}, p_{r}, \mathcal{L}\right)
$$

\Rightarrow Solve for p_{r} at $r=r_{c}$.
\Rightarrow Use $p_{r} \mid r_{c}$ in massless dispersion relation to relate $r_{c}, \mathcal{E}, \mathcal{L}$.

General linear modified dispersion relation

- Use condition $\dot{r}=0$ to determine closest approach r_{c} :

$$
0=\left.\dot{r}\right|_{r_{c}}=b\left(r_{c}\right) p_{r}+\epsilon \bar{\partial} r h\left(r_{c}, \mathcal{E}, p_{r}, \mathcal{L}\right) .
$$

\Rightarrow Solve for p_{r} at $r=r_{c}$.
\Rightarrow Use $\left.p_{r}\right|_{r_{c}}$ in massless dispersion relation to relate $r_{c}, \mathcal{E}, \mathcal{L}$.

- Massless dispersion relation:

$$
0=H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right)=\frac{1}{2}\left(-a(r) \mathcal{E}^{2}+b(r) p_{r}^{2}+\frac{\mathcal{L}^{2}}{r^{2}}\right)+\epsilon h\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right)
$$

General linear modified dispersion relation

- Use condition $\dot{r}=0$ to determine closest approach r_{c} :

$$
0=\left.\dot{r}\right|_{r_{c}}=b\left(r_{c}\right) p_{r}+\epsilon \bar{\partial} r h\left(r_{c}, \mathcal{E}, p_{r}, \mathcal{L}\right) .
$$

\Rightarrow Solve for p_{r} at $r=r_{c}$.
\Rightarrow Use $\left.p_{r}\right|_{r_{c}}$ in massless dispersion relation to relate $r_{c}, \mathcal{E}, \mathcal{L}$.

- Massless dispersion relation:

$$
0=H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right)=\frac{1}{2}\left(-a(r) \mathcal{E}^{2}+b(r) p_{r}^{2}+\frac{\mathcal{L}^{2}}{r^{2}}\right)+\epsilon h\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right)
$$

\Rightarrow Solve for $\left.p_{r}\right|_{r \geqslant 0}$ along photon trajectory.

General linear modified dispersion relation

- Use condition $\dot{r}=0$ to determine closest approach r_{c} :

$$
0=\left.\dot{r}\right|_{r_{c}}=b\left(r_{c}\right) p_{r}+\epsilon \bar{\partial}^{r} h\left(r_{c}, \mathcal{E}, p_{r}, \mathcal{L}\right)
$$

\Rightarrow Solve for p_{r} at $r=r_{c}$.
\Rightarrow Use $\left.p_{r}\right|_{r_{c}}$ in massless dispersion relation to relate $r_{c}, \mathcal{E}, \mathcal{L}$.

- Massless dispersion relation:

$$
0=H\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right)=\frac{1}{2}\left(-a(r) \mathcal{E}^{2}+b(r) p_{r}^{2}+\frac{\mathcal{L}^{2}}{r^{2}}\right)+\epsilon h\left(r, \mathcal{E}, p_{r}, \mathcal{L}\right)
$$

\Rightarrow Solve for $\left.p_{r}\right|_{r \geqslant 0}$ along photon trajectory.

- \dot{t} and \dot{r} as functions of r and constant parameters:

$$
\frac{\mathrm{d} t}{\mathrm{~d} r}=-\frac{a(r) \mathcal{E}}{b(r) p_{r}}+\epsilon(\ldots)
$$

κ-Poincaré dispersion relation

- Use condition $\dot{r}=0$ to determine closest approach r_{c} :

$$
0=\left.\dot{r}\right|_{r_{c}}=e^{\ell \mathcal{E} \sqrt{a\left(r_{c}\right)}} p_{r} b\left(r_{c}\right)
$$

κ-Poincaré dispersion relation

- Use condition $\dot{r}=0$ to determine closest approach r_{c} :

$$
0=\left.\dot{r}\right|_{r_{c}}=e^{\ell \mathcal{E} \sqrt{a\left(r_{c}\right)}} p_{r} b\left(r_{c}\right)
$$

\Rightarrow Find $p_{r}=0$ at $r=r_{c}$.

κ-Poincaré dispersion relation

- Use condition $\dot{r}=0$ to determine closest approach r_{c} :

$$
0=\left.\dot{r}\right|_{r_{c}}=e^{\ell \mathcal{E} \sqrt{a\left(r_{c}\right)}} p_{r} b\left(r_{c}\right)
$$

\Rightarrow Find $p_{r}=0$ at $r=r_{c}$.

- Use $\left.p_{r}\right|_{r_{c}}=0$ in massless dispersion relation to relate $r_{c}, \mathcal{E}, \mathcal{L}$:

$$
0=\mathcal{H}\left(r_{c}, \mathcal{E}, 0, \mathcal{L}\right)=\frac{\mathcal{L}^{2}}{2 r_{c}^{2}} e^{\ell \mathcal{E} \sqrt{a\left(r_{c}\right)}}-\frac{2}{\ell^{2}} \sinh \left(\frac{\ell}{2} \mathcal{E} \sqrt{a\left(r_{c}\right)}\right)
$$

κ-Poincaré dispersion relation

- Use condition $\dot{r}=0$ to determine closest approach r_{c} :

$$
0=\left.\dot{r}\right|_{r_{c}}=e^{\ell \mathcal{E} \sqrt{a\left(r_{c}\right)}} p_{r} b\left(r_{c}\right)
$$

\Rightarrow Find $p_{r}=0$ at $r=r_{c}$.

- Use $\left.p_{r}\right|_{r_{c}}=0$ in massless dispersion relation to relate $r_{c}, \mathcal{E}, \mathcal{L}$:

$$
0=\mathcal{H}\left(r_{c}, \mathcal{E}, 0, \mathcal{L}\right)=\frac{\mathcal{L}^{2}}{2 r_{c}^{2}} e^{\ell \mathcal{E} \sqrt{a\left(r_{c}\right)}}-\frac{2}{\ell^{2}} \sinh \left(\frac{\ell}{2} \mathcal{E} \sqrt{a\left(r_{c}\right)}\right)
$$

- Solve for $\left.p_{r}\right|_{r \geqslant 0}$ along photon trajectory.

κ-Poincaré dispersion relation

- Use condition $\dot{r}=0$ to determine closest approach r_{c} :

$$
0=\left.\dot{r}\right|_{r_{c}}=e^{\mathcal{E} \sqrt{a\left(r_{c}\right)}} p_{r} b\left(r_{c}\right) .
$$

\Rightarrow Find $p_{r}=0$ at $r=r_{c}$.

- Use $\left.p_{r}\right|_{r_{c}}=0$ in massless dispersion relation to relate $r_{c}, \mathcal{E}, \mathcal{L}$:

$$
0=\mathcal{H}\left(r_{c}, \mathcal{E}, 0, \mathcal{L}\right)=\frac{\mathcal{L}^{2}}{2 r_{c}^{2}} e^{\ell \mathcal{E} \sqrt{a\left(r_{c}\right)}}-\frac{2}{\ell^{2}} \sinh \left(\frac{\ell}{2} \mathcal{E} \sqrt{a\left(r_{c}\right)}\right)
$$

- Solve for $\left.p_{r}\right|_{r \geqslant 0}$ along photon trajectory.
- \dot{t} and \dot{r} as functions of r and constant parameters:

$$
\frac{\mathrm{d} t}{\mathrm{~d} r}=-\frac{a(r) \mathcal{E}}{b(r) p_{r}}+\ell \frac{\sqrt{a(r)}}{2 p_{r}}\left(p_{r}^{2}+2 \mathcal{E}^{2} \frac{a(r)}{b(r)}+\frac{\mathcal{L}^{2}}{r^{2} b(r)}\right)+\ell^{2}(\ldots)
$$

Outline

(1) Spherically symmetric modified dispersion relations
(2) Circular photon orbits
(3) Shapiro delay
4. Light deflection
(5) Conclusion

General solution method

- Light deflection experiment:
- Incoming light ray from "infinity" $r \rightarrow \infty$.
- Point of closest approach at $r=r_{c}$.
- Observer observes light ray at "infinity" $r \rightarrow \infty$.

General solution method

- Light deflection experiment:
- Incoming light ray from "infinity" $r \rightarrow \infty$.
- Point of closest approach at $r=r_{c}$.
- Observer observes light ray at "infinity" $r \rightarrow \infty$.
- Total change of angular coordinate:

$$
\Delta \phi=\left.\int_{-\infty}^{r_{c}} \mathrm{~d} r \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right|_{\dot{r}<0}+\left.\int_{r_{c}}^{\infty} \mathrm{d} r \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right|_{r>0} .
$$

General solution method

- Light deflection experiment:
- Incoming light ray from "infinity" $r \rightarrow \infty$.
- Point of closest approach at $r=r_{c}$.
- Observer observes light ray at "infinity" $r \rightarrow \infty$.
- Total change of angular coordinate:

$$
\Delta \phi=\left.\int_{-\infty}^{r_{c}} \mathrm{~d} r \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right|_{r<0}+\left.\int_{r_{c}}^{\infty} \mathrm{d} r \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right|_{r>0} .
$$

- Use ratio of four-velocity components:

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} r}=\frac{\dot{\phi}}{\dot{r}} .
$$

General solution method

- Light deflection experiment:
- Incoming light ray from "infinity" $r \rightarrow \infty$.
- Point of closest approach at $r=r_{c}$.
- Observer observes light ray at "infinity" $r \rightarrow \infty$.
- Total change of angular coordinate:

$$
\Delta \phi=\left.\int_{-\infty}^{r_{c}} \mathrm{~d} r \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right|_{r<0}+\left.\int_{r_{c}}^{\infty} \mathrm{d} r \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right|_{r>0} .
$$

- Use ratio of four-velocity components:

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} r}=\frac{\dot{\phi}}{\dot{r}} .
$$

- Pay attention to divergence $\dot{r}=0$ at point $r=r_{c}$ of closest approach!

General solution method

- Light deflection experiment:
- Incoming light ray from "infinity" $r \rightarrow \infty$.
- Point of closest approach at $r=r_{c}$.
- Observer observes light ray at "infinity" $r \rightarrow \infty$.
- Total change of angular coordinate:

$$
\Delta \phi=\left.\int_{-\infty}^{r_{c}} \mathrm{~d} r \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right|_{r<0}+\left.\int_{r_{c}}^{\infty} \mathrm{d} r \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right|_{r>0} .
$$

- Use ratio of four-velocity components:

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} r}=\frac{\dot{\phi}}{\dot{r}} .
$$

- Pay attention to divergence $\dot{r}=0$ at point $r=r_{c}$ of closest approach!
- Deflection angle given by $\Delta \phi-\pi$.

General solution method

- Light deflection experiment:
- Incoming light ray from "infinity" $r \rightarrow \infty$.
- Point of closest approach at $r=r_{c}$.
- Observer observes light ray at "infinity" $r \rightarrow \infty$.
- Total change of angular coordinate:

$$
\Delta \phi=\left.\int_{-\infty}^{r_{c}} \mathrm{~d} r \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right|_{\dot{r}<0}+\left.\int_{r_{c}}^{\infty} \mathrm{d} r \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right|_{\dot{r}>0} .
$$

- Use ratio of four-velocity components:

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} r}=\frac{\dot{\phi}}{\dot{r}}=\frac{\mathcal{L}}{p_{r} r^{2} b(r)} .
$$

- Pay attention to divergence $\dot{r}=0$ at point $r=r_{c}$ of closest approach!
- Deflection angle given by $\Delta \phi-\pi$.
- Possible to use p_{r} and relation between $r_{c}, \mathcal{E}, \mathcal{L}$ from Shapiro delay.

Outline

(1) Spherically symmetric modified dispersion relations
(2) Circular photon orbits
(3) Shapiro delay
4. Light deflection
(5) Conclusion

Conclusion

- Modified dispersion relations motivated from phenomenological approach:
- Quantum corrections to general relativity.
- Modified gravity theories to address open questions in cosmology.
- Matter coupling and propagation in media.

Conclusion

- Modified dispersion relations motivated from phenomenological approach:
- Quantum corrections to general relativity.
- Modified gravity theories to address open questions in cosmology.
- Matter coupling and propagation in media.
- Examples of spherically symmetric dispersion relations:
- General linear perturbation of metric dispersion relation.
- κ-Poincaré dispersion relation.

Conclusion

- Modified dispersion relations motivated from phenomenological approach:
- Quantum corrections to general relativity.
- Modified gravity theories to address open questions in cosmology.
- Matter coupling and propagation in media.
- Examples of spherically symmetric dispersion relations:
- General linear perturbation of metric dispersion relation.
- κ-Poincaré dispersion relation.
- Consider several observable effects:
- Circular photon orbits and "shadow" \Rightarrow "rainbow".
- Shapiro time delay of deflected signals \Rightarrow "chirp".
- Deflection angle and gravitational lensing \Rightarrow "rainbow".

Conclusion

- Modified dispersion relations motivated from phenomenological approach:
- Quantum corrections to general relativity.
- Modified gravity theories to address open questions in cosmology.
- Matter coupling and propagation in media.
- Examples of spherically symmetric dispersion relations:
- General linear perturbation of metric dispersion relation.
- κ-Poincaré dispersion relation.
- Consider several observable effects:
- Circular photon orbits and "shadow" \Rightarrow "rainbow".
- Shapiro time delay of deflected signals \Rightarrow "chirp".
- Deflection angle and gravitational lensing \Rightarrow "rainbow".
\Rightarrow Characteristic signature of momentum-dependent observables.

Conclusion

- Modified dispersion relations motivated from phenomenological approach:
- Quantum corrections to general relativity.
- Modified gravity theories to address open questions in cosmology.
- Matter coupling and propagation in media.
- Examples of spherically symmetric dispersion relations:
- General linear perturbation of metric dispersion relation.
- κ-Poincaré dispersion relation.
- Consider several observable effects:
- Circular photon orbits and "shadow" \Rightarrow "rainbow".
- Shapiro time delay of deflected signals \Rightarrow "chirp".
- Deflection angle and gravitational lensing \Rightarrow "rainbow".
\Rightarrow Characteristic signature of momentum-dependent observables.

How to find observable effects from modified dispersion relations?

Somewhere over the rainbow way up high. . .

Conclusion

- Modified dispersion relations motivated from phenomenological approach:
- Quantum corrections to general relativity.
- Modified gravity theories to address open questions in cosmology.
- Matter coupling and propagation in media.
- Examples of spherically symmetric dispersion relations:
- General linear perturbation of metric dispersion relation.
- κ-Poincaré dispersion relation.
- Consider several observable effects:
- Circular photon orbits and "shadow" \Rightarrow "rainbow".
- Shapiro time delay of deflected signals \Rightarrow "chirp".
- Deflection angle and gravitational lensing \Rightarrow "rainbow".
\Rightarrow Characteristic signature of momentum-dependent observables.

How to find observable effects from modified dispersion relations?

Somewhere over the rainbow way up high...
... there's an energy scale where dispersion becomes modified.

