Aspects of multimetric gravity

Manuel Hohmann

Teoreetilise füüsika labor
Füüsikainstituut
Tartu Ülikool

4. september 2012
Einstein gravity

- Gravity is described by metric tensor g_{ab}.
- Einstein-Hilbert action:
 \[S_G = \frac{1}{2} \int \omega R. \]
 - Volume form ω.
 - Scalar curvature R.
- Minimally coupled matter action:
 \[S_M = \int \omega \mathcal{L}_M. \]
- Einstein equations:
 \[R_{ab} - \frac{1}{2} R g_{ab} = T_{ab}. \]
4.6% visible matter.

[Komatsu et al. '09]
Application to the universe

- 4.6% visible matter.
 [Komatsu et al. '09]
- 22.8% dark matter.
 - Galaxy rotation curves.
 [de Blok, Bosma '02]
 - Anomalous light deflection.
 [Wambsganss '98]
4.6% visible matter.

[Komatsu et al. '09]

22.8% dark matter.

- Galaxy rotation curves.
 [de Blok, Bosma '02]
- Anomalous light deflection.
 [Wambsganss '98]
Application to the universe

- 4.6% visible matter.
 [Komatsu et al. ’09]

- 22.8% dark matter.
 - Galaxy rotation curves.
 [de Blok, Bosma ’02]
 - Anomalous light deflection.
 [Wambsganss ’98]
Application to the universe

- 4.6% visible matter.
 [Komatsu et al. '09]

- 22.8% dark matter.
 - Galaxy rotation curves.
 [de Blok, Bosma '02]
 - Anomalous light deflection.
 [Wambsganss '98]

- 72.6% dark energy.
 - Accelerating expansion.
 [Riess et al. '98; Perlmutter et al. '98]
4.6% visible matter.

[Komatsu et al. '09]

22.8% dark matter.

- Galaxy rotation curves.
 [de Blok, Bosma '02]
- Anomalous light deflection.
 [Wambsganss '98]

72.6% dark energy.

- Accelerating expansion.
 [Riess et al. '98; Perlmutter et al. '98]
4.6% visible matter.
[Komatsu et al. ’09]

22.8% dark matter.
- Galaxy rotation curves.
 [de Blok, Bosma ’02]
- Anomalous light deflection.
 [Wambsganss ’98]

72.6% dark energy.
- Accelerating expansion.
 [Riess et al. ’98; Perlmutter et al. ’98]
4.6% visible matter.

[Komatsu et al. '09]

22.8% dark matter?

- Galaxy rotation curves.
 [de Blok, Bosma '02]
- Anomalous light deflection.
 [Wambsganss '98]

72.6% dark energy?

- Accelerating expansion.
 [Riess et al. '98; Perlmutter et al. '98]

⇒ Problem: What are dark matter and dark energy?
Explanations for the dark universe

Particle physics:

- **Dark matter:** [Bertone, Hooper, Silk '05]
 - Weakly interacting massive particles (WIMPs). [Ellis et al. '84]
 - Axions. [Preskill, Wise, Wilczek '83]
 - Massive compact halo objects (MACHOs). [Paczynski '86]

- **Dark energy:** [Copeland, Sami, Tsujikawa '06]
 - Quintessence. [Peebles, Ratra '88]
 - K-essense. [Chiba, Okabe, Yamaguchi '00; Armendariz-Picon, Mukhanov, Steinhardt '01]
 - Chaplygin gas. [Kamenshchik, Moschella, Pasquier '01]

Gravity:

- Modified Newtonian dynamics (MOND). [Milgrom '83]
- Tensor-vector-scalar theories. [Bekenstein '04]
- Curvature corrections. [Schuller, Wohlfarth '05; Sotiriou, Faraoni '05]
- Dvali-Gabadadze-Porrati (DGP) model. [Dvali, Gabadadze, Porrati '00, Lue '06]
- Non-symmetric gravity. [Moffat '95]
- Area metric gravity. [Punzi, Schuller, Wohlfarth '07]
Explanations for the dark universe

- **Particle physics:**
 - **Dark matter:** [Bertone, Hooper, Silk '05]
 - Weakly interacting massive particles (WIMPs). [Ellis et al. '84]
 - Axions. [Preskill, Wise, Wilczek '83]
 - Massive compact halo objects (MACHOs). [Paczynski '86]
 - **Dark energy:** [Copeland, Sami, Tsujikawa '06]
 - Quintessence. [Peebles, Ratra '88]
 - K-essense. [Chiba, Okabe, Yamaguchi '00; Armendariz-Picon, Mukhanov, Steinhardt '01]
 - Chaplygin gas. [Kamenshchik, Moschella, Pasquier '01]

- **Gravity:**
 - Modified Newtonian dynamics (MOND). [Milgrom '83]
 - Tensor-vector-scalar theories. [Bekenstein '04]
 - Curvature corrections. [Schuller, Wohlfarth '05; Sotiriou, Faraoni '05]
 - Dvali-Gabadadze-Porrati (DGP) model. [Dvali, Gabadadze, Porrati '00, Lue '06]
 - Non-symmetric gravity. [Moffat '95]
 - Area metric gravity. [Punzi, Schuller, Wohlfarth '07]
 - **New idea:** repulsive gravity ⇔ negative mass!
Three types of mass! [Bondi '57]

- Active gravitational mass m_a - source of gravity: $\phi = -G_N \frac{m_a}{r}$.
- Passive gravitational mass m_p - reaction on gravity: $\vec{F} = -m_p \vec{\nabla} \phi$.
- Inertial mass m_i - relates force to acceleration: $\vec{F} = m_i \ddot{a}$.
Three types of mass! [Bondi ’57]

- Active gravitational mass m_a - source of gravity: $\phi = -G_N \frac{m_a}{r}$.
- Passive gravitational mass m_p - reaction on gravity: $\vec{F} = -m_p \vec{\nabla} \phi$.
- Inertial mass m_i - relates force to acceleration: $\vec{F} = m_i \vec{a}$.

Theory relates the different types of mass:
- Momentum conservation: $m_a \sim m_p$.
- Weak equivalence principle: $m_p \sim m_i$.

Gravity is always attractive.

Convention: unit ratios and signs such that $m_a = m_p = m_i > 0$.

Observations exist for visible mass only.
Mass in Newtonian gravity

- **Three types of mass!** [Bondi ’57]
 - Active gravitational mass m_a - source of gravity: $\phi = -G_N \frac{m_a}{r}$.
 - Passive gravitational mass m_p - reaction on gravity: $\vec{F} = -m_p \vec{\nabla} \phi$.
 - Inertial mass m_i - relates force to acceleration: $\vec{F} = m_i \vec{a}$.

- **Theory relates the different types of mass:**
 - Momentum conservation: $m_a \sim m_p$.
 - Weak equivalence principle: $m_p \sim m_i$.

- $m_a \sim m_p \sim m_i$ experimentally verified.

- **Gravity is always attractive.**

- **Convention:** unit ratios and signs such that $m_a = m_p = m_i > 0$.

Three types of mass! [Bondi ’57]

- Active gravitational mass m_a - source of gravity: $\phi = -G_N \frac{m_a}{r}$.
- Passive gravitational mass m_p - reaction on gravity: $\vec{F} = -m_p \vec{\nabla} \phi$.
- Inertial mass m_i - relates force to acceleration: $\vec{F} = m_i \vec{a}$.

Theory relates the different types of mass:

- Momentum conservation: $m_a \sim m_p$.
- Weak equivalence principle: $m_p \sim m_i$.

$m_a \sim m_p \sim m_i$ experimentally verified.

Gravity is always attractive.

Con Convention: unit ratios and signs such that $m_a = m_p = m_i > 0$.

Observations exist for visible mass only.
Dark universe from negative mass

- Idea for dark universe: standard model with $m_a = m_p = -m_i < 0$.
- Both copies couple only through gravity \Rightarrow “dark”.
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
Dark universe from negative mass

- Idea for dark universe: standard model with $m_a = m_p = -m_i < 0$.
- Both copies couple only through gravity \Rightarrow “dark”.
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
- Explanation of dark matter.
Dark universe from negative mass

- Idea for dark universe: standard model with $m_a = m_p = -m_i < 0$.
- Both copies couple only through gravity \Rightarrow “dark”.
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
- Explanation of dark matter.
Dark universe from negative mass

- Idea for dark universe: standard model with $m_a = m_p = -m_i < 0$.
- Both copies couple only through gravity \Rightarrow “dark”.
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
- Explanation of dark matter.

Explanation of dark energy.
Dark universe from negative mass

- Idea for dark universe: standard model with $m_a = m_p = -m_i < 0$.
- Both copies couple only through gravity ⇒ “dark”.
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
- Explanation of dark matter.

Explanation of dark energy.
Dark universe from negative mass

- Idea for dark universe: standard model with $m_a = m_p = -m_i < 0$.
- Both copies couple only through gravity \Rightarrow “dark”.
- Preserves momentum conservation.
- Breaks weak equivalence principle only for cross-interaction.
- Explanation of dark matter.

Explanation of dark energy.

\Rightarrow Advantage: Dark copy Ψ^- of well-known standard model Ψ^+:
- No new parameters.
- No unknown masses.
- No unknown couplings.
Positive and negative test masses follow different trajectories.
Two types of test mass trajectories \Rightarrow two types of observers.
Observer trajectories are autoparallels of two connections ∇^\pm.
Observers attach parallely transported frames to their curves.
Frames are orthonormalized using two metric tensors g_{ab}^\pm.

No-go theorem forbids bimetric repulsive gravity.

[MH, M. Wohlfarth '09]

Solution:
$N \geq 3$ metrics g_{Iab} and standard model copies Ψ_I.

Manuel Hohmann (Tartu Ülikool)
Multimetric gravity
Positive and negative test masses follow different trajectories.

Two types of test mass trajectories \Rightarrow two types of observers.

Observer trajectories are autoparallels of two connections ∇^\pm.

Observers attach parallely transported frames to their curves.

Frames are orthonormalized using two metric tensors g_{ab}^\pm.

No-go theorem forbids bimetric repulsive gravity. [MH, M. Wohlfarth ‘09]

Solution: $N \geq 3$ metrics g_{ab}^I and standard model copies Ψ^I.
Action and equations of motion

- N metric tensors and N standard model copies.
- Matter action: sum of standard model actions.
- Gravitational action:

$$S_G[g^1, \ldots, g^N] = \frac{1}{2} \int d^4x \sqrt{g_0} \left[\sum_{I,J=1}^{N} (x + y \delta^{IJ}) g^{lij} R_{ij}^J + F(S^{IJ}) \right].$$

- Symmetric volume form $g_0 = (g^1 g^2 \ldots g^N)^{1/N}$.
- $F(S^{IJ})$ quadratic in connection difference tensors $S^{IJ} = \Gamma^I - \Gamma^J$.

\[\Rightarrow\] Equations of motion:

$$T^I_{ab} = \sqrt{g_0} g^{I} \left[- \frac{1}{2} N g^{I} \sum_{J,K=1}^{N} (x + y \delta^{JK}) g_{Jij} R_{Kj}^I + \sum_{J=1}^{N} (x + y \delta^{IJ}) g_{Iab} \right].$$

\[\Rightarrow\] Repulsive Newtonian limit for $N \geq 3$.

[MH, M. Wohlfarth '10]
Action and equations of motion

- N metric tensors and N standard model copies.
- Matter action: sum of standard model actions.
- Gravitational action:

$$S_G[g^1, \ldots, g^N] = \frac{1}{2} \int d^4x \sqrt{g_0} \left[\sum_{I,J=1}^{N} (x + y \delta^{IJ}) g^{lij} R_{ij}^J + F(S^{IJ}) \right].$$

- Symmetric volume form $g_0 = (g^1 g^2 \ldots g^N)^{1/N}$.
- $F(S^{IJ})$ quadratic in connection difference tensors $S^{IJ} = \Gamma^I - \Gamma^J$.

\Rightarrow Equations of motion:

$$T^I_{ab} = \sqrt{\frac{g_0}{g^I}} \left[- \frac{1}{2N} g^I_{ab} \sum_{J,K=1}^{N} (x + y \delta^{JK}) g^{lij} R^K_{ij} + \sum_{J=1}^{N} (x + y \delta^{IJ}) R^J_{ab} \right] + \text{terms linear in } \nabla^I S^{JK} + \text{terms quadratic in } S^{IJ}.$$

\Rightarrow Repulsive Newtonian limit for $N \geq 3$. [MH, M. Wohlfarth '10]
1. Introduction
2. Multimetric cosmology
3. Simulation of structure formation
4. Post-Newtonian consistency
5. Gravitational waves
6. Conclusion
Cosmological symmetry

- **Standard cosmology:** Robertson–Walker metrics
 \[g_I = -n_I^2(t) dt \otimes dt + a_I^2(t) \gamma_{\alpha\beta} dx^\alpha \otimes dx^\beta. \]
 - Lapse functions \(n_I \).
 - Scale factors \(a_I \).
 - Spatial metric \(\gamma_{\alpha\beta} \) of constant curvature \(k \in \{-1, 0, 1\} \) and Riemann tensor \(R(\gamma)_{\alpha\beta\gamma\delta} = 2k \gamma_{\alpha[\gamma\gamma\delta]\beta}. \)

- **Perfect fluid matter:**
 \[T^{l\,ab} = (\rho_l + p_l) u^{la} u^{lb} + p_l g^{lab}. \]
- **Normalization:** \(g^{l}_{ab} u^{la} u^{lb} = -1. \)
Simple cosmological model

- Early universe: radiation; late universe: dust.
- Copernican principle: common evolution for all matter sectors.
Simple cosmological model

- Early universe: radiation; late universe: dust.
- Copernican principle: common evolution for all matter sectors.
 \[\Rightarrow \] Single effective energy-momentum tensor \(T^I_{ab} = T_{ab} \).
 \[\Rightarrow \] Single effective metric \(g^I_{ab} = g_{ab} \).
 \[\Rightarrow \] Common scale factors \(a^I = a \) and lapse functions \(n^I = n \).
 \[\Rightarrow \] Rescale cosmological time to set \(n = 1 \).
 \[\Rightarrow \] Ricci tensors \(R^I_{ab} = R_{ab} \) become equal.
 \[\Rightarrow \] Connection differences \(S^I{J}^i{jk} = 0 \) vanish.
Simple cosmological model

- Early universe: radiation; late universe: dust.
- Copernican principle: common evolution for all matter sectors.
 \[\Rightarrow \text{Single effective energy-momentum tensor } T^I_{ab} = T_{ab}. \]
 \[\Rightarrow \text{Single effective metric } g^I_{ab} = g_{ab}. \]
 \[\Rightarrow \text{Common scale factors } a^I = a \text{ and lapse functions } n^I = n. \]
 \[\Rightarrow \text{Rescale cosmological time to set } n \equiv 1. \]
 \[\Rightarrow \text{Ricci tensors } R^I_{ab} = R_{ab} \text{ become equal.} \]
 \[\Rightarrow \text{Connection differences } S^{IJ}i_{jk} = 0 \text{ vanish.} \]
 \[\Rightarrow \text{Equations of motion simplify:} \]
 \[(2 - N)T_{ab} = R_{ab} - \frac{1}{2}Rg_{ab}. \]
 \[\Rightarrow \text{Negative effective gravitational constant for early / late universe.} \]
Cosmological equations of motion

- Insert Robertson–Walker metric into equations of motion:

\[
\rho = \frac{3}{2 - N} \left(\frac{\ddot{a}^2}{a^2} + \frac{k}{a^2} \right),
\]

\[
p = -\frac{1}{2 - N} \left(2\frac{\dot{a}}{a} + \frac{\ddot{a}^2}{a^2} + \frac{k}{a^2} \right).
\]

⇒ Positive matter density \(\rho > 0 \) requires \(k = -1 \) and \(\ddot{a}^2 < 1 \).

⇒ No solutions for \(k = 0 \) or \(k = 1 \).
Cosmological equations of motion

- Insert Robertson–Walker metric into equations of motion:

\[
\rho = \frac{3}{2 - N} \left(\frac{\dot{a}^2}{a^2} + \frac{k}{a^2} \right),
\]

\[
p = -\frac{1}{2 - N} \left(2\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} + \frac{k}{a^2} \right).
\]

⇒ Positive matter density \(\rho > 0 \) requires \(k = -1 \) and \(\dot{a}^2 < 1 \).

⇒ No solutions for \(k = 0 \) or \(k = 1 \).

- Acceleration equation:

\[
\frac{\ddot{a}}{a} = \frac{N - 2}{6} (\rho + 3p).
\]

⇒ Acceleration must be positive for standard model matter.
Explicit solution

- Equation of state: \(p = \omega \rho \); dust: \(\omega = 0 \), radiation: \(\omega = 1/3 \).
- General solution using conformal time \(\eta \) defined by \(dt = a \, d\eta \):

\[
a = a_0 \left(\cosh \left(\frac{3\omega + 1}{2} (\eta - \eta_0) \right) \right)^{\frac{2}{3\omega + 1}},
\]

\[
\rho = \frac{3}{(N - 2)a_0^2} \left(\cosh \left(\frac{3\omega + 1}{2} (\eta - \eta_0) \right) \right)^{-\frac{6\omega + 6}{3\omega + 1}}.
\]

\(\Rightarrow \) Positive minimal radius \(a_0 \). [MH, M. Wohlfarth '10]
Cosmological evolution
Formation of galactic structures not fully understood:
- Missing dwarf problem. [Moore et al. '99]
- Core-cusp-problem. [Dubinski, Carlberg '91; Navarro et al. '96]

Structure formation in multimetric gravity:
- Perturbation of cosmological background solution.
- Model dust matter by point particles.
- Interaction between point particles given by Newtonian limit.

Implementation:
- Large particle number requires high computing power. ⇒ Use GPU computing!

Results:
- Galactic clusters and filament-like structures.
- Seemingly empty voids contain “invisible” matter. ⇒ Repulsive gravity effects from galactic voids.
- Negative gravitational lenses in galactic voids?
Structure formation - all matter types
Structure formation - all matter types
Structure formation - only visible matter
Structure formation - only visible matter
Outline

1. Introduction
2. Multimetric cosmology
3. Simulation of structure formation
4. Post-Newtonian consistency
5. Gravitational waves
6. Conclusion
Obtain “fingerprint” of single-metric gravity theories. [Thorne, Will ’71; Will ’93]
⇒ 10 parameters, constrained by solar system experiments.
Obtain “fingerprint” of single-metric gravity theories. [Thorne, Will ’71; Will ’93]

- 10 parameters, constrained by solar system experiments.

Extension to multimetric gravity theories. [MH, M. Wohlfarth ’10]

- Additional 14 unobserved parameters.

- 8 parameters can be obtained from linearized field equations.
Obtain “fingerprint” of single-metric gravity theories. [Thorne, Will ’71; Will ’93]

⇒ 10 parameters, constrained by solar system experiments.

⇒ Extension to multimetric gravity theories. [MH, M. Wohlfarth ’10]

⇒ Additional 14 unobserved parameters.

⇒ 8 parameters can be obtained from linearized field equations.

Example: multimetric action can be chosen such that

- $\alpha^+ = 1, \theta^+ = 0$: standard PPN gauge choice.
- $\gamma^+ = 1, \sigma^+_+ = -2$: experimental consistency.
- $\alpha^- = -1$: repulsive Newtonian limit.
- $\gamma^- = -1, \theta^- = 0, \sigma^-_- = 2$: additional “dark” PPN parameters.
Gravitational action with parameters x, y, u, v, w, r, s [MH '12]:

$$S_G = \frac{1}{16\pi} \int d^4x \sqrt{g_0} \left[x \sum_{I,J=1}^{N} g^{ij} R_{ij}^J + \sum_{l=1}^{N} g^{ij} \left(y R_{ij}^l + u \tilde{S}_{ij}^l \tilde{S}_{ij}^l
ight) + v \tilde{S}_{ik}^l \tilde{S}_{ij}^l + w \tilde{S}_{ik}^m \tilde{S}_{mj}^l \tilde{S}_{jk}^m + g^{kl} g_{mn} \left(r \tilde{S}_{ik}^m \tilde{S}_{nj}^l + s \tilde{S}_{im}^l \tilde{S}_{jn}^k \tilde{S}_{kl}^m \right) \right].$$

Restriction of input parameters by PPN consistency:

$$y = \frac{1}{2 - N} - Nx, \quad v = \frac{6 - N}{4 - 2N} - Nx + 2u,$$

$$w = -\frac{6 - N}{4 - 2N} + Nx - 3u, \quad r = -\frac{1}{2 - N} + Nx - u.$$

\Rightarrow PPN consistent theory with parameters x, u, s.

1. Introduction
2. Multimetric cosmology
3. Simulation of structure formation
4. Post-Newtonian consistency
5. Gravitational waves
6. Conclusion
Perturbation ansatz: $g^l = \eta + h^l$.

Most general linearized vacuum field equations:

$$P \cdot \partial^p \partial_{(a h^b)p} + Q \cdot \Box h_{ab} + R \cdot \partial_a \partial_b h + M \cdot \partial^p \partial^q h_{pq} \eta_{ab} + N \cdot \Box h \eta_{ab} = 0$$

Diagonalize parameter matrices.

\Rightarrow 10 parameters $P_1, P_0, Q_1, Q_0, R_1, R_0, M_1, M_0, N_1, N_0$.
Perturbation ansatz: $g^I = \eta + h^I$.

Most general linearized vacuum field equations:

$$P \cdot \partial^p \partial_{(a}h_{b)p} + Q \cdot \Box h_{ab} + R \cdot \partial_a \partial_b h + M \cdot \partial^p \partial^q h_{pq} \eta_{ab} + N \cdot \Box h \eta_{ab} = 0$$

Diagonalize parameter matrices.

⇒ 10 parameters $P_1, P_0, Q_1, Q_0, R_1, R_0, M_1, M_0, N_1, N_0$.

Calculate wave-like solutions of vacuum field equations.

⇒ Gravitational waves propagate at the speed of light.
Polarizations and E(2) class

- Polarizations classified by reps. of E(2). [Eardley, Lee, Lightman et al. '73]
- E(2) class depends on parameters P_i, R_i, M_i.

$\begin{align*}
N_2 & \quad P = 0 \\
N_3 & \quad P + 2R \neq 0 \\
\text{III}_5 & \quad M = 0
\end{align*}$

2 tensors +1 scalar +2 vectors +1 scalar
PPN consistent multimetric example

Parameter values \cite{MH12}:

\[
\begin{align*}
 P_1 &= -2Q_1 = -2R_1 = -2M_1 = 2N_1 = \frac{1}{2 - N}, \\
 P_0 &= \frac{6 - N}{4 - 2N} - 2Nx + 2u - 2s, \\
 N_0 &= \frac{4 - N}{8 - 4N} + \frac{-Nx + u - s}{2}, \\
 Q_0 &= -\frac{1}{4}, \\
 R_0 &= M_0 = -\frac{6 - N}{8 - 4N} + Nx - u + s.
\end{align*}
\]
PPN consistent multimetric example

Parameter values [MH’12]:

\[P_1 = -2Q_1 = -2R_1 = -2M_1 = 2N_1 = \frac{1}{2 - N}, \]

\[P_0 = \frac{6 - N}{4 - 2N} - 2Nx + 2u - 2s, \quad N_0 = \frac{4 - N}{8 - 4N} + \frac{-Nx + u - s}{2}, \]

\[Q_0 = -\frac{1}{4}, \quad R_0 = M_0 = -\frac{6 - N}{8 - 4N} + Nx - u + s. \]

- Dependent only on single parameter \(p := Nx - u + s \).

Generic case:

- E(2) class for \(h^1 \): \(N_2 \)
- E(2) class for \(h^i \): \(N_2 \)

\[\Rightarrow \text{Effective E}(2) \text{ class: } N_2 \]

Special case \(p = \frac{6-N}{8-4N} \):

- E(2) class for \(h^1 \): \(N_2 \)
- E(2) class for \(h^i \): \(\Pi_6 \)

\[\Rightarrow \text{Effective E}(2) \text{ class: } \Pi_6 \]
Idea: Repulsive gravity might explain dark matter & dark energy.

⇒ Multimetric repulsive gravity with $N \geq 3$ by explicit construction.
⇒ Cosmology features late-time acceleration and big bounce.
⇒ Structure formation features clusters and voids.
⇒ Repulsive gravity is consistent with solar system experiments.
⇒ Gravitational waves are null.
⇒ $E(2)$ class can be one of N_2, N_3, III_5, II_6.
Outlook

- Work in progress:
 - Emission of gravitational waves from binary systems.
 - Post-Newtonian approximation of axially symmetric solutions.

Future work:
- Remaining PPN parameters from full multimetric PPN formalism.
- Restrict multimetric gravity theories by additional PPN bounds.
- Further construction principles, e.g., higher symmetries.
- Construct further exact solutions.
- Stability of cosmological solutions.
- Obtain restrictions from cosmological perturbation theory.
Outlook

Work in progress:
- Emission of gravitational waves from binary systems.
- Post-Newtonian approximation of axially symmetric solutions.

Future work:
- Remaining PPN parameters from full multimetric PPN formalism.
- Restrict multimetric gravity theories by additional PPN bounds.
- Further construction principles, e.g., higher symmetries.
- Construct further exact solutions.
- Stability of cosmological solutions.
- Obtain restrictions from cosmological perturbation theory.