Gauge-invariant approach to the parameterized post-Newtonian formalism and the post-Newtonian limit of teleparallel gravity

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

Models of Gravity Workshop, 25. September 2019

Outline

Introduction

- 2 Gauge-invariant higher perturbations
- Parametrized post-Newtonian formalism
 - Gauge-invariant PPN formalism
- 5 Tetrad and teleparallel PPN formalisms
- 6 PPN limits of teleparallel theories

Conclusion

Outline

Introduction

- 2) Gauge-invariant higher perturbations
- Parametrized post-Newtonian formalism
- 4 Gauge-invariant PPN formalism
- 5 Tetrad and teleparallel PPN formalisms
- PPN limits of teleparallel theories

7 Conclusion

- Open questions in gravity theory and cosmology:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
 - Unification with quantum theory and other fundamental forces.

- Open questions in gravity theory and cosmology:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
 - Unification with quantum theory and other fundamental forces.
- Possible solutions addressing these questions:
 - Additional matter fields.
 - Modification of gravitational dynamics.
 - More general geometric structures to model gravity.

- Open questions in gravity theory and cosmology:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
 - Unification with quantum theory and other fundamental forces.
- Possible solutions addressing these questions:
 - Additional matter fields.
 - Modification of gravitational dynamics.
 - More general geometric structures to model gravity.
- Things to (approximately) preserve in a modified theory:
 - Notions of observers, clocks, measurement rods.
 - Weak equivalence principle universality of free fall.
 - Conservation of total energy-momentum.
 - Local position and Lorentz invariance.
 - Consistency with solar system observations.

- Open questions in gravity theory and cosmology:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
 - Unification with quantum theory and other fundamental forces.
- Possible solutions addressing these questions:
 - Additional matter fields.
 - Modification of gravitational dynamics.
 - More general geometric structures to model gravity.
- Things to (approximately) preserve in a modified theory:
 - Notions of observers, clocks, measurement rods.
 - Weak equivalence principle universality of free fall.
 - Conservation of total energy-momentum.
 - Local position and Lorentz invariance.
 - Consistency with solar system observations.
- ⇒ Conditions arising on viable theories:
 - Diffeomorphism invariance / background independence.
 - Well-defined causal structure.
 - Length of trajectories and geodesic motion.

- Open questions in gravity theory and cosmology:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
 - Unification with quantum theory and other fundamental forces.
- Possible solutions addressing these questions:
 - Additional matter fields.
 - Modification of gravitational dynamics.
 - More general geometric structures to model gravity.
- Things to (approximately) preserve in a modified theory:
 - Notions of observers, clocks, measurement rods.
 - Weak equivalence principle universality of free fall.
 - Conservation of total energy-momentum.
 - Local position and Lorentz invariance.
 - Consistency with solar system observations.
- ⇒ Conditions arising on viable theories:
 - Diffeomorphism invariance / background independence.
 - Well-defined causal structure.
 - Length of trajectories and geodesic motion.
- ⇒ Metric theories of gravity.

- Parametrized post-Newtonian formalism:
 - Weak-field approximation of metric gravity theories.
 - Assumes particular coordinate system ("universe rest frame").
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.

- Parametrized post-Newtonian formalism:
 - Weak-field approximation of metric gravity theories.
 - Assumes particular coordinate system ("universe rest frame").
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.
- → Extensions of the PPN formalism:
 - More fundamental fields constituting the metric.
 - More than one dynamical metric.
 - Diffeomorphism invariant / purely geometric formalism.

- Parametrized post-Newtonian formalism:
 - Weak-field approximation of metric gravity theories.
 - Assumes particular coordinate system ("universe rest frame").
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.
- → Extensions of the PPN formalism:
 - More fundamental fields constituting the metric.
 - More than one dynamical metric.
 - Diffeomorphism invariant / purely geometric formalism.
- → Improvements presented here:
 - Use gauge-invariant higher order perturbation theory.
 - · Allow for tetrad instead of metric as fundamental field.

Introduction

- 2 Gauge-invariant higher perturbations
 - Parametrized post-Newtonian formalism
 - 4 Gauge-invariant PPN formalism
- 5 Tetrad and teleparallel PPN formalisms
- PPN limits of teleparallel theories

7 Conclusion

• Reference spacetime:

- Manifold M_0 with metric $g^{(0)}$ and coordinates (x^{μ}) .
- Usually some highly symmetric standard spacetime:
 - · maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - · cosmological (background) solution of a gravity theory

Reference spacetime:

- Manifold M_0 with metric $g^{(0)}$ and coordinates (x^{μ}) .
- Usually some highly symmetric standard spacetime:
 - · maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - · cosmological (background) solution of a gravity theory
- Physical spacetime:
 - Manifold *M* with metric *g*.
 - No preferred / canonical choice of coordinates.

Reference spacetime:

- Manifold M_0 with metric $g^{(0)}$ and coordinates (x^{μ}) .
- Usually some highly symmetric standard spacetime:
 - · maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - · cosmological (background) solution of a gravity theory
- Physical spacetime:
 - Manifold *M* with metric *g*.
 - No preferred / canonical choice of coordinates.
- \oint No canonical relation between physical and reference spacetime.

• Reference spacetime:

- Manifold M_0 with metric $g^{(0)}$ and coordinates (x^{μ}) .
- Usually some highly symmetric standard spacetime:
 - · maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - · cosmological (background) solution of a gravity theory
- Physical spacetime:
 - Manifold *M* with metric *g*.
 - No preferred / canonical choice of coordinates.
- 7 No canonical relation between physical and reference spacetime.
 - 1. No identification of points on M and M_0 : no coordinates on M.

• Reference spacetime:

- Manifold M_0 with metric $g^{(0)}$ and coordinates (x^{μ}) .
- Usually some highly symmetric standard spacetime:
 - · maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - · cosmological (background) solution of a gravity theory
- Physical spacetime:
 - Manifold *M* with metric *g*.
 - No preferred / canonical choice of coordinates.
- 7 No canonical relation between physical and reference spacetime.
 - 1. No identification of points on M and M_0 : no coordinates on M.
 - 2. No possibility to compare g and $g^{(0)}$: different manifolds.

Definition of gauge

A gauge is a diffeomorphism $\mathcal{X} : M_0 \to M$.

Definition of gauge

A gauge is a diffeomorphism $\mathcal{X} : M_0 \to M$.

- 1. Identification of points on M and M_0 :
 - Recall that a diffeomorphism is a bijective mapping.
 - Coordinates ("point labels") can be carried from M_0 to M.

Definition of gauge

A gauge is a diffeomorphism $\mathcal{X} : M_0 \to M$.

- 1. Identification of points on M and M_0 :
 - Recall that a diffeomorphism is a bijective mapping.
 - Coordinates ("point labels") can be carried from M_0 to M.
- 2. Comparison between reference and physical metric:
 - Define pullback $\mathcal{X}g = \mathcal{X}^*g$ of the metric g to M_0 .
 - ${}^{\mathcal{X}}g$ and $g^{(0)}$ are tensors on the same manifold M_0 .

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_{\epsilon}$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_{ϵ} is defined on its own M_{ϵ} .
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0 .
 - ⇒ Family of physical spacetimes $(M_{\epsilon}, g_{\epsilon})$.

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_{\epsilon}$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_{ϵ} is defined on its own M_{ϵ} .
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0 .
 - ⇒ Family of physical spacetimes $(M_{\epsilon}, g_{\epsilon})$.
- Aim: perturbative expansion of g_{ϵ} in ϵ around $g^{(0)}$.

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_{\epsilon}$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_{ϵ} is defined on its own M_{ϵ} .
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0 .
 - ⇒ Family of physical spacetimes $(M_{\epsilon}, g_{\epsilon})$.
- Aim: perturbative expansion of g_{ϵ} in ϵ around $g^{(0)}$.
- \sharp Metrics g_{ϵ} are defined on different manifolds for different ϵ .

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_{\epsilon}$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_{ϵ} is defined on its own M_{ϵ} .
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0 .
 - ⇒ Family of physical spacetimes $(M_{\epsilon}, g_{\epsilon})$.
- Aim: perturbative expansion of g_{ϵ} in ϵ around $g^{(0)}$.
- # Metrics g_{ϵ} are defined on different manifolds for different ϵ .
- \Rightarrow Use gauge to relate different manifolds:
 - Family of diffeomorphisms $\mathcal{X}_{\epsilon}: M_0 \rightarrow M_{\epsilon}$.
 - Assume $\mathcal{X}_0 = id_{M_0}$ on the reference spacetime.

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_{\epsilon}$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_{ϵ} is defined on its own M_{ϵ} .
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0 .
 - ⇒ Family of physical spacetimes $(M_{\epsilon}, g_{\epsilon})$.
- Aim: perturbative expansion of g_{ϵ} in ϵ around $g^{(0)}$.
- # Metrics g_{ϵ} are defined on different manifolds for different ϵ .
- ⇒ Use gauge to relate different manifolds:
 - Family of diffeomorphisms $\mathcal{X}_{\epsilon}: M_0 \rightarrow M_{\epsilon}$.
 - Assume $\mathcal{X}_0 = id_{\mathcal{M}_0}$ on the reference spacetime.
 - Perturbative expansion:
 - Pullback $\mathcal{X}g_{\epsilon} = \mathcal{X}_{\epsilon}^*g_{\epsilon}$ defined on M_0 .

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_{\epsilon}$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_{ϵ} is defined on its own M_{ϵ} .
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0 .
 - ⇒ Family of physical spacetimes $(M_{\epsilon}, g_{\epsilon})$.
- Aim: perturbative expansion of g_{ϵ} in ϵ around $g^{(0)}$.
- # Metrics g_{ϵ} are defined on different manifolds for different ϵ .
- ⇒ Use gauge to relate different manifolds:
 - Family of diffeomorphisms $\mathcal{X}_{\epsilon}: M_0 \rightarrow M_{\epsilon}$.
 - Assume $\mathcal{X}_0 = id_{M_0}$ on the reference spacetime.
 - Perturbative expansion:
 - Pullback $\mathcal{X}g_{\epsilon} = \mathcal{X}_{\epsilon}^*g_{\epsilon}$ defined on M_0 .
 - Introduce series expansion in ϵ :

$$^{\mathcal{X}}\boldsymbol{g}_{\epsilon} = \sum_{k=0}^{\infty} \frac{\epsilon^{k}}{k!} \left. \frac{\partial^{k \mathcal{X}} \boldsymbol{g}_{\epsilon}}{\partial \epsilon^{k}} \right|_{\epsilon=0} = \sum_{k=0}^{\infty} \frac{\epsilon^{k}}{k!} \,^{\mathcal{X}} \boldsymbol{g}^{(k)} \,.$$

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_{\epsilon}$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_{ϵ} is defined on its own M_{ϵ} .
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0 .
 - ⇒ Family of physical spacetimes $(M_{\epsilon}, g_{\epsilon})$.
- Aim: perturbative expansion of g_{ϵ} in ϵ around $g^{(0)}$.
- # Metrics g_{ϵ} are defined on different manifolds for different ϵ .
- ⇒ Use gauge to relate different manifolds:
 - Family of diffeomorphisms $\mathcal{X}_{\epsilon}: M_0 \rightarrow M_{\epsilon}$.
 - Assume $\mathcal{X}_0 = id_{M_0}$ on the reference spacetime.
 - Perturbative expansion:
 - Pullback $\mathcal{X} g_{\epsilon} = \mathcal{X}_{\epsilon}^* g_{\epsilon}$ defined on M_0 .
 - Introduce series expansion in ϵ :

$$^{\mathcal{X}}\boldsymbol{g}_{\epsilon} = \sum_{k=0}^{\infty} \frac{\epsilon^{k}}{k!} \left. \frac{\partial^{k \, \mathcal{X}} \boldsymbol{g}_{\epsilon}}{\partial \epsilon^{k}} \right|_{\epsilon=0} = \sum_{k=0}^{\infty} \frac{\epsilon^{k}}{k!} \, ^{\mathcal{X}} \boldsymbol{g}^{(k)} \, .$$

• Series coefficients ${}^{\mathcal{X}}g^{(k)}$ depend on gauge choice \mathcal{X} .

• Consider two different gauges $\mathcal{X}_{\epsilon}: M_0 \to M_{\epsilon}$ and $\mathcal{Y}_{\epsilon}: M_0 \to M_{\epsilon}$.

- Consider two different gauges $\mathcal{X}_{\epsilon}: M_0 \to M_{\epsilon}$ and $\mathcal{Y}_{\epsilon}: M_0 \to M_{\epsilon}$.
- ⇒ One-parameter family $\Phi_{\epsilon} = \mathcal{X}_{\epsilon}^{-1} \circ \mathcal{Y}_{\epsilon}$ of diffeomorphisms.

- Consider two different gauges $\mathcal{X}_{\epsilon}: M_0 \to M_{\epsilon}$ and $\mathcal{Y}_{\epsilon}: M_0 \to M_{\epsilon}$.
- ⇒ One-parameter family $\Phi_{\epsilon} = \mathcal{X}_{\epsilon}^{-1} \circ \mathcal{Y}_{\epsilon}$ of diffeomorphisms.
- $f Φ_{\epsilon}$: $M_0 → M_0$ is not a one-parameter group:
 - In general has $\Phi_{\epsilon+\epsilon'} \neq \Phi_{\epsilon} \circ \Phi_{\epsilon'}$ and $\Phi_{-\epsilon} \neq \Phi_{\epsilon}^{-1}$.
 - Not generated by flow (integral curves) of a vector field.

- Consider two different gauges $\mathcal{X}_{\epsilon}: M_0 \to M_{\epsilon}$ and $\mathcal{Y}_{\epsilon}: M_0 \to M_{\epsilon}$.
- ⇒ One-parameter family $\Phi_{\epsilon} = \mathcal{X}_{\epsilon}^{-1} \circ \mathcal{Y}_{\epsilon}$ of diffeomorphisms.
- $f Φ_{\epsilon}$: $M_0 → M_0$ is not a one-parameter group:
 - In general has $\Phi_{\epsilon+\epsilon'} \neq \Phi_{\epsilon} \circ \Phi_{\epsilon'}$ and $\Phi_{-\epsilon} \neq \Phi_{\epsilon}^{-1}$.
 - Not generated by flow (integral curves) of a vector field.
- But there exists series of one-parameter groups $\phi_{\epsilon}^{(k)}$ such that:

$$\Phi_{\epsilon} = \cdots \phi_{\epsilon^k/k!}^{(k)} \circ \cdots \circ \phi_{\epsilon^2/2}^{(2)} \circ \phi_{\epsilon}^{(1)}.$$

- Consider two different gauges $\mathcal{X}_{\epsilon}: M_0 \to M_{\epsilon}$ and $\mathcal{Y}_{\epsilon}: M_0 \to M_{\epsilon}$.
- ⇒ One-parameter family $\Phi_{\epsilon} = \mathcal{X}_{\epsilon}^{-1} \circ \mathcal{Y}_{\epsilon}$ of diffeomorphisms.
- $f Φ_{\epsilon}$: $M_0 → M_0$ is not a one-parameter group:
 - In general has $\Phi_{\epsilon+\epsilon'} \neq \Phi_{\epsilon} \circ \Phi_{\epsilon'}$ and $\Phi_{-\epsilon} \neq \Phi_{\epsilon}^{-1}$.
 - Not generated by flow (integral curves) of a vector field.
- But there exists series of one-parameter groups $\phi_{\epsilon}^{(k)}$ such that:

$$\Phi_{\epsilon} = \cdots \phi_{\epsilon^{k}/k!}^{(k)} \circ \cdots \circ \phi_{\epsilon^{2}/2}^{(2)} \circ \phi_{\epsilon}^{(1)}.$$

⇒ Each one-parameter group $\phi_{\epsilon}^{(k)}$ generated by vector field $\xi^{(k)}$.

- Consider two different gauges $\mathcal{X}_{\epsilon}: M_0 \to M_{\epsilon}$ and $\mathcal{Y}_{\epsilon}: M_0 \to M_{\epsilon}$.
- ⇒ One-parameter family $\Phi_{\epsilon} = \mathcal{X}_{\epsilon}^{-1} \circ \mathcal{Y}_{\epsilon}$ of diffeomorphisms.
- $f Φ_{\epsilon}$: $M_0 → M_0$ is not a one-parameter group:
 - In general has $\Phi_{\epsilon+\epsilon'} \neq \Phi_{\epsilon} \circ \Phi_{\epsilon'}$ and $\Phi_{-\epsilon} \neq \Phi_{\epsilon}^{-1}$.
 - Not generated by flow (integral curves) of a vector field.
- But there exists series of one-parameter groups $\phi_{\epsilon}^{(k)}$ such that:

$$\Phi_{\epsilon} = \cdots \phi_{\epsilon^k/k!}^{(k)} \circ \cdots \circ \phi_{\epsilon^2/2}^{(2)} \circ \phi_{\epsilon}^{(1)}.$$

- ⇒ Each one-parameter group $\phi_{\epsilon}^{(k)}$ generated by vector field $\xi^{(k)}$.
- ⇒ Vector fields $\xi^{(k)}$ are "Taylor expansion" coefficients of Φ_{ϵ} .

• Metrics in different gauges are related:

$${}^{\mathcal{Y}}g_{\epsilon} = \sum_{l_1=0}^{\infty} \cdots \sum_{l_k=0}^{\infty} \cdots \frac{\epsilon^{l_1+\cdots+kl_k+\cdots}}{(1!)^{l_1}\cdots(k!)^{l_k}\cdots l_1!\cdots l_k!\cdots} \mathfrak{L}_{\xi_{(1)}}^{l_1}\cdots \mathfrak{L}_{\xi_{(k)}}^{l_k}\cdots {}^{\mathcal{X}}g_{\epsilon}.$$

• Metrics in different gauges are related:

$${}^{\mathcal{Y}}g_{\epsilon} = \sum_{l_1=0}^{\infty} \cdots \sum_{l_k=0}^{\infty} \cdots \frac{\epsilon^{l_1+\cdots+kl_k+\cdots}}{(1!)^{l_1}\cdots(k!)^{l_k}\cdots l_1!\cdots l_k!\cdots} \mathfrak{L}_{\xi_{(1)}}^{l_1}\cdots \mathfrak{L}_{\xi_{(k)}}^{l_k}\cdots {}^{\mathcal{X}}g_{\epsilon}.$$

⇒ Relation of Taylor coefficients:

$${}^{\mathcal{Y}}g^{(k)} = \sum_{0 \le l_1 + 2l_2 + \ldots \le k} \frac{k!}{(k - l_1 - 2l_2 - \ldots)!(1!)^{l_1}(2!)^{l_2} \cdots l_1! l_2! \cdots} \mathfrak{L}^{l_1}_{\xi_{(1)}} \cdots \mathfrak{L}^{l_k}_{\xi_{(k)}} \cdots {}^{\mathcal{X}}g^{(k - l_1 - 2l_2 - \ldots)}.$$

Gauge invariant perturbations

- Choose a fixed "distinguished" gauge $S_{\epsilon}: M_0 \rightarrow M_{\epsilon}$:
 - E.g., impose gauge conditions on the metric.
 - Examples: harmonic gauge used for GWs, standard PPN gauge.
- Choose a fixed "distinguished" gauge $S_{\epsilon}: M_0 \rightarrow M_{\epsilon}$:
 - E.g., impose gauge conditions on the metric.
 - Examples: harmonic gauge used for GWs, standard PPN gauge.
- Define gauge-invariant metric $\mathbf{g}_{\epsilon} = {}^{\mathcal{S}}g_{\epsilon} = \mathcal{S}_{\epsilon}^{*}g_{\epsilon}$.

- Choose a fixed "distinguished" gauge $S_{\epsilon}: M_0 \rightarrow M_{\epsilon}$:
 - E.g., impose gauge conditions on the metric.
 - Examples: harmonic gauge used for GWs, standard PPN gauge.
- Define gauge-invariant metric $\mathbf{g}_{\epsilon} = {}^{\mathcal{S}} g_{\epsilon} = \mathcal{S}_{\epsilon}^* g_{\epsilon}$.
- Metric in arbitrary gauge X:

$${}^{\mathcal{X}}\boldsymbol{g}_{\epsilon} = \sum_{l_1=0}^{\infty} \cdots \sum_{l_k=0}^{\infty} \cdots \frac{\epsilon^{l_1+\cdots+kl_k+\cdots}}{(1!)^{l_1}\cdots(k!)^{l_k}\cdots l_1!\cdots l_k!\cdots} \boldsymbol{\mathfrak{L}}_{X_{(1)}}^{l_1}\cdots \boldsymbol{\mathfrak{L}}_{X_{(k)}}^{l_k}\cdots \boldsymbol{\mathfrak{g}}_{\epsilon} \,.$$

- Choose a fixed "distinguished" gauge $S_{\epsilon}: M_0 \rightarrow M_{\epsilon}$:
 - E.g., impose gauge conditions on the metric.
 - Examples: harmonic gauge used for GWs, standard PPN gauge.
- Define gauge-invariant metric $\mathbf{g}_{\epsilon} = {}^{\mathcal{S}} g_{\epsilon} = \mathcal{S}_{\epsilon}^* g_{\epsilon}$.
- Metric in arbitrary gauge X:

$${}^{\mathcal{X}}g_{\epsilon} = \sum_{l_1=0}^{\infty} \cdots \sum_{l_k=0}^{\infty} \cdots \frac{\epsilon^{l_1+\cdots+kl_k+\cdots}}{(1!)^{l_1}\cdots(k!)^{l_k}\cdots l_1!\cdots l_k!\cdots} \mathfrak{L}_{X_{(1)}}^{l_1}\cdots \mathfrak{L}_{X_{(k)}}^{l_k}\cdots \mathfrak{g}_{\epsilon}.$$

- Metric components split into two parts:
 - Gauge-invariant part g_{ϵ} : physical content.
 - Gauge defining vector fields $X_{(k)}$: coordinate choice.

- Choose a fixed "distinguished" gauge $S_{\epsilon}: M_0 \rightarrow M_{\epsilon}$:
 - E.g., impose gauge conditions on the metric.
 - Examples: harmonic gauge used for GWs, standard PPN gauge.
- Define gauge-invariant metric $\mathbf{g}_{\epsilon} = {}^{\mathcal{S}} g_{\epsilon} = \mathcal{S}_{\epsilon}^* g_{\epsilon}$.
- Metric in arbitrary gauge X:

$${}^{\mathcal{X}}g_{\epsilon} = \sum_{l_1=0}^{\infty} \cdots \sum_{l_k=0}^{\infty} \cdots \frac{\epsilon^{l_1+\cdots+kl_k+\cdots}}{(1!)^{l_1}\cdots(k!)^{l_k}\cdots l_1!\cdots l_k!\cdots} \mathbf{\hat{\Sigma}}_{X_{(1)}}^{l_1}\cdots \mathbf{\hat{\Sigma}}_{X_{(k)}}^{l_k}\cdots \mathbf{g}_{\epsilon}.$$

- Metric components split into two parts:
 - Gauge-invariant part g_{ϵ} : physical content.
 - Gauge defining vector fields $X_{(k)}$: coordinate choice.
- Number # of independent components:

$$\#(^{\mathcal{X}}g_{\epsilon}) = \#(\mathbf{g}_{\epsilon}) + \#(\mathbf{X}_{(k)}).$$

Outline

Introduction

- 2 Gauge-invariant higher perturbations
- Parametrized post-Newtonian formalism
 - Gauge-invariant PPN formalism
- 5 Tetrad and teleparallel PPN formalisms
- PPN limits of teleparallel theories

7 Conclusion

• Energy-momentum tensor of a perfect fluid:

 $T^{\mu\nu} = (\rho + \rho \Pi + \rho) u^{\mu} u^{\nu} + \rho g^{\mu\nu}.$

- Rest mass density ρ.
- Specific internal energy **Π**.
- Pressure p.
- Four-velocity u^{μ} .

• Energy-momentum tensor of a perfect fluid:

 $T^{\mu\nu} = (\rho + \rho \Pi + p) u^{\mu} u^{\nu} + p g^{\mu\nu}.$

- Rest mass density ρ.
- Specific internal energy Π.
- Pressure p.
- Four-velocity *u^μ*.
- Universe rest frame and slow-moving source matter:
 - Consider some gauge $\mathcal{X} : M_0 \to M$ ("universe rest frame").
 - $\circ~$ Pullback of metric and matter variables along $\mathcal{X}.$
 - Velocity of the source matter: $\chi v^{i} = \chi u^{i} / \chi u^{\bar{0}}$.
 - Assume that source matter is slow-moving: $|^{\mathcal{X}}\vec{v}| \ll 1$.

• Energy-momentum tensor of a perfect fluid:

 $T^{\mu\nu} = (\rho + \rho \Pi + p) u^{\mu} u^{\nu} + p g^{\mu\nu}.$

- Rest mass density ρ.
- Specific internal energy **Π**.
- Pressure *p*.
- Four-velocity *u^μ*.
- Universe rest frame and slow-moving source matter:
 - Consider some gauge $\mathcal{X} : M_0 \to M$ ("universe rest frame").
 - $\circ~$ Pullback of metric and matter variables along $\mathcal{X}.$
 - Velocity of the source matter: $\chi v^{i} = \chi u^{i} / \chi u^{0}$.
 - Assume that source matter is slow-moving: $|{}^{\mathcal{X}}\vec{v}| \ll 1$.
- Use $\epsilon = |\mathcal{X} \vec{v}|$ as perturbation parameter.

• Energy-momentum tensor of a perfect fluid:

 $T^{\mu\nu} = (\rho + \rho \Pi + p) u^{\mu} u^{\nu} + p g^{\mu\nu}.$

- Rest mass density $\rho \sim \mathcal{O}(2)$.
- Specific internal energy $\Pi \sim \mathcal{O}(2)$.
- Pressure $p \sim \mathcal{O}(4)$.
- Four-velocity u^{μ} .
- Universe rest frame and slow-moving source matter:
 - Consider some gauge $\mathcal{X} : M_0 \to M$ ("universe rest frame").
 - $\circ~$ Pullback of metric and matter variables along $\mathcal{X}.$
 - Velocity of the source matter: ${}^{\mathcal{X}}v^{i} = {}^{\mathcal{X}}u^{i}/{}^{\mathcal{X}}u^{0}$.
 - Assume that source matter is slow-moving: $|^{\mathcal{X}}\vec{v}| \ll 1$.
- Use $\epsilon = |\mathcal{X} \vec{v}|$ as perturbation parameter.
- Assign velocity orders $\mathcal{O}(n) \sim \epsilon^n$ to all quantities.

• Energy-momentum tensor of a perfect fluid:

 $T^{\mu\nu} = (\rho + \rho \Pi + \rho) u^{\mu} u^{\nu} + \rho g^{\mu\nu}.$

- Rest mass density $\rho \sim \mathcal{O}(2)$.
- Specific internal energy $\Pi \sim \mathcal{O}(2)$.
- Pressure $p \sim \mathcal{O}(4)$.
- Four-velocity u^{μ} .
- Universe rest frame and slow-moving source matter:
 - Consider some gauge $\mathcal{X} : M_0 \to M$ ("universe rest frame").
 - $\circ~$ Pullback of metric and matter variables along $\mathcal{X}.$
 - Velocity of the source matter: ${}^{\mathcal{X}}v^{i} = {}^{\mathcal{X}}u^{i}/{}^{\mathcal{X}}u^{\bar{0}}$.
 - Assume that source matter is slow-moving: $|^{\mathcal{X}}\vec{v}| \ll 1$.
- Use $\epsilon = |\mathcal{X} \vec{v}|$ as perturbation parameter.
- Assign velocity orders $\mathcal{O}(n) \sim \epsilon^n$ to all quantities.
- Quasi-static: assign additional $\mathcal{O}(1)$ to time derivatives ∂_0 .

$${}^{\mathcal{X}}g_{\mu\nu}={}^{\mathcal{X}}\overset{0}{g}_{\mu\nu}+{}^{\mathcal{X}}\overset{1}{g}_{\mu\nu}+{}^{\mathcal{X}}\overset{2}{g}_{\mu\nu}+{}^{\mathcal{X}}\overset{3}{g}_{\mu\nu}+{}^{\mathcal{X}}\overset{4}{g}_{\mu\nu}+\mathcal{O}(5)\,.$$

Post-Newtonian metric

• Standard post-Newtonian metric expansion:

$${}^{\mathcal{X}}g_{\mu\nu} = {}^{\mathcal{X}}\overset{0}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{1}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{2}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{3}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{4}{g}_{\mu\nu} + \mathcal{O}(5) \,.$$

• Note difference in notation: ${}^{\mathcal{X}}{}^{k}g = {}^{\mathcal{X}}g^{(k)}\epsilon^{k}/k!$.

$${}^{\mathcal{X}}g_{\mu\nu} = {}^{\mathcal{X}}{}^{0}_{g_{\mu\nu}} + {}^{\mathcal{X}}{}^{1}_{g_{\mu\nu}} + {}^{\mathcal{X}}{}^{2}_{g_{\mu\nu}} + {}^{\mathcal{X}}{}^{3}_{g_{\mu\nu}} + {}^{\mathcal{X}}{}^{4}_{g_{\mu\nu}} + \mathcal{O}(5) \,.$$

- Note difference in notation: ${}^{\mathcal{X}}{}^{k}g = {}^{\mathcal{X}}g^{(k)}\epsilon^{k}/k!$.
- Background metric given by Minkowski metric: ${}^{\mathcal{X}}\overset{0}{g}_{\mu\nu} = \eta_{\mu\nu}$.

$${}^{\mathcal{X}}g_{\mu\nu} = {}^{\mathcal{X}}\overset{0}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{1}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{2}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{3}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{4}{g}_{\mu\nu} + \mathcal{O}(5).$$

- Note difference in notation: ${}^{\mathcal{X}}{}^{k}g = {}^{\mathcal{X}}g^{(k)}\epsilon^{k}/k!$.
- Background metric given by Minkowski metric: ${}^{\mathcal{X}}\overset{0}{g}_{\mu\nu} = \eta_{\mu\nu}$.
- Higher than fourth velocity order $\mathcal{O}(4)$ is not considered.

$${}^{\mathcal{X}}g_{\mu\nu} = {}^{\mathcal{X}}\overset{0}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{1}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{2}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{3}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{4}{g}_{\mu\nu} + \mathcal{O}(5) \,.$$

- Note difference in notation: ${}^{\mathcal{X}}{}^{k}g = {}^{\mathcal{X}}g^{(k)}\epsilon^{k}/k!$.
- Background metric given by Minkowski metric: $\chi^{0}_{g\mu\nu} = \eta_{\mu\nu}$.
- Higher than fourth velocity order $\mathcal{O}(4)$ is not considered.
- Only certain components are relevant and non-vanishing:

$$\chi^{2}_{g_{00}}, \quad \chi^{2}_{g_{ij}}, \quad \chi^{3}_{g_{0i}}, \quad \chi^{4}_{g_{00}}, \quad \chi^{4}_{g_{ij}}.$$

$${}^{\mathcal{X}}g_{\mu\nu} = {}^{\mathcal{X}} \overset{0}{g}_{\mu\nu} + {}^{\mathcal{X}} \overset{1}{g}_{\mu\nu} + {}^{\mathcal{X}} \overset{2}{g}_{\mu\nu} + {}^{\mathcal{X}} \overset{3}{g}_{\mu\nu} + {}^{\mathcal{X}} \overset{4}{g}_{\mu\nu} + \mathcal{O}(5) \,.$$

- Note difference in notation: ${}^{\mathcal{X}}{}^{k}g = {}^{\mathcal{X}}g^{(k)}\epsilon^{k}/k!$.
- Background metric given by Minkowski metric: ${}^{\mathcal{X}}\overset{0}{g}_{\mu\nu} = \eta_{\mu\nu}$.
- Higher than fourth velocity order $\mathcal{O}(4)$ is not considered.
- Only certain components are relevant and non-vanishing:

• $\chi^{4}_{g_{ij}}$ not used in standard PPN formalism, but may couple.

• PPN formalism assumes fixed standard gauge \mathcal{P} .

- PPN formalism assumes fixed standard gauge \mathcal{P} .
- Metric in standard PPN gauge:

$$\begin{split} {}^{\mathcal{P}} \overset{2}{g}_{00} &= 2^{\mathcal{P}} U \,, \\ {}^{\mathcal{P}} \overset{2}{g}_{ij} &= 2\gamma^{\mathcal{P}} U \delta_{ij} \,, \\ {}^{\mathcal{P}} \overset{3}{g}_{0i} &= -\frac{1}{2} \big(3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi \big)^{\mathcal{P}} V_i - \frac{1}{2} \big(1 + \alpha_2 - \zeta_1 + 2\xi \big)^{\mathcal{P}} W_i \,, \\ {}^{\mathcal{P}} \overset{4}{g}_{00} &= -2\beta^{\mathcal{P}} U^2 + \big(2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi \big)^{\mathcal{P}} \Phi_1 + 2\big(1 + 3\gamma - 2\beta + \zeta_2 + \xi \big)^{\mathcal{P}} \Phi_2 \\ &\quad + 2\big(1 + \zeta_3 \big)^{\mathcal{P}} \Phi_3 + 2\big(3\gamma + 3\zeta_4 - 2\xi \big)^{\mathcal{P}} \Phi_4 - 2\xi^{\mathcal{P}} \Phi_W - \big(\zeta_1 - 2\xi \big)^{\mathcal{P}} \mathfrak{A} \,, \end{split}$$

- PPN formalism assumes fixed standard gauge \mathcal{P} .
- Metric in standard PPN gauge:

$$\begin{split} {}^{\mathcal{P}} \overset{2}{g}_{00} &= 2^{\mathcal{P}} U \,, \\ {}^{\mathcal{P}} \overset{2}{g}_{ij} &= 2\gamma^{\mathcal{P}} U \delta_{ij} \,, \\ {}^{\mathcal{P}} \overset{3}{g}_{0i} &= -\frac{1}{2} (3 + 4\gamma + \alpha_{1} - \alpha_{2} + \zeta_{1} - 2\xi)^{\mathcal{P}} V_{i} - \frac{1}{2} (1 + \alpha_{2} - \zeta_{1} + 2\xi)^{\mathcal{P}} W_{i} \,, \\ {}^{\mathcal{P}} \overset{4}{g}_{00} &= -2\beta^{\mathcal{P}} U^{2} + (2 + 2\gamma + \alpha_{3} + \zeta_{1} - 2\xi)^{\mathcal{P}} \Phi_{1} + 2(1 + 3\gamma - 2\beta + \zeta_{2} + \xi)^{\mathcal{P}} \Phi_{2} \\ &\quad + 2(1 + \zeta_{3})^{\mathcal{P}} \Phi_{3} + 2(3\gamma + 3\zeta_{4} - 2\xi)^{\mathcal{P}} \Phi_{4} - 2\xi^{\mathcal{P}} \Phi_{W} - (\zeta_{1} - 2\xi)^{\mathcal{P}} \mathfrak{A} \,, \end{split}$$

• Metric contains PPN parameters and PPN potentials.

- PPN formalism assumes fixed standard gauge \mathcal{P} .
- Metric in standard PPN gauge:

$$\begin{split} {}^{\mathcal{P}} \overset{2}{g}_{00} &= 2^{\mathcal{P}} U \,, \\ {}^{\mathcal{P}} \overset{2}{g}_{ij} &= 2\gamma^{\mathcal{P}} U \delta_{ij} \,, \\ {}^{\mathcal{P}} \overset{3}{g}_{0i} &= -\frac{1}{2} (3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi)^{\mathcal{P}} V_i - \frac{1}{2} (1 + \alpha_2 - \zeta_1 + 2\xi)^{\mathcal{P}} W_i \,, \\ {}^{\mathcal{P}} \overset{4}{g}_{00} &= -2\beta^{\mathcal{P}} U^2 + (2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi)^{\mathcal{P}} \Phi_1 + 2(1 + 3\gamma - 2\beta + \zeta_2 + \xi)^{\mathcal{P}} \Phi_2 \\ &\quad + 2(1 + \zeta_3)^{\mathcal{P}} \Phi_3 + 2(3\gamma + 3\zeta_4 - 2\xi)^{\mathcal{P}} \Phi_4 - 2\xi^{\mathcal{P}} \Phi_W - (\zeta_1 - 2\xi)^{\mathcal{P}} \mathfrak{A} \,, \end{split}$$

- Metric contains PPN parameters and PPN potentials.
- Properties of standard PPN metric:
 - Second-order spatial part $\mathcal{P}_{g_{ij}}^2$ is diagonal.

- PPN formalism assumes fixed standard gauge \mathcal{P} .
- Metric in standard PPN gauge:

$$\begin{split} {}^{\mathcal{P}} \overset{2}{g}_{00} &= 2^{\mathcal{P}} U \,, \\ {}^{\mathcal{P}} \overset{2}{g}_{ij} &= 2\gamma^{\mathcal{P}} U \delta_{ij} \,, \\ {}^{\mathcal{P}} \overset{3}{g}_{0i} &= -\frac{1}{2} (3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi)^{\mathcal{P}} V_i - \frac{1}{2} (1 + \alpha_2 - \zeta_1 + 2\xi)^{\mathcal{P}} W_i \,, \\ {}^{\mathcal{P}} \overset{4}{g}_{00} &= -2\beta^{\mathcal{P}} U^2 + (2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi)^{\mathcal{P}} \Phi_1 + 2(1 + 3\gamma - 2\beta + \zeta_2 + \xi)^{\mathcal{P}} \Phi_2 \\ &\quad + 2(1 + \zeta_3)^{\mathcal{P}} \Phi_3 + 2(3\gamma + 3\zeta_4 - 2\xi)^{\mathcal{P}} \Phi_4 - 2\xi^{\mathcal{P}} \Phi_W - (\zeta_1 - 2\xi)^{\mathcal{P}} \mathfrak{A} \,, \end{split}$$

- Metric contains PPN parameters and PPN potentials.
- Properties of standard PPN metric:
 - Second-order spatial part ${}^{\mathcal{P}}\overset{_{2}}{g}_{ij}$ is diagonal.
 - Fourth-order temporal part ${}^{\mathcal{P}}g_{00}^4$ does not contain potential \mathfrak{B} .

- γ : spatial curvature genrated by unit mass.
- β : non-linearity in gravity superposition law.
- $\alpha_1, \alpha_2, \alpha_3$: violation of local Lorentz invariance.
- $\alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4$: violation of energy-momentum conservation.
- ξ : violation of local position invariance.

- γ : spatial curvature genrated by unit mass.
- β : non-linearity in gravity superposition law.
- $\alpha_1, \alpha_2, \alpha_3$: violation of local Lorentz invariance.
- $\alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4$: violation of energy-momentum conservation.
- ξ : violation of local position invariance.
- In GR $\gamma = \beta = 1$ and $\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0$.

- γ : spatial curvature genrated by unit mass.
- β : non-linearity in gravity superposition law.
- $\circ \ \alpha_{1}, \alpha_{2}, \alpha_{3}$: violation of local Lorentz invariance.
- $\alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4$: violation of energy-momentum conservation.
- ξ : violation of local position invariance.
- In GR $\gamma = \beta = 1$ and $\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0$.
- ⇒ Fully conservative gravity theory:
 - No preferred frame or preferred location effects.
 - Total energy-momentum is conserved.

- γ : spatial curvature genrated by unit mass.
- β : non-linearity in gravity superposition law.
- $\alpha_1, \alpha_2, \alpha_3$: violation of local Lorentz invariance.
- $\alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4$: violation of energy-momentum conservation.
- ξ : violation of local position invariance.
- In GR $\gamma = \beta = 1$ and $\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0$.
- ⇒ Fully conservative gravity theory:
 - No preferred frame or preferred location effects.
 - Total energy-momentum is conserved.
- \Rightarrow Other theories will receive bounds from experiments.

Par.	Bound	Effects	Experiment
$\gamma - 1$	2.3 · 10 ⁻⁵	Time delay, light deflection	Cassini tracking
β – 1	8 · 10 ^{−5}	Perihelion shift	Perihelion shift
ξ	4 · 10 ^{−9}	Spin precession	Millisecond pulsars
α_1	10 ⁻⁴	Orbital polarization	Lunar laser ranging
α_1	4 · 10 ^{−5}	Orbital polarization	PSR J1738+0333
α_2	2 · 10 ^{−9}	Spin precession	Millisecond pulsars
α_3	4 · 10 ⁻²⁰	Self-acceleration	Pulsar spin-down statistics
η_N^1	$9 \cdot 10^{-4}$	Nordtvedt effect	Lunar Laser Ranging
ζ1	0.02	Combined PPN bounds	—
ζ2	4 · 10 ^{−5}	Binary pulsar acceleration	PSR 1913+16
ζ3	10 ⁻⁸	Newton's 3rd law	Lunar acceleration
ζ_4	0.006	—	Kreuzer experiment

$${}^{1}\eta_{N} = 4\beta - \gamma - 3 - \frac{10}{3}\xi - \alpha_{1} + \frac{2}{3}\alpha_{2} - \frac{2}{3}\zeta_{1} - \frac{1}{3}\zeta_{2}$$

PPN potentials

• Newtonian potential:

$${}^{\mathcal{X}}\chi = -\int d^3x' \,{}^{\mathcal{X}}\rho' |\vec{x} - \vec{x}'|, \quad {}^{\mathcal{X}}U = \int d^3x' \frac{{}^{\mathcal{X}}\rho'}{|\vec{x} - \vec{x}'|}, \quad {}^{\mathcal{X}}\rho' \equiv {}^{\mathcal{X}}\rho(t, \vec{x}').$$

PPN potentials

• Newtonian potential:

$${}^{\mathcal{X}}\chi = -\int d^{3}x' \,{}^{\mathcal{X}}\rho' |\vec{x} - \vec{x}'|, \quad {}^{\mathcal{X}}U = \int d^{3}x' \frac{{}^{\mathcal{X}}\rho'}{|\vec{x} - \vec{x}'|}, \quad {}^{\mathcal{X}}\rho' \equiv {}^{\mathcal{X}}\rho(t, \vec{x}').$$

• Vector potentials:

$${}^{\mathcal{X}}V_{i} = \int d^{3}x' \frac{{}^{\mathcal{X}}\rho' \,{}^{\mathcal{X}}v'_{i}}{|\vec{x}-\vec{x}'|}, \quad {}^{\mathcal{X}}W_{i} = \int d^{3}x' \frac{{}^{\mathcal{X}}\rho' \,{}^{\mathcal{X}}v'_{j}(x_{i}-x_{i}')(x_{j}-x_{j}')}{|\vec{x}-\vec{x}'|^{3}}.$$

PPN potentials

• Newtonian potential:

$${}^{\mathcal{X}}\chi = -\int d^{3}x' {}^{\mathcal{X}}\rho' |\vec{x} - \vec{x}'|, \quad {}^{\mathcal{X}}U = \int d^{3}x' \frac{{}^{\mathcal{X}}\rho'}{|\vec{x} - \vec{x}'|}, \quad {}^{\mathcal{X}}\rho' \equiv {}^{\mathcal{X}}\rho(t, \vec{x}').$$

• Vector potentials:

$${}^{\mathcal{X}}V_{i} = \int d^{3}x' \frac{{}^{\mathcal{X}}\rho' {}^{\mathcal{X}}v'_{i}}{|\vec{x}-\vec{x}'|}, \quad {}^{\mathcal{X}}W_{i} = \int d^{3}x' \frac{{}^{\mathcal{X}}\rho' {}^{\mathcal{X}}v'_{j}(x_{i}-x_{i}')(x_{j}-x_{j}')}{|\vec{x}-\vec{x}'|^{3}}.$$

• Fourth-order scalar potentials:

$${}^{\mathcal{X}} \Phi_{1} = \int d^{3}x' \frac{{}^{\mathcal{X}} \rho' {}^{\mathcal{X}} v'^{2}}{|\vec{x} - \vec{x}'|} , \quad {}^{\mathcal{X}} \Phi_{4} = \int d^{3}x' \frac{{}^{\mathcal{X}} p'}{|\vec{x} - \vec{x}'|} ,$$

$${}^{\mathcal{X}} \Phi_{2} = \int d^{3}x' \frac{{}^{\mathcal{X}} \rho' {}^{\mathcal{X}} U'}{|\vec{x} - \vec{x}'|} , \quad {}^{\mathcal{X}} \mathfrak{A} = \int d^{3}x' \frac{{}^{\mathcal{X}} \rho' \left[{}^{\mathcal{X}} v'_{i}(x_{i} - x'_{i}) \right]^{2}}{|\vec{x} - \vec{x}'|^{3}} ,$$

$${}^{\mathcal{X}} \Phi_{3} = \int d^{3}x' \frac{{}^{\mathcal{X}} \rho' {}^{\mathcal{X}} \Pi'}{|\vec{x} - \vec{x}'|} , \quad {}^{\mathcal{X}} \mathfrak{B} = \int d^{3}x' \frac{{}^{\mathcal{X}} \rho' \left[{}^{\mathcal{X}} v'_{i}(x_{i} - x'_{i}) \right]^{2}}{|\vec{x} - \vec{x}'|^{3}} ,$$

$${}^{\mathcal{X}} \Phi_{W} = \int d^{3}x' d^{3}x'' {}^{\mathcal{X}} \rho' {}^{\mathcal{X}} \rho'' \frac{x_{i} - x'_{i}}{|\vec{x} - \vec{x}'|^{3}} \left(\frac{x'_{i} - x''_{i}}{|\vec{x} - \vec{x}''|} - \frac{x_{i} - x''_{i}}{|\vec{x}' - \vec{x}''|} \right) .$$

Manuel Hohmann (University of Tartu)

• Expand energy-momentum tensor in velocity orders:

• Expand energy-momentum tensor in velocity orders:

• Behavior under gauge transformations:

$$\begin{split} \mathcal{Y} \stackrel{2}{T}_{00} &= \mathcal{X} \stackrel{2}{T}_{00} , \quad \mathcal{Y} \stackrel{2}{T}_{ij} &= \mathcal{X} \stackrel{2}{T}_{ij} , \quad \mathcal{Y} \stackrel{3}{T}_{0i} &= \mathcal{X} \stackrel{3}{T}_{0i} , \\ \mathcal{Y} \stackrel{4}{T}_{00} &= \mathcal{X} \stackrel{4}{T}_{00} + \stackrel{2}{\xi}_{i} \partial_{i} \mathcal{X} \stackrel{2}{T}_{00} , \quad \mathcal{Y} \stackrel{4}{T}_{ij} &= \mathcal{X} \stackrel{4}{T}_{ij} . \end{split}$$

• Expand energy-momentum tensor in velocity orders:

• Behavior under gauge transformations:

$$\begin{split} \mathcal{Y} \, & \stackrel{\mathcal{Y}}{T}_{00} = \mathcal{X} \, \stackrel{\mathcal{Z}}{T}_{00} \,, \quad \mathcal{Y} \, \stackrel{\mathcal{Y}}{T}_{ij} = \mathcal{X} \, \stackrel{\mathcal{Z}}{T}_{ij} \,, \quad \mathcal{Y} \, \stackrel{\mathcal{Y}}{T}_{0i} = \mathcal{X} \, \stackrel{\mathcal{X}}{T}_{0i} \,, \\ & \mathcal{Y} \, \stackrel{\mathcal{Y}}{T}_{00} = \mathcal{X} \, \stackrel{\mathcal{Y}}{T}_{00} \,, \quad \stackrel{\mathcal{Y}}{\xi}_{i} \partial_{i} \, \mathcal{X} \, \stackrel{\mathcal{Z}}{T}_{00} \,, \quad \mathcal{Y} \, \stackrel{\mathcal{Y}}{T}_{ij} = \mathcal{X} \, \stackrel{\mathcal{Y}}{T}_{ij} \,. \end{split}$$

• Energy-momentum tensor ~ derivatives of PPN potentials.

• Expand energy-momentum tensor in velocity orders:

• Behavior under gauge transformations:

$$\begin{split} \mathcal{Y} \, & \vec{T}_{00} = \mathcal{X} \, \vec{T}_{00} \,, \quad \mathcal{Y} \, \vec{T}_{ij} = \mathcal{X} \, \vec{T}_{ij} \,, \quad \mathcal{Y} \, \vec{T}_{0i} = \mathcal{X} \, \vec{T}_{0i} \,, \\ \mathcal{Y} \, \vec{T}_{00} = \mathcal{X} \, \vec{T}_{00} \,, \quad \vec{\xi}_{i} \partial_{i} \, \mathcal{X} \, \vec{T}_{00} \,, \quad \mathcal{Y} \, \vec{T}_{ij} = \mathcal{X} \, \vec{T}_{ij} \,. \end{split}$$

- Energy-momentum tensor ~ derivatives of PPN potentials.
- ⇒ Solve for PPN parameters by PPN expanding field equations.

• Expand energy-momentum tensor in velocity orders:

• Behavior under gauge transformations:

$$\begin{split} \mathcal{V} \, & \stackrel{\mathcal{V}}{T}_{00} = \mathcal{X} \, \stackrel{\mathcal{V}}{T}_{00} \,, \quad \mathcal{V} \, \stackrel{\mathcal{V}}{T}_{ij} = \mathcal{X} \, \stackrel{\mathcal{V}}{T}_{ij} \,, \quad \mathcal{V} \, \stackrel{\mathcal{V}}{T}_{0i} = \mathcal{X} \, \stackrel{\mathcal{J}}{T}_{0i} \,, \\ \mathcal{V} \, \stackrel{\mathcal{V}}{T}_{00} = \mathcal{X} \, \stackrel{\mathcal{L}}{T}_{00} \,, \quad \stackrel{\mathcal{V}}{\xi}_{i} \partial_{i} \, \mathcal{X} \, \stackrel{\mathcal{T}}{T}_{00} \,, \quad \mathcal{V} \, \stackrel{\mathcal{L}}{T}_{ij} = \mathcal{X} \, \stackrel{\mathcal{L}}{T}_{ij} \,. \end{split}$$

- Energy-momentum tensor ~ derivatives of PPN potentials.
- ⇒ Solve for PPN parameters by PPN expanding field equations.
- f Equations may be gauge dependent & hard to solve.

Expand energy-momentum tensor in velocity orders:

Behavior under gauge transformations:

$$\begin{split} \mathcal{V} \, & \stackrel{\mathcal{V}}{T}_{00} = \mathcal{X} \, \stackrel{\mathcal{V}}{T}_{00} \,, \quad \mathcal{V} \, \stackrel{\mathcal{V}}{T}_{ij} = \mathcal{X} \, \stackrel{\mathcal{V}}{T}_{ij} \,, \quad \mathcal{V} \, \stackrel{\mathcal{V}}{T}_{0i} = \mathcal{X} \, \stackrel{\mathcal{J}}{T}_{0i} \,, \\ \mathcal{V} \, \stackrel{\mathcal{V}}{T}_{00} = \mathcal{X} \, \stackrel{\mathcal{L}}{T}_{00} \,, \quad \stackrel{\mathcal{V}}{\xi}_{i} \partial_{i} \, \mathcal{X} \, \stackrel{\mathcal{T}}{T}_{00} \,, \quad \mathcal{V} \, \stackrel{\mathcal{L}}{T}_{ij} = \mathcal{X} \, \stackrel{\mathcal{L}}{T}_{ij} \,. \end{split}$$

- Energy-momentum tensor ~ derivatives of PPN potentials.
- ⇒ Solve for PPN parameters by PPN expanding field equations.
- f Equations may be gauge dependent & hard to solve.
- → Use gauge-invariant formalism to decouple equations.

Outline

Introduction

- 2 Gauge-invariant higher perturbations
- Parametrized post-Newtonian formalism

Gauge-invariant PPN formalism

- 5) Tetrad and teleparallel PPN formalisms
- PPN limits of teleparallel theories

7 Conclusion
Gauge transformation of the metric

• Allow only gauge transformations preserving PPN assumptions:

$$\xi_{i}^{2}, \xi_{0}^{3}, \xi_{i}^{4}$$

Gauge transformation of the metric

• Allow only gauge transformations preserving PPN assumptions:

$$\xi_{i}^{2}, \xi_{0}^{3}, \xi_{i}^{4}.$$

• Relation between metrics in gauges \mathcal{X} and \mathcal{Y} :

$$\begin{split} {}^{\mathcal{Y}} \overset{2}{g}_{00} &= {}^{\mathcal{X}} \overset{2}{g}_{00} \,, \\ {}^{\mathcal{Y}} \overset{2}{g}_{ij} &= {}^{\mathcal{X}} \overset{2}{g}_{ij} + 2 \partial_{(i} \overset{2}{\xi}_{j)} \,, \\ {}^{\mathcal{Y}} \overset{3}{g}_{0i} &= {}^{\mathcal{X}} \overset{3}{g}_{0i} + \partial_{i} \overset{3}{\xi}_{0} + \partial_{0} \overset{2}{\xi}_{i} \,, \\ {}^{\mathcal{Y}} \overset{4}{g}_{00} &= {}^{\mathcal{X}} \overset{4}{g}_{00} + 2 \partial_{0} \overset{3}{\xi}_{0} + \overset{2}{\xi}_{i} \partial_{i} {}^{\mathcal{X}} \overset{2}{g}_{00} \,, \\ {}^{\mathcal{Y}} \overset{4}{g}_{ij} &= {}^{\mathcal{X}} \overset{4}{g}_{ij} + 2 \partial_{(i} \overset{4}{\xi}_{j)} + 2 {}^{\mathcal{X}} \overset{2}{g}_{k(i} \partial_{j)} \overset{2}{\xi}_{k} + \overset{2}{\xi}_{k} \partial_{k} {}^{\mathcal{X}} \overset{2}{g}_{ij} + \partial_{(i} (\overset{2}{\xi}_{|k} \partial_{k}| \overset{2}{\xi}_{j)}) + \partial_{i} \overset{2}{\xi}_{k} \partial_{j} \overset{2}{\xi}_{k} \,. \end{split}$$

Gauge transformation of the metric

• Allow only gauge transformations preserving PPN assumptions:

$$\xi_{i}^{2}, \xi_{0}^{3}, \xi_{i}^{4}.$$

• Relation between metrics in gauges \mathcal{X} and \mathcal{Y} :

$$\begin{split} &\mathcal{V}_{g_{00}}^{2} = \mathcal{X}_{g_{00}}^{2}, \\ &\mathcal{V}_{g_{ij}}^{2} = \mathcal{X}_{g_{ij}}^{2} + 2\partial_{(i}\xi_{j)}^{2}, \\ &\mathcal{V}_{g_{0i}}^{3} = \mathcal{X}_{g_{0i}}^{3} + \partial_{i}\xi_{0}^{3} + \partial_{0}\xi_{i}^{2}, \\ &\mathcal{V}_{g_{00}}^{4} = \mathcal{X}_{g_{00}}^{4} + 2\partial_{0}\xi_{0}^{3} + \xi_{i}^{2}\partial_{i}\mathcal{X}_{g_{00}}^{2}, \\ &\mathcal{V}_{g_{ij}}^{4} = \mathcal{X}_{g_{ij}}^{4} + 2\partial_{(i}\xi_{j)}^{4} + 2\mathcal{X}_{g_{k}(i}^{2}\partial_{j})\xi_{k}^{2} + \xi_{k}^{2}\partial_{k}\mathcal{X}_{g_{ij}}^{2} + \partial_{(i}(\xi_{|k}\partial_{k|}\xi_{j)}) + \partial_{i}\xi_{k}\partial_{j}\xi_{k}^{2}. \end{split}$$

• Use gauge transformation to eliminate metric components.

• Definition of gauge-invariant metric components:

$$\mathbf{g}_{00} = \mathbf{g}^{\star}, \quad \mathbf{g}_{0i} = \mathbf{g}_{i}^{\diamond}, \quad \mathbf{g}_{ij} = \mathbf{g}^{\bullet} \delta_{ij} + \mathbf{g}_{ij}^{\dagger}.$$

• Definition of gauge-invariant metric components:

$$\mathbf{g}_{00} = \mathbf{g}^{\star}, \quad \mathbf{g}_{0i} = \mathbf{g}_{i}^{\diamond}, \quad \mathbf{g}_{ij} = \mathbf{g}^{\bullet} \delta_{ij} + \mathbf{g}_{ij}^{\dagger}.$$

• Conditions imposed on components:

$$\partial^{i} \mathbf{g}_{i}^{\diamond} = \mathbf{0}, \quad \partial^{i} \mathbf{g}_{ij}^{\dagger} = \mathbf{0}, \quad \mathbf{g}_{[ij]}^{\dagger} = \mathbf{0}, \quad \mathbf{g}_{ii}^{\dagger} = \mathbf{0}.$$

• Definition of gauge-invariant metric components:

$$\mathbf{g}_{00} = \mathbf{g}^{\star}, \quad \mathbf{g}_{0i} = \mathbf{g}_{i}^{\diamond}, \quad \mathbf{g}_{ij} = \mathbf{g}^{\bullet} \delta_{ij} + \mathbf{g}_{ij}^{\dagger}.$$

Conditions imposed on components:

$$\partial^i \mathbf{g}_i^{\diamond} = \mathbf{0}, \quad \partial^i \mathbf{g}_{ij}^{\dagger} = \mathbf{0}, \quad \mathbf{g}_{[ij]}^{\dagger} = \mathbf{0}, \quad \mathbf{g}_{ii}^{\dagger} = \mathbf{0}.$$

• Relation to arbitrary gauge \mathcal{X} :

$$\begin{split} & \overset{\mathcal{X}}{g}_{00}^{2} = \overset{2}{\mathbf{g}}^{\star} , \\ & \overset{\mathcal{X}}{g}_{ij}^{2} = \overset{2}{\mathbf{g}}^{\bullet} \delta_{ij} + \overset{2}{\mathbf{g}}_{ij}^{\dagger} + 2\partial_{i}\partial_{j}\overset{2}{X}^{\bullet} + 2\partial_{(i}\overset{2}{X}_{j)}^{\circ} , \\ & \overset{\mathcal{X}}{g}_{0i}^{3} = \overset{3}{\mathbf{g}}_{i}^{\circ} + \partial_{i}\overset{2}{X}^{\star} + \partial_{0}\partial_{i}\overset{2}{X}^{\bullet} + \partial_{0}\overset{2}{X}_{i}^{\circ} , \\ & \overset{\mathcal{X}}{g}_{00}^{4} = \overset{4}{\mathbf{g}}^{\star} + 2\partial_{0}\overset{3}{X}^{\star} + (\partial_{i}\overset{2}{X}^{\bullet} + \overset{2}{X}_{i}^{\circ})\partial_{i}\overset{2}{\mathbf{g}}^{\star} , \\ & \overset{\mathcal{X}}{g}_{ij}^{4} = \overset{4}{\mathbf{g}}^{\bullet} \delta_{ij} + \overset{4}{\mathbf{g}}_{ij}^{\dagger} + 2\partial_{i}\partial_{j}\overset{4}{X}^{\bullet} + \mathcal{O}(2) \cdot \mathcal{O}(2) \end{split}$$

.

• Definition of gauge-invariant metric components:

$$\mathbf{g}_{00} = \mathbf{g}^{\star}, \quad \mathbf{g}_{0i} = \mathbf{g}_{i}^{\diamond}, \quad \mathbf{g}_{ij} = \mathbf{g}^{\bullet} \delta_{ij} + \mathbf{g}_{ij}^{\dagger}.$$

Conditions imposed on components:

$$\partial^i \mathbf{g}_i^\diamond = \mathbf{0} , \quad \partial^i \mathbf{g}_{ij}^\dagger = \mathbf{0} , \quad \mathbf{g}_{[ij]}^\dagger = \mathbf{0} , \quad \mathbf{g}_{ii}^\dagger = \mathbf{0} .$$

• Relation to arbitrary gauge \mathcal{X} :

$$\begin{aligned} & \mathcal{X} \overset{2}{g}_{00} = \overset{2}{\mathbf{g}}^{\star} , \\ & \mathcal{X} \overset{2}{g}_{ij} = \overset{2}{\mathbf{g}}^{\bullet} \delta_{ij} + \overset{2}{\mathbf{g}}^{\dagger}_{ij} + 2\partial_i \partial_j \overset{2}{X}^{\bullet} + 2\partial_{(i} \overset{2}{X}^{\diamond}_{j)} , \\ & \mathcal{X} \overset{3}{g}_{0i} = \overset{3}{\mathbf{g}}^{\diamond}_{i} + \partial_i \overset{3}{X}^{\star} + \partial_0 \partial_i \overset{2}{X}^{\bullet} + \partial_0 \overset{2}{X}^{\diamond}_{i} , \\ & \mathcal{X} \overset{4}{g}_{00} = \overset{4}{\mathbf{g}}^{\star} + 2\partial_0 \overset{3}{X}^{\star} + (\partial_i \overset{2}{X}^{\bullet} + \overset{2}{X}^{\diamond}_{i}) \partial_i \overset{2}{\mathbf{g}}^{\star} , \\ & \mathcal{X} \overset{4}{g}_{ij} = \overset{4}{\mathbf{g}}^{\bullet} \delta_{ij} + \overset{4}{\mathbf{g}}^{\dagger}_{ij} + 2\partial_i \partial_j \overset{4}{X}^{\bullet} + \mathcal{O}(2) \cdot \mathcal{O}(2) . \end{aligned}$$

• Gauge defining vector fields:

$$X_i = \partial_i X^{\bullet} + X_i^{\diamond}, \quad X_0 = X^{\star}, \quad \partial^i X_i^{\diamond} = 0.$$

• Count number of independent components at each order:

total		invariant		pure gauge		
X	\hat{g}_{00}	1	g *	1	-	0
X	\hat{g}_{ij}	6	$\hat{\mathbf{g}}^{\star}, \hat{\mathbf{g}}_{ij}^{\dagger}$	1 + 2	$\hat{X}^{\bullet}, \hat{X}_{i}^{\diamond}$	1 + 2
X	³ g 0i	3	$\overset{3}{\mathbf{g}}_{i}^{\diamond}$	2	$\overset{3}{X}^{\star}$	1
<i>X</i>	$\overset{\scriptscriptstyle4}{g}_{00}$	1	⁴ g*	1	-	0
X	9 ij	6	$\overset{4}{\mathbf{g}}^{\star},\overset{4}{\mathbf{g}}_{ij}^{\dagger}$	1 + 2	$\overset{4}{X}, \overset{4}{X}_{i}$	1 + 2

• Count number of independent components at each order:

tota		invariant		pure gauge	
$\mathcal{X}^{2}_{\boldsymbol{g}_{00}}$	1	g *	1	-	0
${}^{\mathcal{X}}{}^{2}_{{m{g}}_{ij}}$	6	$\hat{\mathbf{g}}^{\star}, \hat{\mathbf{g}}_{ij}^{\dagger}$	1 + 2	$\hat{X}^{\bullet}, \hat{X}_{i}^{\diamond}$	1 + 2
${}^{\mathcal{X}}\overset{\mathfrak{g}}{\boldsymbol{g}}_{0i}$	3	^³ g _i	2	X^{3}	1
${}^{\mathcal{X}}\overset{\scriptscriptstyle{4}}{g}_{00}$	1	g *	1	-	0
${}^{\mathcal{X}}\overset{\scriptscriptstyle{4}}{g}_{ij}$	6	$\overset{4}{\mathbf{g}}^{\star},\overset{4}{\mathbf{g}}_{ij}^{\dagger}$	1 + 2	$\overset{4}{X}, \overset{4}{X}_{i}$	1 + 2

⇒ Components split into invariant and gauge parts.

• Count number of independent components at each order:

tota		invariant		pure gauge	
$\mathcal{X}^{2}_{\boldsymbol{g}_{00}}$	1	g *	1	-	0
${}^{\mathcal{X}}{}^{2}_{{m{g}}_{ij}}$	6	$\hat{\mathbf{g}}^{\star}, \hat{\mathbf{g}}_{ij}^{\dagger}$	1 + 2	$\hat{X}^{\bullet}, \hat{X}_{i}^{\diamond}$	1 + 2
${}^{\mathcal{X}}\overset{\mathfrak{g}}{\boldsymbol{g}}_{0i}$	3	^³ g _i	2	X^{3}	1
${}^{\mathcal{X}}\overset{\scriptscriptstyle{4}}{g}_{00}$	1	⁴ g*	1	-	0
${}^{\mathcal{X}}\overset{\scriptscriptstyle{4}}{g}_{ij}$	6	$\overset{4}{\mathbf{g}}^{\star},\overset{4}{\mathbf{g}}_{ij}^{\dagger}$	1 + 2	$\overset{4}{X}, \overset{4}{X}_{i}$	1 + 2

- ⇒ Components split into invariant and gauge parts.
- ⇒ Possible to separate physical information from coordinate choice.

• Use relation between expansion coefficients:

$$\mathcal{P}_{g}^{k} = \sum_{0 \le l_{1}+2l_{2}+\ldots \le k} \frac{1}{l_{1}!l_{2}!\cdots} \mathfrak{L}_{p}^{l_{1}} \cdots \mathfrak{L}_{p}^{l_{k}} \cdots \mathfrak{g}_{p}^{l_{k}}$$

• Use relation between expansion coefficients:

$$\mathcal{P}_{g}^{k} = \sum_{0 \le l_{1}+2l_{2}+\ldots \le k} \frac{1}{l_{1}!l_{2}!\cdots} \mathfrak{L}_{p}^{l_{1}} \cdots \mathfrak{L}_{p}^{l_{k}} \cdots \mathfrak{g}_{\cdot}^{l_{k-1}-2l_{2}-\ldots}$$

• Split components of ${}^{\mathcal{P}}g_{\mu\nu}$ into $\mathbf{g}_{\mu\nu}$ and P^{μ} .

• Use relation between expansion coefficients:

$${}^{\mathcal{P}}\overset{k}{g} = \sum_{0 \le l_1 + 2l_2 + \ldots \le k} \frac{1}{l_1! l_2! \cdots} \underbrace{\mathfrak{L}_{l_1}^{l_1} \cdots \mathfrak{L}_{k}^{l_k}}_{P} \underbrace{\mathfrak{L}_{k}^{l_k} \cdots \mathfrak{L}_{k}^{l_{k-1}}}_{P} \mathbf{g}.$$

- Split components of ${}^{\mathcal{P}}g_{\mu\nu}$ into $\mathbf{g}_{\mu\nu}$ and P^{μ} .
- ⇒ Gauge defining vector fields:

$$\overset{2}{P} = 0, \quad \overset{2}{P}_{i}^{\diamond} = 0, \quad \overset{3}{P}^{\star} = -\frac{1}{4}(2+4\gamma+\alpha_{1}-2\alpha_{2}+2\zeta_{1}-4\xi)\chi_{,0}.$$

• Use relation between expansion coefficients:

$${}^{\mathcal{P}}\overset{k}{g} = \sum_{0 \le l_1 + 2l_2 + \ldots \le k} \frac{1}{l_1! l_2! \cdots} \underbrace{\mathfrak{L}_1^{l_1} \cdots \mathfrak{L}_k^{l_k}}_{P} \underbrace{\mathfrak{L}_k^{l_k} \cdots \mathfrak{L}_k^{l_{k-1}}}_{P} \mathbf{g}.$$

- Split components of ${}^{\mathcal{P}}g_{\mu\nu}$ into $\mathbf{g}_{\mu\nu}$ and P^{μ} .
- ⇒ Gauge defining vector fields:

$$\overset{2}{P} = 0$$
, $\overset{2}{P}_{i}^{\diamond} = 0$, $\overset{3}{P}^{\star} = -\frac{1}{4}(2+4\gamma+\alpha_{1}-2\alpha_{2}+2\zeta_{1}-4\xi)\chi_{,0}$.

⇒ Gauge-invariant metric components:

$${\stackrel{2}{\mathbf{g}}}^{\star} = 2\mathbf{U}, \quad {\stackrel{2}{\mathbf{g}}}^{\bullet} = 2\gamma\mathbf{U}, \quad {\stackrel{2}{\mathbf{g}}}{\stackrel{1}{ij}} = 0, \quad {\stackrel{3}{\mathbf{g}}}{\stackrel{1}{i}} = -\left(1 + \gamma + \frac{\alpha_1}{4}\right)(\mathbf{V}_i + \mathbf{W}_i),$$

$$\mathbf{\dot{g}}^{*} = \frac{1}{2} (2 - \alpha_{1} + 2\alpha_{2} + 2\alpha_{3}) \mathbf{\Phi}_{1} + 2(1 + 3\gamma - 2\beta + \zeta_{2} + \xi) \mathbf{\Phi}_{2} + 2(1 + \zeta_{3}) \mathbf{\Phi}_{3} + 2(3\gamma + 3\zeta_{4} - 2\xi) \mathbf{\Phi}_{4} - 2\xi \mathbf{\Phi}_{W} - 2\beta \mathbf{U}^{2} + \frac{1}{2} (2 + 4\gamma + \alpha_{1} - 2\alpha_{2}) \mathfrak{A} + \frac{1}{2} (2 + 4\gamma + \alpha_{1} - 2\alpha_{2} + 2\zeta_{1} - 4\xi) \mathfrak{B} .$$

• Perform similar decomposition of energy-momentum tensor:

$$\mathbf{T}^{\star} = \mathbf{T}_{00} = \rho \left(1 - \mathbf{\hat{g}}_{00}^{2} + \mathbf{v}^{2} + \mathbf{\Pi} \right) + \mathcal{O}(6) ,$$

$$\mathbf{T}_{i}^{\diamond} + \partial_{i} \mathbf{T}^{\bullet} = \mathbf{T}_{0i} = -\rho \mathbf{v}_{i} + \mathcal{O}(5) ,$$

$$\mathbf{T}^{\bullet} \delta_{ij} + \Delta_{ij} \mathbf{T}^{\blacktriangle} + 2\partial_{(i} \mathbf{T}_{j)}^{\bigtriangleup} + \mathbf{T}_{ij}^{\dagger} = \mathbf{T}_{ij} = \rho \mathbf{v}_{i} \mathbf{v}_{j} + \mathbf{p} \delta_{ij} + \mathcal{O}(6) .$$

• Perform similar decomposition of energy-momentum tensor:

$$\mathbf{T}^{\star} = \mathbf{T}_{00} = \rho \left(1 - \overset{2}{\mathbf{g}}_{00} + \mathbf{v}^{2} + \mathbf{\Pi} \right) + \mathcal{O}(6) ,$$

$$\mathbf{T}_{i}^{\diamond} + \partial_{i} \mathbf{T}^{\bullet} = \mathbf{T}_{0i} = -\rho \mathbf{v}_{i} + \mathcal{O}(5) ,$$

$$\mathbf{T}^{\bullet} \delta_{ij} + \Delta_{ij} \mathbf{T}^{\bullet} + 2\partial_{(i} \mathbf{T}_{j)}^{\triangle} + \mathbf{T}_{ij}^{\dagger} = \mathbf{T}_{ij} = \rho \mathbf{v}_{i} \mathbf{v}_{j} + \mathbf{p} \delta_{ij} + \mathcal{O}(6) .$$

• Express components in terms of PPN potentials:

$$\overset{2}{\mathbf{T}}^{\star} = \rho = -\frac{1}{4\pi} \bigtriangleup \mathbf{U}, \quad \overset{3}{\mathbf{T}}^{\bullet} = -\frac{1}{4\pi} \partial_{0} \mathbf{U}, \quad \overset{3}{\mathbf{T}}^{\circ}_{i} = \frac{1}{8\pi} \bigtriangleup (\mathbf{V}_{i} + \mathbf{W}_{i}),$$

$$\overset{4}{\mathbf{T}}^{\star} = \rho \left(\mathbf{\Pi} + \mathbf{v}^{2} - \overset{2}{\mathbf{g}}^{\star} \right) = -\frac{1}{4\pi} \bigtriangleup (\mathbf{\Phi}_{3} + \mathbf{\Phi}_{1} - 2\mathbf{\Phi}_{2}),$$

$$\overset{4}{\mathbf{T}}^{\bullet} = \frac{1}{3} \rho \mathbf{v}^{2} + \mathbf{p} = -\frac{1}{12\pi} \bigtriangleup (\mathbf{\Phi}_{1} + 3\mathbf{\Phi}_{4}), \quad \overset{4}{\mathbf{T}}^{\bullet} = \frac{1}{16\pi} (32\mathfrak{l} - \mathbf{\Phi}_{1}).$$

• Perform similar decomposition of energy-momentum tensor:

$$\mathbf{T}^{\star} = \mathbf{T}_{00} = \rho \left(1 - \overset{2}{\mathbf{g}}_{00} + \mathbf{v}^{2} + \mathbf{\Pi} \right) + \mathcal{O}(6) ,$$

$$\mathbf{T}_{i}^{\diamond} + \partial_{i} \mathbf{T}^{\bullet} = \mathbf{T}_{0i} = -\rho \mathbf{v}_{i} + \mathcal{O}(5) ,$$

$$\mathbf{T}^{\bullet} \delta_{ij} + \Delta_{ij} \mathbf{T}^{\bullet} + 2\partial_{(i} \mathbf{T}_{j)}^{\triangle} + \mathbf{T}_{ij}^{\dagger} = \mathbf{T}_{ij} = \rho \mathbf{v}_{i} \mathbf{v}_{j} + \mathbf{p} \delta_{ij} + \mathcal{O}(6) .$$

• Express components in terms of PPN potentials:

$$\overset{2}{\mathbf{T}}^{\star} = \rho = -\frac{1}{4\pi} \bigtriangleup \mathbf{U}, \quad \overset{3}{\mathbf{T}}^{\bullet} = -\frac{1}{4\pi} \partial_{0} \mathbf{U}, \quad \overset{3}{\mathbf{T}}^{\circ}_{i} = \frac{1}{8\pi} \bigtriangleup (\mathbf{V}_{i} + \mathbf{W}_{i}),$$

$$\overset{4}{\mathbf{T}}^{\star} = \rho \left(\mathbf{\Pi} + \mathbf{v}^{2} - \overset{2}{\mathbf{g}}^{\star} \right) = -\frac{1}{4\pi} \bigtriangleup (\mathbf{\Phi}_{3} + \mathbf{\Phi}_{1} - 2\mathbf{\Phi}_{2}),$$

$$\overset{4}{\mathbf{T}}^{\bullet} = \frac{1}{3} \rho \mathbf{v}^{2} + \mathbf{p} = -\frac{1}{12\pi} \bigtriangleup (\mathbf{\Phi}_{1} + 3\mathbf{\Phi}_{4}), \quad \overset{4}{\mathbf{T}}^{\bullet} = \frac{1}{16\pi} (3\mathfrak{A} - \mathbf{\Phi}_{1}).$$

Decompose also gravity side ≃ △g.

• Perform similar decomposition of energy-momentum tensor:

$$\mathbf{T}^{\star} = \mathbf{T}_{00} = \rho \left(1 - \overset{2}{\mathbf{g}}_{00} + \mathbf{v}^{2} + \mathbf{\Pi} \right) + \mathcal{O}(6) ,$$

$$\mathbf{T}_{i}^{\diamond} + \partial_{i} \mathbf{T}^{\bullet} = \mathbf{T}_{0i} = -\rho \mathbf{v}_{i} + \mathcal{O}(5) ,$$

$$\mathbf{T}^{\bullet} \delta_{ij} + \Delta_{ij} \mathbf{T}^{\bullet} + 2\partial_{(i} \mathbf{T}_{j)}^{\triangle} + \mathbf{T}_{ij}^{\dagger} = \mathbf{T}_{ij} = \rho \mathbf{v}_{i} \mathbf{v}_{j} + \mathbf{p} \delta_{ij} + \mathcal{O}(6) .$$

Express components in terms of PPN potentials:

$$\overset{2}{\mathbf{T}}^{\star} = \boldsymbol{\rho} = -\frac{1}{4\pi} \bigtriangleup \mathbf{U}, \quad \overset{3}{\mathbf{T}}^{\bullet} = -\frac{1}{4\pi} \partial_{0} \mathbf{U}, \quad \overset{3}{\mathbf{T}}^{\circ}_{i} = \frac{1}{8\pi} \bigtriangleup (\mathbf{V}_{i} + \mathbf{W}_{i}),$$

$$\overset{4}{\mathbf{T}}^{\star} = \boldsymbol{\rho} \left(\mathbf{\Pi} + \mathbf{v}^{2} - \overset{2}{\mathbf{g}}^{\star} \right) = -\frac{1}{4\pi} \bigtriangleup (\mathbf{\Phi}_{3} + \mathbf{\Phi}_{1} - 2\mathbf{\Phi}_{2}),$$

$$\overset{4}{\mathbf{T}}^{\bullet} = \frac{1}{3} \boldsymbol{\rho} \mathbf{v}^{2} + \mathbf{p} = -\frac{1}{12\pi} \bigtriangleup (\mathbf{\Phi}_{1} + 3\mathbf{\Phi}_{4}), \quad \overset{4}{\mathbf{T}}^{\bullet} = \frac{1}{16\pi} (3\mathfrak{A} - \mathbf{\Phi}_{1}).$$

- Decompose also gravity side ≃ △g.
- ⇒ Find PPN parameters by comparing coefficients on both sides.

Outline

Introduction

- 2 Gauge-invariant higher perturbations
- Parametrized post-Newtonian formalism
- 4 Gauge-invariant PPN formalism
- 5 Tetrad and teleparallel PPN formalisms
- PPN limits of teleparallel theories

7 Conclusion

- Fundamental fields:
 - Coframe field $\theta^{A} = \theta^{A}{}_{\mu} dx^{\mu}$.
 - Flat spin connection $\dot{\omega}^{A}{}_{B} = \omega^{A}{}_{B\mu}dx^{\mu}$.
 - Arbitrary matter fields χ .

- Fundamental fields:
 - Coframe field $\theta^{A} = \theta^{A}_{\mu} dx^{\mu}$.
 - Flat spin connection $\omega^{A}{}_{B} = \omega^{A}{}_{B\mu}dx^{\mu}$.
 - Arbitrary matter fields χ .
- Derived quantities:
 - Frame field $e_A = e_A^{\mu}\partial_{\mu}$ with $e_A^{\mu}\theta^B{}_{\mu} = \delta^B_A$ and $e_A^{\mu}\theta^A{}_{\nu} = \delta^{\mu}{}_{\nu}$.
 - Metric $g_{\mu\nu} = \eta_{AB} \theta^{A}{}_{\mu} \theta^{B}{}_{\nu}$.
 - Determinant $\theta = \det(\theta^{A}_{\mu})$.
 - Teleparallel connection $\Gamma^{\mu}{}_{\nu\rho} = e_{A}{}^{\mu}(\partial_{\rho}\theta^{A}{}_{\nu} + \omega^{A}{}_{B\rho}\theta^{B}{}_{\nu}).$
 - Levi-Civita connection $\overset{\circ}{\Gamma}^{\mu}{}_{\nu\rho} = \frac{1}{2}g^{\mu\sigma}(\partial_{\nu}g_{\sigma\rho} + \partial_{\rho}g_{\nu\sigma} \partial_{\sigma}g_{\nu\rho}).$

- Fundamental fields:
 - Coframe field $\theta^{A} = \theta^{A}_{\mu} dx^{\mu}$.
 - Flat spin connection $\omega^{A}{}_{B} = \omega^{A}{}_{B\mu}dx^{\mu}$.
 - Arbitrary matter fields χ .
- Derived quantities:
 - Frame field $e_A = e_A^{\mu}\partial_{\mu}$ with $e_A^{\mu}\theta^B{}_{\mu} = \delta^B_A$ and $e_A^{\mu}\theta^A{}_{\nu} = \delta^{\mu}{}_{\nu}$.
 - Metric $g_{\mu\nu} = \eta_{AB} \theta^{A}{}_{\mu} \theta^{B}{}_{\nu}$.
 - Determinant $\theta = \det(\theta^{A}_{\mu})$.
 - Teleparallel connection $\Gamma^{\mu}{}_{\nu\rho} = e_{A}{}^{\mu}(\partial_{\rho}\theta^{A}{}_{\nu} + \omega^{A}{}_{B\rho}\theta^{B}{}_{\nu}).$
 - Levi-Civita connection $\tilde{\Gamma}^{\mu}_{\nu\rho} = \frac{1}{2}g^{\mu\sigma}(\partial_{\nu}g_{\sigma\rho} + \partial_{\rho}g_{\nu\sigma} \partial_{\sigma}g_{\nu\rho}).$
- Properties of the teleparallel connection:
 - Vanishing curvature: $R^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho}\Gamma^{\mu}{}_{\nu\sigma} \partial_{\sigma}\Gamma^{\mu}{}_{\nu\rho} + \Gamma^{\mu}{}_{\tau\rho}\Gamma^{\tau}{}_{\nu\sigma} \Gamma^{\mu}{}_{\tau\sigma}\Gamma^{\tau}{}_{\nu\rho} = 0.$
 - Vanishing nonmetricity: $Q_{\mu\nu\rho} = \nabla_{\mu}g_{\nu\rho} = 0.$
 - Nonvanishing torsion: $T^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\rho\nu} \Gamma^{\mu}{}_{\nu\rho} \neq 0.$

- Fundamental fields:
 - Coframe field $\theta^{A} = \theta^{A}_{\mu} dx^{\mu}$.
 - Flat spin connection $\omega^{A}{}_{B} = \omega^{A}{}_{B\mu}dx^{\mu}$.
 - Arbitrary matter fields χ .
- Derived quantities:
 - Frame field $e_A = e_A^{\mu}\partial_{\mu}$ with $e_A^{\mu}\theta^B{}_{\mu} = \delta^B_A$ and $e_A^{\mu}\theta^A{}_{\nu} = \delta^{\mu}{}_{\nu}$.
 - Metric $g_{\mu\nu} = \eta_{AB} \theta^A{}_{\mu} \theta^B{}_{\nu}$.
 - Determinant $\theta = \det(\theta^{A}_{\mu})$.
 - Teleparallel connection $\Gamma^{\mu}{}_{\nu\rho} = e_{A}{}^{\mu}(\partial_{\rho}\theta^{A}{}_{\nu} + \omega^{A}{}_{B\rho}\theta^{B}{}_{\nu}).$
 - Levi-Civita connection $\overset{\circ}{\Gamma}^{\mu}{}_{\nu\rho} = \frac{1}{2}g^{\mu\sigma}(\partial_{\nu}g_{\sigma\rho} + \partial_{\rho}g_{\nu\sigma} \partial_{\sigma}g_{\nu\rho}).$
- Properties of the teleparallel connection:
 - Vanishing curvature: $R^{\mu}_{\nu\rho\sigma} = \partial_{\rho}\Gamma^{\mu}_{\nu\sigma} \partial_{\sigma}\Gamma^{\mu}_{\nu\rho} + \Gamma^{\mu}_{\tau\rho}\Gamma^{\tau}_{\nu\sigma} \Gamma^{\mu}_{\tau\sigma}\Gamma^{\tau}_{\nu\rho} = 0.$
 - Vanishing nonmetricity: $Q_{\mu\nu\rho} = \nabla_{\mu}g_{\nu\rho} = 0.$
 - Nonvanishing torsion: $T^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\rho\nu} \Gamma^{\mu}{}_{\nu\rho} \neq 0.$

⇒ Possible to use Weitzenböck gauge: $\omega^{A}_{B\mu} \equiv 0$.

• Post-Newtonian tetrad expansion:

$${}^{\mathcal{X}}\theta^{A}{}_{\mu} = {}^{\mathcal{X}}{}^{0}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{1}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{2}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{3}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{4}_{\theta}{}^{A}{}_{\mu} + \mathcal{O}(5) \,.$$

• Post-Newtonian tetrad expansion:

$${}^{\mathcal{X}}\theta^{A}{}_{\mu} = {}^{\mathcal{X}}{}^{0}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{1}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{2}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{3}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{4}_{\theta}{}^{A}{}_{\mu} + \mathcal{O}(5) \,.$$

• Background tetrad is diagonal: ${}^{\mathcal{X}}{}^{0}_{\theta}{}^{A}_{\mu} = \Delta^{A}_{\mu} = \text{diag}(1, 1, 1, 1).$

• Post-Newtonian tetrad expansion:

$${}^{\mathcal{X}}\theta^{A}{}_{\mu} = {}^{\mathcal{X}}\overset{0}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{1}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{2}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{3}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{4}{\theta}{}^{A}{}_{\mu} + \mathcal{O}(5)$$

- Background tetrad is diagonal: ${}^{\mathcal{X}}{}^{0}_{\theta}{}^{A}_{\mu} = \Delta^{A}_{\mu} = \text{diag}(1, 1, 1, 1).$
- Higher than fourth velocity order $\mathcal{O}(4)$ is not considered.

• Post-Newtonian tetrad expansion:

$${}^{\mathcal{X}}\theta^{A}{}_{\mu} = {}^{\mathcal{X}}\overset{0}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{1}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{2}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{3}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{4}{\theta}{}^{A}{}_{\mu} + \mathcal{O}(5)$$

- Background tetrad is diagonal: ${}^{\mathcal{X}}{}^{0}_{\theta}{}^{A}_{\mu} = \Delta^{A}_{\mu} = \text{diag}(1, 1, 1, 1).$
- Higher than fourth velocity order $\mathcal{O}(4)$ is not considered.
- Useful to define tetrad with lower spacetime indices:

$${}^{\mathcal{X}}{}^{k}_{\theta\mu\nu} = \Delta^{A}{}_{\mu}\eta_{AB} {}^{\mathcal{X}}{}^{k}_{\theta}{}^{B}{}_{\nu}.$$

• Post-Newtonian tetrad expansion:

$${}^{\mathcal{X}}\theta^{A}{}_{\mu} = {}^{\mathcal{X}}\overset{0}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{1}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{2}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{3}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{4}{\theta}{}^{A}{}_{\mu} + \mathcal{O}(5)$$

- Background tetrad is diagonal: ${}^{\mathcal{X}}{}^{0}_{\theta}{}^{A}_{\mu} = \Delta^{A}_{\mu} = \text{diag}(1, 1, 1, 1).$
- Higher than fourth velocity order $\mathcal{O}(4)$ is not considered.
- Useful to define tetrad with lower spacetime indices:

$${}^{\mathcal{X}}{}^{k}_{\theta\mu\nu} = \Delta^{A}{}_{\mu}\eta_{AB} {}^{\mathcal{X}}{}^{k}_{\theta}{}^{B}{}_{\nu}.$$

Only certain components are relevant and non-vanishing:

$$x^2_{\theta_{00}}, \quad x^2_{\theta_{ij}}, \quad x^3_{\theta_{0i}}, \quad x^4_{\theta_{00}}, \quad x^4_{\theta_{ij}}.$$

• Post-Newtonian tetrad expansion:

$${}^{\mathcal{X}}\theta^{A}{}_{\mu} = {}^{\mathcal{X}}\overset{0}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{1}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{2}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{3}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{4}{\theta}{}^{A}{}_{\mu} + \mathcal{O}(5)$$

- Background tetrad is diagonal: ${}^{\mathcal{X}}{}^{0}_{\theta}{}^{A}_{\mu} = \Delta^{A}_{\mu} = \text{diag}(1, 1, 1, 1).$
- Higher than fourth velocity order $\mathcal{O}(4)$ is not considered.
- Useful to define tetrad with lower spacetime indices:

$${}^{\mathcal{X}}{}^{k}_{\theta\mu\nu} = \Delta^{A}{}_{\mu}\eta_{AB} {}^{\mathcal{X}}{}^{k}_{\theta}{}^{B}{}_{\nu}.$$

Only certain components are relevant and non-vanishing:

$$x^2_{\theta_{00}}, \quad x^2_{\theta_{ij}}, \quad x^3_{\theta_{0i}}, \quad x^4_{\theta_{00}}, \quad x^4_{\theta_{ij}}.$$

Relation to metric components:

$$\begin{split} & {}^{\mathcal{X}} \overset{2}{g}_{00} = 2^{\mathcal{X}} \overset{2}{\theta}_{00} \,, \quad {}^{\mathcal{X}} \overset{2}{g}_{ij} = 2^{\mathcal{X}} \overset{2}{\theta}_{(ij)} \,, \quad {}^{\mathcal{X}} \overset{3}{g}_{0i} = 2^{\mathcal{X}} \overset{3}{\theta}_{(i0)} \,, \\ & {}^{\mathcal{X}} \overset{4}{g}_{00} = - ({}^{\mathcal{X}} \overset{2}{\theta}_{00})^{2} + 2^{\mathcal{X}} \overset{4}{\theta}_{00} \,, \quad {}^{\mathcal{X}} \overset{4}{g}_{ij} = 2^{\mathcal{X}} \overset{4}{\theta}_{(ij)} + {}^{\mathcal{X}} \overset{2}{\theta}_{ki} {}^{\mathcal{X}} \overset{2}{\theta}_{kj} \end{split}$$

$${}^{\mathcal{X}}{}^{k}_{\theta_{\mu\nu}} = {}^{\mathcal{X}}{}^{k}_{\mathbf{S}_{\mu\nu}} + {}^{\mathcal{X}}{}^{k}_{\mathbf{a}_{\mu\nu}}, \quad {}^{\mathcal{X}}{}^{k}_{\mathbf{S}_{\mu\nu}} = {}^{\mathcal{X}}{}^{k}_{\theta_{(\mu\nu)}}, \quad {}^{\mathcal{X}}{}^{k}_{\mathbf{a}_{\mu\nu}} = {}^{\mathcal{X}}{}^{k}_{\theta_{[\mu\nu]}}.$$

$${}^{\mathcal{X}} \overset{k}{\theta}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\mathbf{S}}_{\mu\nu} + {}^{\mathcal{X}} \overset{k}{\mathbf{a}}_{\mu\nu}, \quad {}^{\mathcal{X}} \overset{k}{\mathbf{S}}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\theta}_{(\mu\nu)}, \quad {}^{\mathcal{X}} \overset{k}{\mathbf{a}}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\theta}_{[\mu\nu]}.$$

2. Define gauge-invariant tetrad using $\overset{k}{\mathbf{s}}_{\mu\nu}$ in place of $\overset{k}{\mathbf{g}}_{\mu\nu}$.

$${}^{\mathcal{X}} \overset{k}{\theta}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\mathbf{S}}_{\mu\nu} + {}^{\mathcal{X}} \overset{k}{\mathbf{a}}_{\mu\nu} , \quad {}^{\mathcal{X}} \overset{k}{\mathbf{S}}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\theta}_{(\mu\nu)} , \quad {}^{\mathcal{X}} \overset{k}{\mathbf{a}}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\theta}_{[\mu\nu]} .$$

2. Define gauge-invariant tetrad using $\mathbf{s}_{\mu\nu}^{k}$ in place of $\mathbf{g}_{\mu\nu}$.

3. Express PPN tetrad ${}^{\mathcal{P}}\overset{k}{\theta}_{\mu\nu}$ through gauge-invariant tetrad $\overset{k}{\theta}_{\mu\nu}$.

$${}^{\mathcal{X}} \overset{k}{\theta}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\mathbf{S}}_{\mu\nu} + {}^{\mathcal{X}} \overset{k}{\mathbf{a}}_{\mu\nu} , \quad {}^{\mathcal{X}} \overset{k}{\mathbf{S}}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\theta}_{(\mu\nu)} , \quad {}^{\mathcal{X}} \overset{k}{\mathbf{a}}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\theta}_{[\mu\nu]} .$$

- 2. Define gauge-invariant tetrad using $\overset{k}{\mathbf{s}}_{\mu\nu}$ in place of $\overset{k}{\mathbf{g}}_{\mu\nu}$.
- 3. Express PPN tetrad ${}^{\mathcal{P}} \overset{k}{\theta}_{\mu\nu}$ through gauge-invariant tetrad $\overset{k}{\theta}_{\mu\nu}$.
- 4. Write gauge-invariant tetrad components using PPN quantities.

$$\mathcal{X}_{\theta_{\mu\nu}}^{k} = \mathcal{X}_{\boldsymbol{S}_{\mu\nu}}^{k} + \mathcal{X}_{\boldsymbol{a}_{\mu\nu}}^{k}, \quad \mathcal{X}_{\boldsymbol{S}_{\mu\nu}}^{k} = \mathcal{X}_{\theta_{(\mu\nu)}}^{k}, \quad \mathcal{X}_{\boldsymbol{a}_{\mu\nu}}^{k} = \mathcal{X}_{\theta_{[\mu\nu]}}^{k}.$$

- 2. Define gauge-invariant tetrad using $\overset{k}{\mathbf{s}}_{\mu\nu}$ in place of $\overset{k}{\mathbf{g}}_{\mu\nu}$.
- **3**. Express PPN tetrad ${}^{\mathcal{P}} \overset{k}{\theta}_{\mu\nu}$ through gauge-invariant tetrad $\overset{k}{\theta}_{\mu\nu}$.
- 4. Write gauge-invariant tetrad components using PPN quantities.
- 5. Decompose tetrad field equations in analogy to metric case.

$${}^{\mathcal{X}}{}^{k}_{\theta_{\mu\nu}} = {}^{\mathcal{X}}{}^{k}_{\mathbf{S}_{\mu\nu}} + {}^{\mathcal{X}}{}^{k}_{\mathbf{a}_{\mu\nu}}, \quad {}^{\mathcal{X}}{}^{k}_{\mathbf{S}_{\mu\nu}} = {}^{\mathcal{X}}{}^{k}_{\theta_{(\mu\nu)}}, \quad {}^{\mathcal{X}}{}^{k}_{\mathbf{a}_{\mu\nu}} = {}^{\mathcal{X}}{}^{k}_{\theta_{[\mu\nu]}}.$$

- 2. Define gauge-invariant tetrad using $\overset{k}{\mathbf{s}}_{\mu\nu}$ in place of $\overset{k}{\mathbf{g}}_{\mu\nu}$.
- 3. Express PPN tetrad $\mathcal{P}_{\theta_{\mu\nu}}^{k}$ through gauge-invariant tetrad $\overset{k}{\theta}_{\mu\nu}$.
- 4. Write gauge-invariant tetrad components using PPN quantities.
- 5. Decompose tetrad field equations in analogy to metric case.
- 6. Find PPN parameters by matching terms on both sides.

Outline

Introduction

- 2 Gauge-invariant higher perturbations
- Parametrized post-Newtonian formalism
- 4 Gauge-invariant PPN formalism
- 5 Tetrad and teleparallel PPN formalisms
- 6 PPN limits of teleparallel theories

7 Conclusion
$\mathcal{F}(\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3)$ - action and field equations

• Gravitational part of the action:

$$S_g[\theta,\omega] = \frac{1}{2\kappa^2} \int_M \mathcal{F}(\mathcal{T}_1,\mathcal{T}_2,\mathcal{T}_3) \,\theta \,\mathrm{d}^4 x \,.$$

$\mathcal{F}(\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3)$ - action and field equations

• Gravitational part of the action:

$$S_g[\theta,\omega] = \frac{1}{2\kappa^2} \int_M \mathcal{F}(\mathcal{T}_1,\mathcal{T}_2,\mathcal{T}_3) \,\theta \,\mathrm{d}^4 x \,.$$

• Torsion scalars:

$$\mathcal{T}_{1} = T^{\mu\nu\rho}T_{\mu\nu\rho}, \quad \mathcal{T}_{2} = T^{\mu\nu\rho}T_{\rho\nu\mu}, \quad \mathcal{T}_{3} = T^{\mu}{}_{\mu\rho}T_{\nu}{}^{\nu\rho}.$$

$\mathcal{F}(\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3)$ - action and field equations

• Gravitational part of the action:

$$S_g[\theta,\omega] = \frac{1}{2\kappa^2} \int_M \mathcal{F}(\mathcal{T}_1,\mathcal{T}_2,\mathcal{T}_3) \,\theta \,\mathrm{d}^4 x \,.$$

• Torsion scalars:

$$\mathcal{T}_1 = T^{\mu\nu\rho}T_{\mu\nu\rho}, \quad \mathcal{T}_2 = T^{\mu\nu\rho}T_{\rho\nu\mu}, \quad \mathcal{T}_3 = T^{\mu}_{\ \mu\rho}T_{\nu}^{\ \nu\rho}.$$

 \Rightarrow Field equations:

$$\begin{aligned} \kappa^2 \Theta_{\mu\nu} &= \frac{1}{2} \mathcal{F} g_{\mu\nu} + 2 \overset{\circ}{\nabla}^{\rho} \left(\mathcal{F}_{,1} T_{\nu\mu\rho} + \mathcal{F}_{,2} T_{[\rho\mu]\nu} + \mathcal{F}_{,3} T^{\sigma}{}_{\sigma[\rho} g_{\mu]\nu} \right) + \mathcal{F}_{,1} T^{\rho\sigma}{}_{\mu} \left(T_{\nu\rho\sigma} - 2 T_{[\rho\sigma]\nu} \right) \\ &+ \frac{1}{2} \mathcal{F}_{,2} \left[T_{\mu}{}^{\rho\sigma} \left(2 T_{\rho\sigma\nu} - T_{\nu\rho\sigma} \right) + T^{\rho\sigma}{}_{\mu} \left(2 T_{[\rho\sigma]\nu} - T_{\nu\rho\sigma} \right) \right] - \frac{1}{2} \mathcal{F}_{,3} T^{\sigma}{}_{\sigma\rho} \left(T^{\rho}{}_{\mu\nu} + 2 T_{(\mu\nu)}{}^{\rho} \right) , \end{aligned}$$

$\mathcal{F}(\mathcal{T}_1,\mathcal{T}_2,\mathcal{T}_3)$ - action and field equations

• Gravitational part of the action:

$$S_g[\theta,\omega] = \frac{1}{2\kappa^2} \int_M \mathcal{F}(\mathcal{T}_1,\mathcal{T}_2,\mathcal{T}_3) \,\theta \,\mathrm{d}^4 x \,.$$

• Torsion scalars:

$$\mathcal{T}_1 = T^{\mu\nu\rho}T_{\mu\nu\rho}, \quad \mathcal{T}_2 = T^{\mu\nu\rho}T_{\rho\nu\mu}, \quad \mathcal{T}_3 = T^{\mu}_{\ \mu\rho}T_{\nu}^{\ \nu\rho}.$$

⇒ Field equations:

$$\begin{aligned} \kappa^{2}\Theta_{\mu\nu} &= \frac{1}{2}\mathcal{F}g_{\mu\nu} + 2\overset{\circ}{\nabla}^{\rho}\left(\mathcal{F}_{,1}T_{\nu\mu\rho} + \mathcal{F}_{,2}T_{[\rho\mu]\nu} + \mathcal{F}_{,3}T^{\sigma}{}_{\sigma[\rho}g_{\mu]\nu}\right) + \mathcal{F}_{,1}T^{\rho\sigma}{}_{\mu}\left(T_{\nu\rho\sigma} - 2T_{[\rho\sigma]\nu}\right) \\ &+ \frac{1}{2}\mathcal{F}_{,2}\left[T_{\mu}{}^{\rho\sigma}\left(2T_{\rho\sigma\nu} - T_{\nu\rho\sigma}\right) + T^{\rho\sigma}{}_{\mu}\left(2T_{[\rho\sigma]\nu} - T_{\nu\rho\sigma}\right)\right] - \frac{1}{2}\mathcal{F}_{,3}T^{\sigma}{}_{\sigma\rho}\left(T^{\rho}{}_{\mu\nu} + 2T_{(\mu\nu)}{}^{\rho}\right), \end{aligned}$$

• Use $\Theta_{\mu\nu}$ instead of $T_{\mu\nu}$ to avoid confusion with torsion.

$$\begin{split} \beta - 1 &= -\frac{\varepsilon}{2} \,, \quad \gamma - 1 = -2\varepsilon \,, \quad \varepsilon = \frac{2F_{,1} + F_{,2} + F_{,3}}{2(2F_{,1} + F_{,2} + 2F_{,3})} \,, \\ \xi &= \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0 \,. \end{split}$$

$$\beta - 1 = -\frac{\varepsilon}{2}, \quad \gamma - 1 = -2\varepsilon, \quad \varepsilon = \frac{2F_{,1} + F_{,2} + F_{,3}}{2(2F_{,1} + F_{,2} + 2F_{,3})},$$

$$\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = \mathbf{0} \,.$$

- \Rightarrow Fully conservative gravity theory:
 - No preferred frame or preferred location effects.
 - Total energy-momentum is conserved.

$$\begin{split} \beta - \mathbf{1} &= -\frac{\varepsilon}{2} \,, \quad \gamma - \mathbf{1} = -2\varepsilon \,, \quad \varepsilon = \frac{2F_{,1} + F_{,2} + F_{,3}}{2(2F_{,1} + F_{,2} + 2F_{,3})} \,, \\ \xi &= \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = \mathbf{0} \,. \end{split}$$

- \Rightarrow Fully conservative gravity theory:
 - No preferred frame or preferred location effects.
 - Total energy-momentum is conserved.
- Nordvedt parameter vanishes identically:

$$\eta_N = \frac{4\beta - \gamma - 3}{3} - \frac{10}{3}\xi - \alpha_1 + \frac{2}{3}\alpha_2 - \frac{2}{3}\zeta_1 - \frac{1}{3}\zeta_2 \equiv 0.$$

• PPN parameters:

$$\beta - 1 = -\frac{\varepsilon}{2}, \quad \gamma - 1 = -2\varepsilon, \quad \varepsilon = \frac{2F_{,1} + F_{,2} + F_{,3}}{2(2F_{,1} + F_{,2} + 2F_{,3})},$$

$$\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0.$$

- ⇒ Fully conservative gravity theory:
 - No preferred frame or preferred location effects.
 - Total energy-momentum is conserved.
 - Nordvedt parameter vanishes identically:

$$\eta_{N} = 4\beta - \gamma - 3 - \frac{10}{3}\xi - \alpha_{1} + \frac{2}{3}\alpha_{2} - \frac{2}{3}\zeta_{1} - \frac{1}{3}\zeta_{2} \equiv 0.$$

⇒ No Nordvedt effect - lunar laser ranging unaffected.

$$\beta - 1 = -\frac{\varepsilon}{2}, \quad \gamma - 1 = -2\varepsilon, \quad \varepsilon = \frac{2F_{,1} + F_{,2} + F_{,3}}{2(2F_{,1} + F_{,2} + 2F_{,3})},$$

$$\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = \mathbf{0}.$$

- ⇒ Fully conservative gravity theory:
 - No preferred frame or preferred location effects.
 - Total energy-momentum is conserved.
 - Nordvedt parameter vanishes identically:

$$\eta_{N} = 4\beta - \gamma - 3 - \frac{10}{3}\xi - \alpha_{1} + \frac{2}{3}\alpha_{2} - \frac{2}{3}\zeta_{1} - \frac{1}{3}\zeta_{2} \equiv 0.$$

- ⇒ No Nordvedt effect lunar laser ranging unaffected.
- Bounds on theory parameters from Cassini tracking:

$$\gamma - 1 = -2\varepsilon = (2.1 \pm 2.3) \cdot 10^{-5}$$
.

• Irreducible decomposition of torsion components:

$$T_{ax} = \frac{1}{18} (\mathcal{T}_1 - 2\mathcal{T}_2), \quad T_{ten} = \frac{1}{2} (\mathcal{T}_1 + \mathcal{T}_2 - \mathcal{T}_3), \quad T_{vec} = \mathcal{T}_3.$$

• Irreducible decomposition of torsion components:

$$T_{ax} = \frac{1}{18} (T_1 - 2T_2), \quad T_{ten} = \frac{1}{2} (T_1 + T_2 - T_3), \quad T_{vec} = T_3.$$

• Alternative representation of the action:

$$\mathcal{F}(\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3) = \mathcal{G}(T_{ax}, T_{vec}, T_{ten})$$
.

• Irreducible decomposition of torsion components:

$$T_{ax} = \frac{1}{18} (T_1 - 2T_2), \quad T_{ten} = \frac{1}{2} (T_1 + T_2 - T_3), \quad T_{vec} = T_3.$$

Alternative representation of the action:

$$\mathcal{F}(\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3) = \mathcal{G}(T_{ax}, T_{vec}, T_{ten}).$$

• Relation between Taylor expansion coefficients:

$$F_{,1} = \frac{1}{18}G_{,a} + \frac{1}{2}G_{,t}, \quad F_{,2} = -\frac{1}{9}G_{,a} + \frac{1}{2}G_{,t}, \quad F_{,3} = G_{,v} - \frac{1}{2}G_{,t}.$$

• Irreducible decomposition of torsion components:

$$T_{ax} = \frac{1}{18} (T_1 - 2T_2), \quad T_{ten} = \frac{1}{2} (T_1 + T_2 - T_3), \quad T_{vec} = T_3.$$

Alternative representation of the action:

$$\mathcal{F}(\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3) = \mathcal{G}(\mathcal{T}_{ax}, \mathcal{T}_{vec}, \mathcal{T}_{ten}).$$

• Relation between Taylor expansion coefficients:

$$F_{,1} = \frac{1}{18}G_{,a} + \frac{1}{2}G_{,t}, \quad F_{,2} = -\frac{1}{9}G_{,a} + \frac{1}{2}G_{,t}, \quad F_{,3} = G_{,v} - \frac{1}{2}G_{,t}.$$

Constant defining PPN parameters:

$$\varepsilon = \frac{G_{,v} + G_{,t}}{4G_{,v} + G_{,t}}$$

• Irreducible decomposition of torsion components:

$$T_{ax} = \frac{1}{18} (T_1 - 2T_2), \quad T_{ten} = \frac{1}{2} (T_1 + T_2 - T_3), \quad T_{vec} = T_3.$$

• Alternative representation of the action:

$$\mathcal{F}(\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3) = \mathcal{G}(T_{ax}, T_{vec}, T_{ten}).$$

• Relation between Taylor expansion coefficients:

$$F_{,1} = \frac{1}{18}G_{,a} + \frac{1}{2}G_{,t}, \quad F_{,2} = -\frac{1}{9}G_{,a} + \frac{1}{2}G_{,t}, \quad F_{,3} = G_{,v} - \frac{1}{2}G_{,t}.$$

• Constant defining PPN parameters:

$$\varepsilon = \frac{G_{,v} + G_{,t}}{4G_{,v} + G_{,t}}$$

⇒ Purely axial modifications do not affect PPN parameters.

$\mathcal{F}(\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3)$ - particular theories

- New general relativity [Hayashi, Shirafuji '79]:
 - Most general action linear in torsion scalars:

$$\mathcal{F}(\mathcal{T}_1,\mathcal{T}_2,\mathcal{T}_3)=t_1\mathcal{T}_1+t_2\mathcal{T}_2+t_3\mathcal{T}_3.$$

- ⇒ Taylor coefficients given by $F_{i} = t_i$, i = 1, ..., 3.
- ⇒ Constant defining PPN parameters:

$$\varepsilon = \frac{2t_1 + t_2 + t_3}{2(2t_1 + t_2 + 2t_3)}$$

$\mathcal{F}(\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3)$ - particular theories

- New general relativity [Hayashi, Shirafuji '79]:
 - Most general action linear in torsion scalars:

$$\mathcal{F}(\mathcal{T}_1,\mathcal{T}_2,\mathcal{T}_3)=t_1\mathcal{T}_1+t_2\mathcal{T}_2+t_3\mathcal{T}_3.$$

- ⇒ Taylor coefficients given by $F_{i} = t_i$, i = 1, ..., 3.
- ⇒ Constant defining PPN parameters:

$$\varepsilon = \frac{2t_1 + t_2 + t_3}{2(2t_1 + t_2 + 2t_3)} \, .$$

- f(T) gravity theories [Bengochea, Ferraro '08; Linder '10]:
 - Lagrangian defined as function of linear combination:

$$\mathcal{F}(\mathcal{T}_1,\mathcal{T}_2,\mathcal{T}_3)=f(\mathcal{T})\,,\quad \mathcal{T}=\frac{1}{4}\mathcal{T}_1+\frac{1}{2}\mathcal{T}_2-\mathcal{T}_3\,.$$

 \Rightarrow Taylor coefficients given by:

$$F_{,1}=\frac{1}{4}f'(0)\,,\quad F_{,2}=\frac{1}{2}f'(0)\,,\quad F_{,3}=-f'(0)$$

⇒ Indistinguishable from GR, since $\varepsilon \equiv 0$.

• Gravitational part of the action:

$$S_{g}[\theta,\omega,\phi] = \frac{1}{2\kappa^{2}} \int_{M} \left[-\mathcal{A}(\phi)T + 2\mathcal{B}(\phi)X + 2\mathcal{C}(\phi)Y - 2\kappa^{2}\mathcal{V}(\phi) \right] \theta \,\mathrm{d}^{4}x \,.$$

• Gravitational part of the action:

$$S_{g}[\theta,\omega,\phi] = \frac{1}{2\kappa^{2}} \int_{M} \left[-\mathcal{A}(\phi)\mathbf{T} + 2\mathcal{B}(\phi)\mathbf{X} + 2\mathcal{C}(\phi)\mathbf{Y} - 2\kappa^{2}\mathcal{V}(\phi) \right] \theta \,\mathrm{d}^{4}x \,.$$

• Scalar quantities appearing in the action:

$$T = \frac{1}{2} T^{\rho}{}_{\mu\nu} S_{\rho}{}^{\mu\nu} , \quad X = -\frac{1}{2} g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} , \quad Y = g^{\mu\nu} T^{\rho}{}_{\rho\mu} \phi_{,\nu} .$$

• Gravitational part of the action:

$$S_{g}[\theta,\omega,\phi] = \frac{1}{2\kappa^{2}} \int_{M} \left[-\mathcal{A}(\phi)T + 2\mathcal{B}(\phi)X + 2\mathcal{C}(\phi)Y - 2\kappa^{2}\mathcal{V}(\phi) \right] \theta \,\mathrm{d}^{4}x \,.$$

• Scalar quantities appearing in the action:

$$T = \frac{1}{2} T^{\rho}{}_{\mu\nu} S_{\rho}{}^{\mu\nu} , \quad X = -\frac{1}{2} g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} , \quad Y = g^{\mu\nu} T^{\rho}{}_{\rho\mu} \phi_{,\nu} .$$

• Superpotential:

$$S_{\rho\mu\nu} = \frac{1}{2} \left(T_{\nu\mu\rho} + T_{\rho\mu\nu} - T_{\mu\nu\rho} \right) - g_{\rho\mu} T^{\sigma}{}_{\sigma\nu} + g_{\rho\nu} T^{\sigma}{}_{\sigma\mu} \,.$$

• Gravitational part of the action:

$$S_{g}[\theta,\omega,\phi] = \frac{1}{2\kappa^{2}} \int_{M} \left[-\mathcal{A}(\phi)T + 2\mathcal{B}(\phi)X + 2\mathcal{C}(\phi)Y - 2\kappa^{2}\mathcal{V}(\phi) \right] \theta \,\mathrm{d}^{4}x \,.$$

• Scalar quantities appearing in the action:

$$T = \frac{1}{2} T^{\rho}{}_{\mu\nu} S_{\rho}{}^{\mu\nu} \,, \quad X = -\frac{1}{2} g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} \,, \quad Y = g^{\mu\nu} T^{\rho}{}_{\rho\mu} \phi_{,\nu} \,.$$

• Superpotential:

$$S_{\rho\mu\nu} = \frac{1}{2} \left(T_{\nu\mu\rho} + T_{\rho\mu\nu} - T_{\mu\nu\rho} \right) - g_{\rho\mu} T^{\sigma}{}_{\sigma\nu} + g_{\rho\nu} T^{\sigma}{}_{\sigma\mu} \,.$$

• Taylor expansion of functions around background ${}^{\mathcal{X}} \overset{\scriptscriptstyle 0}{\phi} = \Phi$:

$$A = \mathcal{A}(\Phi), \quad A' = \mathcal{A}'(\Phi), \quad A'' = \mathcal{A}''(\Phi), \quad A''' = \mathcal{A}'''(\Phi), \quad \dots$$

- Field equations:
 - Tetrad field equations symmetric part:

$$\begin{split} \kappa^2 \Theta_{\mu\nu} &= \left(\mathcal{A}' + \mathcal{C}\right) S_{(\mu\nu)}{}^{\rho} \phi_{,\rho} + \mathcal{A} \left(\overset{\circ}{R}_{\mu\nu} - \frac{1}{2} \overset{\circ}{R} g_{\mu\nu} \right) - (\mathcal{B} - \mathcal{C}') \phi_{,\mu} \phi_{,\nu} \\ &+ \left(\frac{1}{2} \mathcal{B} - \mathcal{C}' \right) \phi_{,\rho} \phi_{,\sigma} g^{\rho\sigma} g_{\mu\nu} + \mathcal{C} \left(\overset{\circ}{\nabla}_{\mu} \overset{\circ}{\nabla}_{\nu} \phi - \overset{\circ}{\Box} \phi g_{\mu\nu} \right) + \kappa^2 \mathcal{V} g_{\mu\nu} \,. \end{split}$$

- Field equations:
 - Tetrad field equations symmetric part:

$$\begin{split} \kappa^2 \Theta_{\mu\nu} &= \left(\mathcal{A}' + \mathcal{C}\right) S_{(\mu\nu)}{}^{\rho} \phi_{,\rho} + \mathcal{A} \left(\overset{\circ}{R}_{\mu\nu} - \frac{1}{2} \overset{\circ}{R} g_{\mu\nu} \right) - (\mathcal{B} - \mathcal{C}') \phi_{,\mu} \phi_{,\nu} \\ &+ \left(\frac{1}{2} \mathcal{B} - \mathcal{C}' \right) \phi_{,\rho} \phi_{,\sigma} g^{\rho\sigma} g_{\mu\nu} + \mathcal{C} \left(\overset{\circ}{\nabla}_{\mu} \overset{\circ}{\nabla}_{\nu} \phi - \overset{\circ}{\Box} \phi g_{\mu\nu} \right) + \kappa^2 \mathcal{V} g_{\mu\nu} \,. \end{split}$$

• Tetrad field equations - antisymmetric part:

$$\mathsf{0} = \left(\mathcal{A}' + \mathcal{C} \right) T^{\rho}{}_{\left[\mu \nu \phi, \rho \right]}.$$

- Field equations:
 - Tetrad field equations symmetric part:

$$\begin{split} \kappa^2 \Theta_{\mu\nu} &= \left(\mathcal{A}' + \mathcal{C}\right) S_{(\mu\nu)}{}^{\rho} \phi_{,\rho} + \mathcal{A} \left(\overset{\circ}{R}_{\mu\nu} - \frac{1}{2} \overset{\circ}{R} g_{\mu\nu} \right) - (\mathcal{B} - \mathcal{C}') \phi_{,\mu} \phi_{,\nu} \\ &+ \left(\frac{1}{2} \mathcal{B} - \mathcal{C}' \right) \phi_{,\rho} \phi_{,\sigma} g^{\rho\sigma} g_{\mu\nu} + \mathcal{C} \left(\overset{\circ}{\nabla}_{\mu} \overset{\circ}{\nabla}_{\nu} \phi - \overset{\circ}{\Box} \phi g_{\mu\nu} \right) + \kappa^2 \mathcal{V} g_{\mu\nu} \,. \end{split}$$

• Tetrad field equations - antisymmetric part:

$$\mathsf{0} = \left(\mathcal{A}' + \mathcal{C} \right) T^{\rho}{}_{\left[\mu \nu \phi, \rho \right]} \, .$$

• Scalar field equation:

$$0 = \frac{1}{2}\mathcal{A}'T - \mathcal{B} \stackrel{\circ}{\Box} \phi - \frac{1}{2}\mathcal{B}'g^{\mu\nu}\phi_{,\mu}\phi_{,\nu} + \mathcal{C}\stackrel{\circ}{\nabla}_{\mu}T_{\nu}^{\ \nu\mu} + \kappa^{2}\mathcal{V}'.$$

- Field equations:
 - Tetrad field equations symmetric part:

$$\begin{split} \kappa^2 \Theta_{\mu\nu} &= \left(\mathcal{A}' + \mathcal{C}\right) S_{(\mu\nu)}{}^{\rho} \phi_{,\rho} + \mathcal{A} \left(\overset{\circ}{R}_{\mu\nu} - \frac{1}{2} \overset{\circ}{R} g_{\mu\nu} \right) - (\mathcal{B} - \mathcal{C}') \phi_{,\mu} \phi_{,\nu} \\ &+ \left(\frac{1}{2} \mathcal{B} - \mathcal{C}' \right) \phi_{,\rho} \phi_{,\sigma} g^{\rho\sigma} g_{\mu\nu} + \mathcal{C} \left(\overset{\circ}{\nabla}_{\mu} \overset{\circ}{\nabla}_{\nu} \phi - \overset{\circ}{\Box} \phi g_{\mu\nu} \right) + \kappa^2 \mathcal{V} g_{\mu\nu} \,. \end{split}$$

• Tetrad field equations - antisymmetric part:

$$\mathsf{0} = \left(\mathcal{A}' + \mathcal{C} \right) T^{\rho}{}_{\left[\mu \nu \phi, \rho \right]} \, .$$

• Scalar field equation:

$$0 = \frac{1}{2}\mathcal{A}'T - \mathcal{B} \stackrel{\circ}{\Box} \phi - \frac{1}{2}\mathcal{B}'g^{\mu\nu}\phi_{,\mu}\phi_{,\nu} + \mathcal{C}\stackrel{\circ}{\nabla}_{\mu}T_{\nu}^{\ \nu\mu} + \kappa^{2}\mathcal{V}'.$$

- Helpful steps to decouple / simplify:
 - Trace reversal: $\overset{\circ}{R}_{\mu\nu} \frac{1}{2}\overset{\circ}{R}g_{\mu\nu} \rightarrow \overset{\circ}{R}_{\mu\nu}$.

- Field equations:
 - Tetrad field equations symmetric part:

$$\begin{split} \kappa^2 \Theta_{\mu\nu} &= \left(\mathcal{A}' + \mathcal{C}\right) S_{(\mu\nu)}{}^{\rho} \phi_{,\rho} + \mathcal{A} \left(\overset{\circ}{R}_{\mu\nu} - \frac{1}{2} \overset{\circ}{R} g_{\mu\nu} \right) - (\mathcal{B} - \mathcal{C}') \phi_{,\mu} \phi_{,\nu} \\ &+ \left(\frac{1}{2} \mathcal{B} - \mathcal{C}' \right) \phi_{,\rho} \phi_{,\sigma} g^{\rho\sigma} g_{\mu\nu} + \mathcal{C} \left(\overset{\circ}{\nabla}_{\mu} \overset{\circ}{\nabla}_{\nu} \phi - \overset{\circ}{\Box} \phi g_{\mu\nu} \right) + \kappa^2 \mathcal{V} g_{\mu\nu} \,. \end{split}$$

• Tetrad field equations - antisymmetric part:

$$\mathsf{0} = \left(\mathcal{A}' + \mathcal{C} \right) T^{\rho}{}_{\left[\mu \nu \phi, \rho \right]} \, .$$

• Scalar field equation:

$$0 = \frac{1}{2}\mathcal{A}'T - \mathcal{B} \stackrel{\circ}{\Box} \phi - \frac{1}{2}\mathcal{B}'g^{\mu\nu}\phi_{,\mu}\phi_{,\nu} + \mathcal{C}\stackrel{\circ}{\nabla}_{\mu}T_{\nu}^{\ \nu\mu} + \kappa^{2}\mathcal{V}'.$$

- Helpful steps to decouple / simplify:
 - Trace reversal: $\mathring{R}_{\mu\nu} \frac{1}{2} \mathring{R} g_{\mu\nu} \rightarrow \mathring{R}_{\mu\nu}$.
 - Eliminate second-order tetrad derivatives using tetrad equations.

• Trace-reversed symmetric tetrad field equations:

$$\begin{split} \bar{\Theta}_{\mu\nu} &= \left(\mathcal{A}' + \mathcal{C}\right) \left(S_{(\mu\nu)}{}^{\rho} + g_{\mu\nu} T_{\chi}{}^{\chi\rho}\right) \phi_{,\rho} + \mathcal{A} \overset{\circ}{R}_{\mu\nu} + \frac{1}{2} \mathcal{C}' g_{\mu\nu} \phi_{,\rho} \phi_{,\sigma} g^{\rho\sigma} \\ &- \left(\mathcal{B} - \mathcal{C}'\right) \phi_{,\mu} \phi_{,\nu} + \mathcal{C} \overset{\circ}{\nabla}_{\mu} \overset{\circ}{\nabla}_{\nu} \phi + \frac{1}{2} \mathcal{C} \overset{\circ}{\Box} \phi g_{\mu\nu} - \kappa^2 \mathcal{V} g_{\mu\nu} \end{split}$$

• Trace-reversed symmetric tetrad field equations:

$$\begin{split} \bar{\Theta}_{\mu\nu} &= \left(\mathcal{A}' + \mathcal{C}\right) \left(S_{(\mu\nu)}{}^{\rho} + g_{\mu\nu}T_{\chi}{}^{\chi\rho}\right) \phi_{,\rho} + \mathcal{A}\overset{\circ}{R}_{\mu\nu} + \frac{1}{2}\mathcal{C}'g_{\mu\nu}\phi_{,\rho}\phi_{,\sigma}g^{\rho\sigma} \\ &- \left(\mathcal{B} - \mathcal{C}'\right)\phi_{,\mu}\phi_{,\nu} + \mathcal{C}\overset{\circ}{\nabla}_{\mu}\overset{\circ}{\nabla}_{\nu}\phi + \frac{1}{2}\mathcal{C}\overset{\circ}{\Box}\phi g_{\mu\nu} - \kappa^{2}\mathcal{V}g_{\mu\nu} \end{split}$$

• "Debraided" scalar field equation:

$$\begin{split} \kappa^2 \mathcal{C}\Theta &= \left(\mathcal{A}' + \mathcal{C}\right) \left(\mathcal{A}T - 2\mathcal{C}T_{\mu}{}^{\mu\nu}\phi_{,\nu}\right) - \left(2\mathcal{A}\mathcal{B} + 3\mathcal{C}^2\right) \overset{\circ}{\Box}\phi \\ &+ \left(\mathcal{B}\mathcal{C} - \mathcal{A}\mathcal{B}' - 3\mathcal{C}\mathcal{C}'\right)g^{\mu\nu}\phi_{,\mu}\phi_{,\nu} + 2\kappa^2 (\mathcal{A}\mathcal{V}' + 2\mathcal{C}\mathcal{V})\,. \end{split}$$

• Trace-reversed symmetric tetrad field equations:

$$\begin{split} \bar{\Theta}_{\mu\nu} &= \left(\mathcal{A}' + \mathcal{C}\right) \left(S_{(\mu\nu)}{}^{\rho} + g_{\mu\nu}T_{\chi}{}^{\chi\rho}\right) \phi_{,\rho} + \mathcal{A}\overset{\circ}{R}_{\mu\nu} + \frac{1}{2}\mathcal{C}'g_{\mu\nu}\phi_{,\rho}\phi_{,\sigma}g^{\rho\sigma} \\ &- \left(\mathcal{B} - \mathcal{C}'\right)\phi_{,\mu}\phi_{,\nu} + \mathcal{C}\overset{\circ}{\nabla}_{\mu}\overset{\circ}{\nabla}_{\nu}\phi + \frac{1}{2}\mathcal{C}\overset{\circ}{\Box}\phi g_{\mu\nu} - \kappa^{2}\mathcal{V}g_{\mu\nu} \end{split}$$

• "Debraided" scalar field equation:

$$\begin{split} \kappa^2 \mathcal{C}\Theta &= \left(\mathcal{A}' + \mathcal{C}\right) \left(\mathcal{A}T - 2\mathcal{C}T_{\mu}{}^{\mu\nu}\phi_{,\nu}\right) - \left(2\mathcal{A}\mathcal{B} + 3\mathcal{C}^2\right) \overset{\circ}{\Box}\phi \\ &+ \left(\mathcal{B}\mathcal{C} - \mathcal{A}\mathcal{B}' - 3\mathcal{C}\mathcal{C}'\right)g^{\mu\nu}\phi_{,\mu}\phi_{,\nu} + 2\kappa^2 (\mathcal{A}\mathcal{V}' + 2\mathcal{C}\mathcal{V})\,. \end{split}$$

• Trace-reversed energy-momentum tensor:

$$\bar{\Theta}_{\mu\nu} = \Theta_{\mu\nu} - \frac{1}{2}g_{\mu\nu}g^{\rho\sigma}\Theta_{\rho\sigma}.$$

• Trace-reversed symmetric tetrad field equations:

$$\begin{split} \bar{\Theta}_{\mu\nu} &= \left(\mathcal{A}' + \mathcal{C}\right) \left(S_{(\mu\nu)}{}^{\rho} + g_{\mu\nu} T_{\chi}{}^{\chi\rho} \right) \phi_{,\rho} + \mathcal{A} \overset{\circ}{R}_{\mu\nu} + \frac{1}{2} \mathcal{C}' g_{\mu\nu} \phi_{,\rho} \phi_{,\sigma} g^{\rho\sigma} \\ &- \left(\mathcal{B} - \mathcal{C}' \right) \phi_{,\mu} \phi_{,\nu} + \mathcal{C} \overset{\circ}{\nabla}_{\mu} \overset{\circ}{\nabla}_{\nu} \phi + \frac{1}{2} \mathcal{C} \overset{\circ}{\Box} \phi g_{\mu\nu} - \kappa^2 \mathcal{V} g_{\mu\nu} \end{split}$$

• "Debraided" scalar field equation:

$$\begin{split} \kappa^2 \mathcal{C} \Theta &= \left(\mathcal{A}' + \mathcal{C} \right) \left(\mathcal{A} T - 2 \mathcal{C} T_{\mu}{}^{\mu\nu} \phi_{,\nu} \right) - \left(2 \mathcal{A} \mathcal{B} + 3 \mathcal{C}^2 \right) \overset{\circ}{\Box} \phi \\ &+ \left(\mathcal{B} \mathcal{C} - \mathcal{A} \mathcal{B}' - 3 \mathcal{C} \mathcal{C}' \right) g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} + 2 \kappa^2 (\mathcal{A} \mathcal{V}' + 2 \mathcal{C} \mathcal{V}) \,. \end{split}$$

Trace-reversed energy-momentum tensor:

$$\bar{\Theta}_{\mu\nu} = \Theta_{\mu\nu} - \frac{1}{2}g_{\mu\nu}g^{\rho\sigma}\Theta_{\rho\sigma}.$$

 \Rightarrow Trace Θ of energy-momentum becomes source of scalar field.

• Trace-reversed symmetric tetrad field equations:

$$\begin{split} \bar{\Theta}_{\mu\nu} &= \left(\mathcal{A}' + \mathcal{C}\right) \left(S_{(\mu\nu)}{}^{\rho} + g_{\mu\nu} T_{\chi}{}^{\chi\rho} \right) \phi_{,\rho} + \mathcal{A} \overset{\circ}{R}_{\mu\nu} + \frac{1}{2} \mathcal{C}' g_{\mu\nu} \phi_{,\rho} \phi_{,\sigma} g^{\rho\sigma} \\ &- \left(\mathcal{B} - \mathcal{C}' \right) \phi_{,\mu} \phi_{,\nu} + \mathcal{C} \overset{\circ}{\nabla}_{\mu} \overset{\circ}{\nabla}_{\nu} \phi + \frac{1}{2} \mathcal{C} \overset{\circ}{\Box} \phi g_{\mu\nu} - \kappa^2 \mathcal{V} g_{\mu\nu} \end{split}$$

• "Debraided" scalar field equation:

$$\begin{split} \kappa^2 \mathcal{C}\Theta &= \left(\mathcal{A}' + \mathcal{C}\right) \left(\mathcal{A}T - 2\mathcal{C}T_{\mu}{}^{\mu\nu}\phi_{,\nu}\right) - \left(2\mathcal{A}\mathcal{B} + 3\mathcal{C}^2\right) \overset{\circ}{\Box}\phi \\ &+ \left(\mathcal{B}\mathcal{C} - \mathcal{A}\mathcal{B}' - 3\mathcal{C}\mathcal{C}'\right)g^{\mu\nu}\phi_{,\mu}\phi_{,\nu} + 2\kappa^2 \left(\mathcal{A}\mathcal{V}' + 2\mathcal{C}\mathcal{V}\right). \end{split}$$

Trace-reversed energy-momentum tensor:

$$\bar{\Theta}_{\mu\nu} = \Theta_{\mu\nu} - \frac{1}{2}g_{\mu\nu}g^{\rho\sigma}\Theta_{\rho\sigma}.$$

- ⇒ Trace Θ of energy-momentum becomes source of scalar field.
- \Rightarrow Scalar source term vanishes for minimal coupling C = 0.

• Effective gravitational constant:

$$G_{\text{eff}} = \frac{\kappa^2}{8\pi A} \left(1 + \frac{C^2 e^{-m_{\phi} r}}{2AB + 3C^2} \right)$$

• Effective gravitational constant:

$$G_{\rm eff} = \frac{\kappa^2}{8\pi A} \left(1 + \frac{C^2 e^{-m_{\phi} r}}{2AB + 3C^2} \right)$$

• PPN parameter γ :

$$\gamma = \frac{2AB + 3C^2 - C^2 e^{-m_{\phi}r}}{2AB + 3C^2 + C^2 e^{-m_{\phi}r}}.$$

• Effective gravitational constant:

$$G_{\rm eff} = \frac{\kappa^2}{8\pi A} \left(1 + \frac{C^2 e^{-m_{\phi} r}}{2AB + 3C^2} \right)$$

• PPN parameter γ :

$$\gamma = \frac{2AB + 3C^2 - C^2 e^{-m_{\phi}r}}{2AB + 3C^2 + C^2 e^{-m_{\phi}r}}.$$

Scalar field mass:

$$m_{\phi}^2=\frac{2\kappa^2AV''}{2AB+3C^2}.$$

• Effective gravitational constant:

$$G_{\rm eff} = \frac{\kappa^2}{8\pi A} \left(1 + \frac{C^2 e^{-m_{\phi} r}}{2AB + 3C^2} \right)$$

• PPN parameter γ :

$$\gamma = \frac{2AB + 3C^2 - C^2 e^{-m_{\phi}r}}{2AB + 3C^2 + C^2 e^{-m_{\phi}r}}.$$

Scalar field mass:

$$m_{\phi}^2=\frac{2\kappa^2AV''}{2AB+3C^2}.$$

⇒ Gravitational potential receives Yukawa-type corrections.

• Effective gravitational constant:

$$G_{\rm eff} = \frac{\kappa^2}{8\pi A} \left(1 + \frac{C^2 e^{-m_{\phi} r}}{2AB + 3C^2} \right)$$

• PPN parameter γ :

$$\gamma = \frac{2AB + 3C^2 - C^2 e^{-m_{\phi}r}}{2AB + 3C^2 + C^2 e^{-m_{\phi}r}}.$$

Scalar field mass:

$$m_{\phi}^2=\frac{2\kappa^2AV''}{2AB+3C^2}\,.$$

- ⇒ Gravitational potential receives Yukawa-type corrections.
- \Rightarrow Corrections vanish for minimal coupling C = 0.

• Effective gravitational constant:

$$G_{\rm eff} = \frac{\kappa^2}{8\pi A} \left(1 + \frac{C^2 e^{-m_{\phi} r}}{2AB + 3C^2} \right)$$

PPN parameter γ:

$$\gamma = \frac{2AB + 3C^2 - C^2 e^{-m_{\phi}r}}{2AB + 3C^2 + C^2 e^{-m_{\phi}r}}.$$

Scalar field mass:

$$m_{\phi}^2=\frac{2\kappa^2AV''}{2AB+3C^2}\,.$$

- ⇒ Gravitational potential receives Yukawa-type corrections.
- \Rightarrow Corrections vanish for minimal coupling C = 0.
- ⇒ Corrections vanish for infinite mass $m_{\phi} \rightarrow \infty$.
• PPN parameters:

$$\gamma = \mathbf{1} - \frac{C^2}{AB + 2C^2} \,,$$

$$\beta = 1 - \frac{C\{6C^4(C + A') + ABC^2(7C + 8A') + A^2[2B^2(C + A') + B'C^2 - 2BCC']\}}{4(AB + 2C^2)^2(2AB + 3C^2)},$$

$$\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0.$$

• PPN parameters:

$$\gamma = 1 - \frac{C^2}{AB + 2C^2},$$

$$\beta = 1 - \frac{C\{6C^4(C+A') + ABC^2(7C+8A') + A^2[2B^2(C+A') + B'C^2 - 2BCC']\}}{4(AB+2C^2)^2(2AB+3C^2)},$$

$$\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = \mathbf{0} .$$

- \Rightarrow Fully conservative gravity theory:
 - No preferred frame or preferred location effects.
 - Total energy-momentum is conserved.

• PPN parameters:

$$\gamma = 1 - \frac{C^2}{AB + 2C^2},$$

$$B = 1 - \frac{C\{6C^{4}(C + A') + ABC^{2}(7C + 8A') + A^{2}[2B^{2}(C + A') + B'C^{2} - 2BCC']\}}{4(AB + 2C^{2})^{2}(2AB + 3C^{2})}$$

$$\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = \mathbf{0} \,.$$

- ⇒ Fully conservative gravity theory:
 - No preferred frame or preferred location effects.
 - Total energy-momentum is conserved.
- \Rightarrow Identical to GR $\gamma = \beta = 1$ for C = 0.

• Choose non-minimal coupling function C = -A'.

- Choose non-minimal coupling function C = -A'.
- ⇒ Action functional after integration by parts [MH 18]:

$$S_g = \frac{1}{2\kappa^2} \int_M \left[\mathcal{A}(\phi) \overset{\circ}{R} + 2\mathcal{B}(\phi) X - 2\kappa^2 \mathcal{V}(\phi) \right] \theta d^4 x \, .$$

- Choose non-minimal coupling function C = -A'.
- ⇒ Action functional after integration by parts [MH 18]:

$$S_g = \frac{1}{2\kappa^2} \int_M \left[\mathcal{A}(\phi) \overset{\circ}{R} + 2\mathcal{B}(\phi) X - 2\kappa^2 \mathcal{V}(\phi) \right] \theta d^4 x \, .$$

⇒ Theory becomes equivalent to scalar-curvature gravity [Flanagan '04].

- Choose non-minimal coupling function C = -A'.
- ⇒ Action functional after integration by parts [MH 18]:

$$S_g = \frac{1}{2\kappa^2} \int_M \left[\mathcal{A}(\phi) \overset{\circ}{\mathcal{R}} + 2\mathcal{B}(\phi) X - 2\kappa^2 \mathcal{V}(\phi) \right] \theta d^4 x \, .$$

- ⇒ Theory becomes equivalent to scalar-curvature gravity [Flanagan '04].
 - Re-obtain well-known PPN parameters as consistency check.

Scalar-torsion - minimally coupled theories

- Numerous minimally coupled (C = 0) theories:
 - Teleparallel dark energy [Geng, Lee, Saridakis, Wu '11]:

$$\mathcal{A} = \mathbf{1} + \mathbf{2}\kappa^2 \xi \phi^2 \,, \quad \mathcal{B} = -\kappa^2 \,.$$

• Interacting dark energy [Otalora '13]:

$$\mathcal{A} = \mathbf{1} + 2\kappa^2 \xi F(\phi), \quad \mathcal{B} = -\kappa^2.$$

• Brans-Dicke type with a general coupling to torsion [Izumi, Gu, Ong '13]:

$$\mathcal{A} = \mathcal{F}(\phi), \quad \mathcal{B} = 2\kappa^2\omega.$$

• Brans-Dicke type with a dynamical kinetic term [Chen, Wu, Wei '14]:

$$\mathcal{A} = \phi, \quad \mathcal{B} = 2\kappa^2 \omega(\phi)/\phi.$$

Scalar-torsion - minimally coupled theories

- Numerous minimally coupled (C = 0) theories:
 - Teleparallel dark energy [Geng, Lee, Saridakis, Wu '11]:

$$\mathcal{A} = \mathbf{1} + \mathbf{2}\kappa^2 \xi \phi^2 \,, \quad \mathcal{B} = -\kappa^2 \,.$$

• Interacting dark energy [Otalora '13]:

$$\mathcal{A} = \mathbf{1} + 2\kappa^2 \xi F(\phi), \quad \mathcal{B} = -\kappa^2.$$

• Brans-Dicke type with a general coupling to torsion [Izumi, Gu, Ong '13]:

$$\mathcal{A} = \mathcal{F}(\phi), \quad \mathcal{B} = 2\kappa^2\omega.$$

Brans-Dicke type with a dynamical kinetic term [Chen, Wu, Wei '14]:

$$\mathcal{A} = \phi, \quad \mathcal{B} = 2\kappa^2 \omega(\phi)/\phi.$$

 \Rightarrow PPN parameters take GR values $\gamma = \beta = 1$.

Scalar-torsion - minimally coupled theories

- Numerous minimally coupled (C = 0) theories:
 - Teleparallel dark energy [Geng, Lee, Saridakis, Wu '11]:

$$\mathcal{A} = \mathbf{1} + \mathbf{2}\kappa^2 \xi \phi^2 \,, \quad \mathcal{B} = -\kappa^2 \,.$$

• Interacting dark energy [Otalora '13]:

$$\mathcal{A} = \mathbf{1} + 2\kappa^2 \xi F(\phi), \quad \mathcal{B} = -\kappa^2.$$

• Brans-Dicke type with a general coupling to torsion [Izumi, Gu, Ong '13]:

$$\mathcal{A} = F(\phi), \quad \mathcal{B} = 2\kappa^2\omega.$$

Brans-Dicke type with a dynamical kinetic term [Chen, Wu, Wei '14]:

$$\mathcal{A} = \phi, \quad \mathcal{B} = 2\kappa^2 \omega(\phi)/\phi.$$

- \Rightarrow PPN parameters take GR values $\gamma = \beta = 1$.
- ⇒ Theories are indistinguishable from GR by PPN parameters.

• Action functional [Bahamonde, Wright '15]:

$$S_g = \int_M \left[-\frac{T}{2\kappa^2} + \frac{1}{2} \left(g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} - \xi \phi^2 T - \chi \phi^2 B \right) - \mathcal{V}(\phi) \right] \theta d^4 x \,.$$

• Action functional [Bahamonde, Wright '15]:

$$S_g = \int_M \left[-\frac{T}{2\kappa^2} + \frac{1}{2} \left(g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} - \xi \phi^2 T - \chi \phi^2 \mathbf{B} \right) - \mathcal{V}(\phi) \right] \theta d^4 x \,.$$

• Boundary term *B* ~ *Y* after integration by parts:

 $\boldsymbol{B} = \overset{\circ}{\boldsymbol{R}} + \boldsymbol{T} = 2 \overset{\circ}{\nabla}_{\nu} T_{\mu}^{\mu\nu} .$

• Action functional [Bahamonde, Wright '15]:

$$S_g = \int_M \left[-\frac{T}{2\kappa^2} + \frac{1}{2} \left(g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} - \xi \phi^2 T - \chi \phi^2 B \right) - \mathcal{V}(\phi) \right] \theta d^4 x \,.$$

• Boundary term *B* ~ *Y* after integration by parts:

$$\boldsymbol{B} = \overset{\circ}{\boldsymbol{R}} + \boldsymbol{T} = 2\overset{\circ}{\nabla}_{\nu} T_{\mu}{}^{\mu\nu}.$$

• Consider only massless scalar field $\mathcal{V} = \mathbf{0}$.

• Action functional [Bahamonde, Wright '15]:

$$S_g = \int_M \left[-\frac{T}{2\kappa^2} + \frac{1}{2} \left(g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} - \xi \phi^2 T - \chi \phi^2 B \right) - \mathcal{V}(\phi) \right] \theta d^4 x \,.$$

• Boundary term *B* ~ *Y* after integration by parts:

$$\boldsymbol{B} = \overset{\circ}{\boldsymbol{R}} + \boldsymbol{T} = 2\overset{\circ}{\nabla}_{\nu} T_{\mu}^{\mu\nu}.$$

- Consider only massless scalar field $\mathcal{V} = 0$.
- \Rightarrow Parameter functions:

$$\mathcal{A} = \mathbf{1} + \mathbf{2}\kappa^2 \xi \phi^2 \,, \quad \mathcal{B} = -\kappa^2 \,, \quad \mathcal{C} = \mathbf{4}\kappa^2 \chi \phi \,.$$

• Action functional [Bahamonde, Wright '15]:

$$S_g = \int_M \left[-\frac{T}{2\kappa^2} + \frac{1}{2} \left(g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} - \xi \phi^2 T - \chi \phi^2 B \right) - \mathcal{V}(\phi) \right] \theta d^4 x \,.$$

• Boundary term *B* ~ *Y* after integration by parts:

$$\boldsymbol{B} = \overset{\circ}{\boldsymbol{R}} + \boldsymbol{T} = 2\overset{\circ}{\nabla}_{\nu} T_{\mu}^{\mu\nu}.$$

- Consider only massless scalar field $\mathcal{V} = 0$.
- \Rightarrow Parameter functions:

$$\mathcal{A} = \mathbf{1} + 2\kappa^2 \xi \phi^2, \quad \mathcal{B} = -\kappa^2, \quad \mathcal{C} = \mathbf{4}\kappa^2 \chi \phi.$$

⇒ Deviations from GR governed by $C \sim \chi$.

• Action functional [Bahamonde, Wright '15]:

$$S_g = \int_M \left[-\frac{T}{2\kappa^2} + \frac{1}{2} \left(g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} - \xi \phi^2 T - \chi \phi^2 B \right) - \mathcal{V}(\phi) \right] \theta d^4 x \,.$$

• Boundary term *B* ~ *Y* after integration by parts:

$$\boldsymbol{B} = \overset{\circ}{\boldsymbol{R}} + \boldsymbol{T} = 2\overset{\circ}{\nabla}_{\nu} T_{\mu}^{\mu\nu}.$$

- Consider only massless scalar field $\mathcal{V} = 0$.
- \Rightarrow Parameter functions:

$$\mathcal{A} = \mathbf{1} + \mathbf{2}\kappa^2 \xi \phi^2 \,, \quad \mathcal{B} = -\kappa^2 \,, \quad \mathcal{C} = \mathbf{4}\kappa^2 \chi \phi \,.$$

- ⇒ Deviations from GR governed by $C \sim \chi$.
- \Rightarrow PPN parameters:

$$\gamma = 1 + 128\pi\chi^2\Phi^2 + \mathcal{O}(\chi^4) \,, \quad \beta = 1 + 32\pi\xi\chi\Phi^2 + 32\pi\chi^2\Phi^2 + \mathcal{O}(\chi^3) \,.$$

• Action functional [Bahamonde, Wright '15]:

$$S_g = \int_M \left[-\frac{T}{2\kappa^2} + \frac{1}{2} \left(g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} - \xi \phi^2 T - \chi \phi^2 B \right) - \mathcal{V}(\phi) \right] \theta \mathsf{d}^4 x \,.$$

• Boundary term $B \rightsquigarrow Y$ after integration by parts:

$$\boldsymbol{B} = \overset{\circ}{\boldsymbol{R}} + \boldsymbol{T} = 2\overset{\circ}{\nabla}_{\nu} T_{\mu}^{\mu\nu}.$$

- Consider only massless scalar field $\mathcal{V} = 0$.
- \Rightarrow Parameter functions:

$$\mathcal{A} = \mathbf{1} + \mathbf{2}\kappa^2 \xi \phi^2 \,, \quad \mathcal{B} = -\kappa^2 \,, \quad \mathcal{C} = \mathbf{4}\kappa^2 \chi \phi \,.$$

- ⇒ Deviations from GR governed by $C \sim \chi$.
- \Rightarrow PPN parameters:

$$\gamma = 1 + 128\pi\chi^2\Phi^2 + \mathcal{O}(\chi^4), \quad \beta = 1 + 32\pi\xi\chi\Phi^2 + 32\pi\chi^2\Phi^2 + \mathcal{O}(\chi^3).$$

⇒ Depends on background value Φ (determined from potential V).

Outline

Introduction

- 2 Gauge-invariant higher perturbations
- Parametrized post-Newtonian formalism
- 4 Gauge-invariant PPN formalism
- 5 Tetrad and teleparallel PPN formalisms
- PPN limits of teleparallel theories

Conclusion

- Gauge-invariant perturbation theory:
 - Distinguish between physical and background spacetime.
 - Gauge pulls physical metric to background spacetime.
 - ⇒ Gauge dependent comparison between both metrics.
 - Decompose perturbations into physical data and gauge data.

- Gauge-invariant perturbation theory:
 - Distinguish between physical and background spacetime.
 - Gauge pulls physical metric to background spacetime.
 - ⇒ Gauge dependent comparison between both metrics.
 - Decompose perturbations into physical data and gauge data.
- Parametrized post-Newtonian formalism:
 - Weak-field approximation of metric gravity theories.
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.

- Gauge-invariant perturbation theory:
 - Distinguish between physical and background spacetime.
 - Gauge pulls physical metric to background spacetime.
 - ⇒ Gauge dependent comparison between both metrics.
 - Decompose perturbations into physical data and gauge data.
- Parametrized post-Newtonian formalism:
 - Weak-field approximation of metric gravity theories.
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.
- Gauge-invariant PPN formalism:
 - Apply gauge-invariant perturbation theory to PPN formalism.
 - Decomposition of metric and field equations.
 - Avoids issues arising from necessity to choose a gauge.
 - ⇒ Simpler set of equations to determine PPN parameters.
 - Can also be formulated for tetrad instead of metric.

- Gauge-invariant perturbation theory:
 - Distinguish between physical and background spacetime.
 - Gauge pulls physical metric to background spacetime.
 - ⇒ Gauge dependent comparison between both metrics.
 - Decompose perturbations into physical data and gauge data.
- Parametrized post-Newtonian formalism:
 - Weak-field approximation of metric gravity theories.
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.
- Gauge-invariant PPN formalism:
 - Apply gauge-invariant perturbation theory to PPN formalism.
 - Decomposition of metric and field equations.
 - Avoids issues arising from necessity to choose a gauge.
 - ⇒ Simpler set of equations to determine PPN parameters.
 - Can also be formulated for tetrad instead of metric.
- Post-Newtonian limit of teleparallel gravity theories:
 - Obtained PPN parameters for different teleparallel theories.
 - Considered theories are fully conservative.
 - Large, widely used subclasses have same PPN limit as GR.

Outlook

- Extend formalism by including higher perturbation orders:
 - General covariant expansion instead of space-time split.
 - Allow also for fast-moving source masses.
 - Consider inspiral phase of black hole merger event.
 - Devise method for calculating gravitational waves.

²See talk by Kai Flathmann after this talk!

Outlook

- Extend formalism by including higher perturbation orders:
 - General covariant expansion instead of space-time split.
 - Allow also for fast-moving source masses.
 - Consider inspiral phase of black hole merger event.
 - Devise method for calculating gravitational waves.
- Apply formalism to complicated gravity theories:
 - Bimetric and multimetric gravity theories.
 - Multi-scalar Horndeski generalizations.
 - Theories involving generalized Proca fields.
 - Extensions based on metric-affine geometry.

²See talk by Kai Flathmann after this talk!

Outlook

- Extend formalism by including higher perturbation orders:
 - General covariant expansion instead of space-time split.
 - Allow also for fast-moving source masses.
 - Consider inspiral phase of black hole merger event.
 - Devise method for calculating gravitational waves.
- Apply formalism to complicated gravity theories:
 - Bimetric and multimetric gravity theories.
 - Multi-scalar Horndeski generalizations.
 - Theories involving generalized Proca fields.
 - Extensions based on metric-affine geometry.
- Consider more general teleparallel gravity theories:
 - Theories with modified constitutive laws [MH, Järv, Krššák, Pfeifer '17].
 - Lagrangian as free function $L(T, X, Y, \phi)^2$ [MH ¹8].
 - Teleparallel extension to Horndeski gravity [Bahamonde, Dialektopoulos, Said '19].
 - Theories obtained from disformal transformations [МН 19].
 - Coupling of scalar fields to T_1, T_2, T_3 .
 - Theories with multiple tetrads.

²See talk by Kai Flathmann after this talk!

• MH,

"Gauge invariant approach to the parametrized post-Newtonian formalism", to appear.

• U. Ualikhanova and MH,

"Parameterized post-Newtonian limit of general teleparallel gravity theories", arXiv:1907.08178 [gr-qc].

 E. D. Emtsova and MH, "Post-Newtonian limit of scalar-torsion theories of gravity as analogue to scalar-curvature theories", arXiv:1909.09355 [gr-qc].