The gauge-invariant parametrized post-Newtonian formalism arXiv:1910.09245

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

Theoretical Physics Seminar, 22. October 2019

Outline

Introduction

- Gauge-invariant higher order perturbations
- Parametrized post-Newtonian formalism
 - Gauge-invariant PPN formalism
- 5 Tetrad and teleparallel PPN formalisms
- Example: PPN limit of scalar-tensor gravity

Conclusion

Outline

Introduction

- 2 Gauge-invariant higher order perturbations
- Parametrized post-Newtonian formalism
- 4 Gauge-invariant PPN formalism
- 5 Tetrad and teleparallel PPN formalisms
- 6 Example: PPN limit of scalar-tensor gravity

7 Conclusion

- Open questions in gravity theory and cosmology:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
 - Unification with quantum theory and other fundamental forces.

- Open questions in gravity theory and cosmology:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
 - Unification with quantum theory and other fundamental forces.
- Possible solutions addressing these questions:
 - Additional matter fields.
 - Modification of gravitational dynamics.
 - More general geometric structures to model gravity.

- Open questions in gravity theory and cosmology:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
 - Unification with quantum theory and other fundamental forces.
- Possible solutions addressing these questions:
 - Additional matter fields.
 - Modification of gravitational dynamics.
 - More general geometric structures to model gravity.
- Things to (approximately) preserve in a modified theory:
 - Notions of observers, clocks, measurement rods.
 - Weak equivalence principle universality of free fall.
 - Conservation of total energy-momentum.
 - Local position and Lorentz invariance.
 - Consistency with solar system observations.

- Open questions in gravity theory and cosmology:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
 - Unification with quantum theory and other fundamental forces.
- Possible solutions addressing these questions:
 - Additional matter fields.
 - Modification of gravitational dynamics.
 - More general geometric structures to model gravity.
- Things to (approximately) preserve in a modified theory:
 - Notions of observers, clocks, measurement rods.
 - Weak equivalence principle universality of free fall.
 - Conservation of total energy-momentum.
 - Local position and Lorentz invariance.
 - Consistency with solar system observations.
- ⇒ Conditions arising on viable theories:
 - Diffeomorphism invariance / background independence.
 - Well-defined causal structure.
 - Length of trajectories and geodesic motion.

- Open questions in gravity theory and cosmology:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
 - Unification with quantum theory and other fundamental forces.
- Possible solutions addressing these questions:
 - Additional matter fields.
 - Modification of gravitational dynamics.
 - More general geometric structures to model gravity.
- Things to (approximately) preserve in a modified theory:
 - Notions of observers, clocks, measurement rods.
 - Weak equivalence principle universality of free fall.
 - Conservation of total energy-momentum.
 - Local position and Lorentz invariance.
 - Consistency with solar system observations.
- ⇒ Conditions arising on viable theories:
 - Diffeomorphism invariance / background independence.
 - Well-defined causal structure.
 - Length of trajectories and geodesic motion.
- ⇒ Metric theories of gravity.

- Parametrized post-Newtonian formalism:
 - Weak-field approximation of metric gravity theories.
 - Assumes particular coordinate system ("universe rest frame").
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.

- Parametrized post-Newtonian formalism:
 - Weak-field approximation of metric gravity theories.
 - Assumes particular coordinate system ("universe rest frame").
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.
- → Extensions of the PPN formalism:
 - More fundamental fields constituting the metric.
 - More than one dynamical metric.
 - Diffeomorphism invariant / purely geometric formalism.

- Parametrized post-Newtonian formalism:
 - Weak-field approximation of metric gravity theories.
 - Assumes particular coordinate system ("universe rest frame").
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.
- → Extensions of the PPN formalism:
 - More fundamental fields constituting the metric.
 - More than one dynamical metric.
 - Diffeomorphism invariant / purely geometric formalism.
- → Improvements presented here:
 - Use gauge-invariant higher order perturbation theory.
 - Allow for tetrad instead of metric as fundamental field.

Introduction

2 Gauge-invariant higher order perturbations

Parametrized post-Newtonian formalism

4 Gauge-invariant PPN formalism

5 Tetrad and teleparallel PPN formalisms

6 Example: PPN limit of scalar-tensor gravity

7 Conclusion

- Manifold M_0 with metric $g^{(0)}$ and coordinates (x^{μ}) .
- Usually some highly symmetric standard spacetime:
 - · maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - · cosmological (background) solution of a gravity theory

- Manifold M_0 with metric $g^{(0)}$ and coordinates (x^{μ}) .
- Usually some highly symmetric standard spacetime:
 - · maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - · cosmological (background) solution of a gravity theory
- Physical spacetime:
 - Manifold *M* with metric *g*.
 - No preferred / canonical choice of coordinates.

- Manifold M_0 with metric $g^{(0)}$ and coordinates (x^{μ}) .
- Usually some highly symmetric standard spacetime:
 - · maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - · cosmological (background) solution of a gravity theory
- Physical spacetime:
 - Manifold *M* with metric *g*.
 - No preferred / canonical choice of coordinates.
- \oint No canonical relation between physical and reference spacetime.

- Manifold M_0 with metric $g^{(0)}$ and coordinates (x^{μ}) .
- Usually some highly symmetric standard spacetime:
 - · maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - · cosmological (background) solution of a gravity theory
- Physical spacetime:
 - Manifold *M* with metric *g*.
 - No preferred / canonical choice of coordinates.
- 7 No canonical relation between physical and reference spacetime.
 - 1. No identification of points on M and M_0 : no coordinates on M.

- Manifold M_0 with metric $g^{(0)}$ and coordinates (x^{μ}) .
- Usually some highly symmetric standard spacetime:
 - · maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - · cosmological (background) solution of a gravity theory
- Physical spacetime:
 - Manifold *M* with metric *g*.
 - No preferred / canonical choice of coordinates.
- 7 No canonical relation between physical and reference spacetime.
 - 1. No identification of points on M and M_0 : no coordinates on M.
 - 2. No possibility to compare g and $g^{(0)}$: different manifolds.

Definition of gauge

A gauge is a diffeomorphism $\mathcal{X} : M_0 \to M$.

Definition of gauge

A gauge is a diffeomorphism $\mathcal{X} : M_0 \to M$.

- 1. Identification of points on M and M_0 :
 - Recall that a diffeomorphism is a bijective mapping.
 - Coordinates ("point labels") can be carried from M_0 to M.

Definition of gauge

A gauge is a diffeomorphism $\mathcal{X} : M_0 \to M$.

- 1. Identification of points on M and M_0 :
 - Recall that a diffeomorphism is a bijective mapping.
 - Coordinates ("point labels") can be carried from M_0 to M.
- 2. Comparison between reference and physical metric:
 - Define pullback $\mathcal{X}g = \mathcal{X}^*g$ of the metric g to M_0 .
 - ${}^{\mathcal{X}}g$ and $g^{(0)}$ are tensors on the same manifold M_0 .

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_{\epsilon}$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_{ϵ} is defined on its own M_{ϵ} .
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0 .
 - ⇒ Family of physical spacetimes $(M_{\epsilon}, g_{\epsilon})$.

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_{\epsilon}$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_{ϵ} is defined on its own M_{ϵ} .
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0 .
 - ⇒ Family of physical spacetimes $(M_{\epsilon}, g_{\epsilon})$.
- Aim: perturbative expansion of g_{ϵ} in ϵ around $g^{(0)}$.

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_{\epsilon}$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_{ϵ} is defined on its own M_{ϵ} .
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0 .
 - ⇒ Family of physical spacetimes $(M_{\epsilon}, g_{\epsilon})$.
- Aim: perturbative expansion of g_{ϵ} in ϵ around $g^{(0)}$.
- \sharp Metrics g_{ϵ} are defined on different manifolds for different ϵ .

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_{\epsilon}$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_{ϵ} is defined on its own M_{ϵ} .
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0 .
 - ⇒ Family of physical spacetimes $(M_{\epsilon}, g_{\epsilon})$.
- Aim: perturbative expansion of g_{ϵ} in ϵ around $g^{(0)}$.
- # Metrics g_{ϵ} are defined on different manifolds for different ϵ .
- \Rightarrow Use gauge to relate different manifolds:
 - Family of diffeomorphisms $\mathcal{X}_{\epsilon}: M_0 \rightarrow M_{\epsilon}$.
 - Assume $\mathcal{X}_0 = id_{M_0}$ on the reference spacetime.

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_{\epsilon}$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_{ϵ} is defined on its own M_{ϵ} .
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0 .
 - ⇒ Family of physical spacetimes $(M_{\epsilon}, g_{\epsilon})$.
- Aim: perturbative expansion of g_{ϵ} in ϵ around $g^{(0)}$.
- # Metrics g_{ϵ} are defined on different manifolds for different ϵ .
- ⇒ Use gauge to relate different manifolds:
 - Family of diffeomorphisms $\mathcal{X}_{\epsilon}: M_0 \rightarrow M_{\epsilon}$.
 - Assume $\mathcal{X}_0 = id_{\mathcal{M}_0}$ on the reference spacetime.
- Perturbative expansion:
 - Pullback $\mathcal{X}g_{\epsilon} = \mathcal{X}_{\epsilon}^*g_{\epsilon}$ defined on M_0 .

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_{\epsilon}$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_{ϵ} is defined on its own M_{ϵ} .
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0 .
 - ⇒ Family of physical spacetimes $(M_{\epsilon}, g_{\epsilon})$.
- Aim: perturbative expansion of g_{ϵ} in ϵ around $g^{(0)}$.
- # Metrics g_{ϵ} are defined on different manifolds for different ϵ .
- ⇒ Use gauge to relate different manifolds:
 - Family of diffeomorphisms $\mathcal{X}_{\epsilon}: M_0 \rightarrow M_{\epsilon}$.
 - Assume $\mathcal{X}_0 = id_{M_0}$ on the reference spacetime.
- Perturbative expansion:
 - Pullback $\mathcal{X} g_{\epsilon} = \mathcal{X}_{\epsilon}^* g_{\epsilon}$ defined on M_0 .
 - Introduce series expansion in ϵ :

$$\left. {}^{\mathcal{X}} \boldsymbol{g}_{\epsilon} = \sum_{k=0}^{\infty} \frac{\epsilon^{k}}{k!} \left. \frac{\partial^{k \, \mathcal{X}} \boldsymbol{g}_{\epsilon}}{\partial \epsilon^{k}} \right|_{\epsilon=0} = \sum_{k=0}^{\infty} \frac{\epsilon^{k}}{k!} \, {}^{\mathcal{X}} \boldsymbol{g}^{(k)} \, .$$

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_{\epsilon}$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_{ϵ} is defined on its own M_{ϵ} .
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0 .
 - ⇒ Family of physical spacetimes $(M_{\epsilon}, g_{\epsilon})$.
- Aim: perturbative expansion of g_{ϵ} in ϵ around $g^{(0)}$.
- # Metrics g_{ϵ} are defined on different manifolds for different ϵ .
- ⇒ Use gauge to relate different manifolds:
 - Family of diffeomorphisms $\mathcal{X}_{\epsilon}: M_0 \rightarrow M_{\epsilon}$.
 - Assume $\mathcal{X}_0 = id_{M_0}$ on the reference spacetime.
- Perturbative expansion:
 - Pullback $\mathcal{X} g_{\epsilon} = \mathcal{X}_{\epsilon}^* g_{\epsilon}$ defined on M_0 .
 - Introduce series expansion in ϵ :

$$^{\mathcal{X}}\boldsymbol{g}_{\epsilon} = \sum_{k=0}^{\infty} \frac{\epsilon^{k}}{k!} \left. \frac{\partial^{k \, \mathcal{X}} \boldsymbol{g}_{\epsilon}}{\partial \epsilon^{k}} \right|_{\epsilon=0} = \sum_{k=0}^{\infty} \frac{\epsilon^{k}}{k!} \, ^{\mathcal{X}} \boldsymbol{g}^{(k)} \, .$$

• Series coefficients ${}^{\mathcal{X}}g^{(k)}$ depend on gauge choice \mathcal{X} .

• Consider two different gauges $\mathcal{X}_{\epsilon}: M_0 \to M_{\epsilon}$ and $\mathcal{Y}_{\epsilon}: M_0 \to M_{\epsilon}$.

- Consider two different gauges $\mathcal{X}_{\epsilon}: M_0 \to M_{\epsilon}$ and $\mathcal{Y}_{\epsilon}: M_0 \to M_{\epsilon}$.
- ⇒ One-parameter family $\Phi_{\epsilon} = \mathcal{X}_{\epsilon}^{-1} \circ \mathcal{Y}_{\epsilon}$ of diffeomorphisms.

- Consider two different gauges $\mathcal{X}_{\epsilon}: M_0 \to M_{\epsilon}$ and $\mathcal{Y}_{\epsilon}: M_0 \to M_{\epsilon}$.
- ⇒ One-parameter family $\Phi_{\epsilon} = \mathcal{X}_{\epsilon}^{-1} \circ \mathcal{Y}_{\epsilon}$ of diffeomorphisms.
- $f Φ_{\epsilon}$: $M_0 → M_0$ is not a one-parameter group:
 - In general has $\Phi_{\epsilon+\epsilon'} \neq \Phi_{\epsilon} \circ \Phi_{\epsilon'}$ and $\Phi_{-\epsilon} \neq \Phi_{\epsilon}^{-1}$.
 - Not generated by flow (integral curves) of a vector field.

- Consider two different gauges $\mathcal{X}_{\epsilon}: M_0 \to M_{\epsilon}$ and $\mathcal{Y}_{\epsilon}: M_0 \to M_{\epsilon}$.
- ⇒ One-parameter family $\Phi_{\epsilon} = \mathcal{X}_{\epsilon}^{-1} \circ \mathcal{Y}_{\epsilon}$ of diffeomorphisms.
- $f Φ_{\epsilon}$: $M_0 → M_0$ is not a one-parameter group:
 - In general has $\Phi_{\epsilon+\epsilon'} \neq \Phi_{\epsilon} \circ \Phi_{\epsilon'}$ and $\Phi_{-\epsilon} \neq \Phi_{\epsilon}^{-1}$.
 - Not generated by flow (integral curves) of a vector field.
- But there exists series of one-parameter groups $\phi_{\epsilon}^{(k)}$ such that:

$$\Phi_{\epsilon} = \cdots \phi_{\epsilon^{k}/k!}^{(k)} \circ \cdots \circ \phi_{\epsilon^{2}/2}^{(2)} \circ \phi_{\epsilon}^{(1)}.$$

- Consider two different gauges $\mathcal{X}_{\epsilon}: M_0 \to M_{\epsilon}$ and $\mathcal{Y}_{\epsilon}: M_0 \to M_{\epsilon}$.
- ⇒ One-parameter family $\Phi_{\epsilon} = \mathcal{X}_{\epsilon}^{-1} \circ \mathcal{Y}_{\epsilon}$ of diffeomorphisms.
- $f Φ_{\epsilon}$: $M_0 → M_0$ is not a one-parameter group:
 - In general has $\Phi_{\epsilon+\epsilon'} \neq \Phi_{\epsilon} \circ \Phi_{\epsilon'}$ and $\Phi_{-\epsilon} \neq \Phi_{\epsilon}^{-1}$.
 - Not generated by flow (integral curves) of a vector field.
- But there exists series of one-parameter groups $\phi_{\epsilon}^{(k)}$ such that:

$$\Phi_{\epsilon} = \cdots \phi_{\epsilon^{k}/k!}^{(k)} \circ \cdots \circ \phi_{\epsilon^{2}/2}^{(2)} \circ \phi_{\epsilon}^{(1)}.$$

⇒ Each one-parameter group $\phi_{\epsilon}^{(k)}$ generated by vector field $\xi^{(k)}$.

- Consider two different gauges $\mathcal{X}_{\epsilon}: M_0 \to M_{\epsilon}$ and $\mathcal{Y}_{\epsilon}: M_0 \to M_{\epsilon}$.
- ⇒ One-parameter family $\Phi_{\epsilon} = \mathcal{X}_{\epsilon}^{-1} \circ \mathcal{Y}_{\epsilon}$ of diffeomorphisms.
- $f Φ_{\epsilon}$: $M_0 → M_0$ is not a one-parameter group:
 - In general has $\Phi_{\epsilon+\epsilon'} \neq \Phi_{\epsilon} \circ \Phi_{\epsilon'}$ and $\Phi_{-\epsilon} \neq \Phi_{\epsilon}^{-1}$.
 - Not generated by flow (integral curves) of a vector field.
- But there exists series of one-parameter groups $\phi_{\epsilon}^{(k)}$ such that:

$$\Phi_{\epsilon} = \cdots \phi_{\epsilon^k/k!}^{(k)} \circ \cdots \circ \phi_{\epsilon^2/2}^{(2)} \circ \phi_{\epsilon}^{(1)}.$$

- ⇒ Each one-parameter group $\phi_{\epsilon}^{(k)}$ generated by vector field $\xi^{(k)}$.
- ⇒ Vector fields $\xi^{(k)}$ are "Taylor expansion" coefficients of Φ_{ϵ} .

• Metrics in different gauges are related:

$${}^{\mathcal{Y}}g_{\epsilon} = \sum_{l_1=0}^{\infty} \cdots \sum_{l_k=0}^{\infty} \cdots \frac{\epsilon^{l_1+\cdots+kl_k+\cdots}}{(1!)^{l_1}\cdots(k!)^{l_k}\cdots l_1!\cdots l_k!\cdots} \mathfrak{L}_{\xi_{(1)}}^{l_1}\cdots \mathfrak{L}_{\xi_{(k)}}^{l_k}\cdots {}^{\mathcal{X}}g_{\epsilon}.$$

• Metrics in different gauges are related:

$${}^{\mathcal{Y}}g_{\epsilon} = \sum_{l_1=0}^{\infty} \cdots \sum_{l_k=0}^{\infty} \cdots \frac{\epsilon^{l_1+\cdots+kl_k+\cdots}}{(1!)^{l_1}\cdots(k!)^{l_k}\cdots l_1!\cdots l_k!\cdots} \mathfrak{L}_{\xi_{(1)}}^{l_1}\cdots \mathfrak{L}_{\xi_{(k)}}^{l_k}\cdots {}^{\mathcal{X}}g_{\epsilon}.$$

⇒ Relation of Taylor coefficients:

$${}^{\mathcal{Y}}g^{(k)} = \sum_{0 \le l_1 + 2l_2 + \ldots \le k} \frac{k!}{(k - l_1 - 2l_2 - \ldots)!(1!)^{l_1}(2!)^{l_2} \cdots l_1! l_2! \cdots} \mathfrak{L}^{l_1}_{\xi_{(1)}} \cdots \mathfrak{L}^{l_k}_{\xi_{(k)}} \cdots {}^{\mathcal{X}}g^{(k - l_1 - 2l_2 - \ldots)}.$$

Gauge invariant perturbations

- Choose a fixed "distinguished" gauge $S_{\epsilon}: M_0 \rightarrow M_{\epsilon}$:
 - E.g., impose gauge conditions on the metric.
 - Examples: harmonic gauge used for GWs, standard PPN gauge.
- Choose a fixed "distinguished" gauge $S_{\epsilon}: M_0 \rightarrow M_{\epsilon}$:
 - E.g., impose gauge conditions on the metric.
 - Examples: harmonic gauge used for GWs, standard PPN gauge.
- Define gauge-invariant metric $\mathbf{g}_{\epsilon} = {}^{\mathcal{S}}g_{\epsilon} = \mathcal{S}_{\epsilon}^{*}g_{\epsilon}$.

- Choose a fixed "distinguished" gauge $S_{\epsilon}: M_0 \rightarrow M_{\epsilon}$:
 - E.g., impose gauge conditions on the metric.
 - Examples: harmonic gauge used for GWs, standard PPN gauge.
- Define gauge-invariant metric $\mathbf{g}_{\epsilon} = {}^{\mathcal{S}} g_{\epsilon} = \mathcal{S}_{\epsilon}^* g_{\epsilon}$.
- Metric in arbitrary gauge \mathcal{X} :

$${}^{\mathcal{X}}\boldsymbol{g}_{\epsilon} = \sum_{l_1=0}^{\infty} \cdots \sum_{l_k=0}^{\infty} \cdots \frac{\epsilon^{l_1+\cdots+kl_k+\cdots}}{(1!)^{l_1}\cdots(k!)^{l_k}\cdots l_1!\cdots l_k!\cdots} \boldsymbol{\mathfrak{L}}_{X_{(1)}}^{l_1}\cdots \boldsymbol{\mathfrak{L}}_{X_{(k)}}^{l_k}\cdots \boldsymbol{\mathfrak{g}}_{\epsilon} \,.$$

- Choose a fixed "distinguished" gauge $S_{\epsilon}: M_0 \rightarrow M_{\epsilon}$:
 - E.g., impose gauge conditions on the metric.
 - Examples: harmonic gauge used for GWs, standard PPN gauge.
- Define gauge-invariant metric $\mathbf{g}_{\epsilon} = {}^{\mathcal{S}} g_{\epsilon} = \mathcal{S}_{\epsilon}^* g_{\epsilon}$.
- Metric in arbitrary gauge \mathcal{X} :

$${}^{\mathcal{X}}g_{\epsilon} = \sum_{l_1=0}^{\infty} \cdots \sum_{l_k=0}^{\infty} \cdots \frac{\epsilon^{l_1+\cdots+kl_k+\cdots}}{(1!)^{l_1}\cdots(k!)^{l_k}\cdots l_1!\cdots l_k!\cdots} \mathbf{\hat{z}}_{X_{(1)}}^{l_1}\cdots \mathbf{\hat{z}}_{X_{(k)}}^{l_k}\cdots \mathbf{g}_{\epsilon}.$$

- Metric components split into two parts:
 - Gauge-invariant part g_{ϵ} : physical content.
 - Gauge defining vector fields $X_{(k)}$: coordinate choice.

- Choose a fixed "distinguished" gauge $S_{\epsilon}: M_0 \rightarrow M_{\epsilon}$:
 - E.g., impose gauge conditions on the metric.
 - Examples: harmonic gauge used for GWs, standard PPN gauge.
- Define gauge-invariant metric $\mathbf{g}_{\epsilon} = {}^{\mathcal{S}} g_{\epsilon} = \mathcal{S}_{\epsilon}^* g_{\epsilon}$.
- Metric in arbitrary gauge \mathcal{X} :

$${}^{\mathcal{X}}g_{\epsilon} = \sum_{l_1=0}^{\infty} \cdots \sum_{l_k=0}^{\infty} \cdots \frac{\epsilon^{l_1+\cdots+kl_k+\cdots}}{(1!)^{l_1}\cdots(k!)^{l_k}\cdots l_1!\cdots l_k!\cdots} \mathbf{\hat{\Sigma}}_{X_{(1)}}^{l_1}\cdots \mathbf{\hat{\Sigma}}_{X_{(k)}}^{l_k}\cdots \mathbf{g}_{\epsilon}.$$

- Metric components split into two parts:
 - Gauge-invariant part g_e : physical content.
 - Gauge defining vector fields $X_{(k)}$: coordinate choice.
- Number # of independent components:

$$\#(^{\mathcal{X}}g_{\epsilon}) = \#(\mathbf{g}_{\epsilon}) + \#(\mathbf{X}_{(k)}).$$

Introduction

- 2 Gauge-invariant higher order perturbations
- Parametrized post-Newtonian formalism
 - Gauge-invariant PPN formalism
- 5 Tetrad and teleparallel PPN formalisms
- Example: PPN limit of scalar-tensor gravity

7 Conclusion

• Energy-momentum tensor of a perfect fluid:

 $T^{\mu\nu} = (\rho + \rho \Pi + \rho) u^{\mu} u^{\nu} + \rho g^{\mu\nu}.$

- Rest mass density ρ.
- Specific internal energy **Π**.
- Pressure p.
- Four-velocity u^{μ} .

• Energy-momentum tensor of a perfect fluid:

 $T^{\mu\nu} = (\rho + \rho \Pi + \rho) u^{\mu} u^{\nu} + \rho g^{\mu\nu}.$

- Rest mass density ρ.
- Specific internal energy Π.
- Pressure p.
- Four-velocity *u^μ*.
- Universe rest frame and slow-moving source matter:
 - Consider some gauge $\mathcal{X} : M_0 \to M$ ("universe rest frame").
 - $\circ~$ Pullback of metric and matter variables along $\mathcal{X}.$
 - Velocity of the source matter: $\chi v^{i} = \chi u^{i} / \chi u^{\bar{0}}$.
 - Assume that source matter is slow-moving: $|^{\mathcal{X}}\vec{v}| \ll 1$.

• Energy-momentum tensor of a perfect fluid:

 $T^{\mu\nu} = (\rho + \rho \Pi + p) u^{\mu} u^{\nu} + p g^{\mu\nu}.$

- Rest mass density ρ.
- Specific internal energy Π.
- Pressure p.
- Four-velocity *u^μ*.
- Universe rest frame and slow-moving source matter:
 - Consider some gauge $\mathcal{X} : M_0 \to M$ ("universe rest frame").
 - $\circ~$ Pullback of metric and matter variables along $\mathcal{X}.$
 - Velocity of the source matter: ${}^{\mathcal{X}}v^{i} = {}^{\mathcal{X}}u^{i}/{}^{\mathcal{X}}u^{\bar{0}}$.
 - Assume that source matter is slow-moving: $|^{\mathcal{X}}\vec{v}| \ll 1$.
- Use $\epsilon = |\mathcal{X} \vec{v}|$ as perturbation parameter.

• Energy-momentum tensor of a perfect fluid:

 $T^{\mu\nu} = (\rho + \rho \Pi + p) u^{\mu} u^{\nu} + p g^{\mu\nu}.$

- Rest mass density $\rho \sim \mathcal{O}(2)$.
- Specific internal energy $\Pi \sim \mathcal{O}(2)$.
- Pressure $p \sim \mathcal{O}(4)$.
- Four-velocity u^{μ} .
- Universe rest frame and slow-moving source matter:
 - Consider some gauge $\mathcal{X} : M_0 \to M$ ("universe rest frame").
 - $\circ~$ Pullback of metric and matter variables along $\mathcal{X}.$
 - Velocity of the source matter: ${}^{\mathcal{X}}v^{i} = {}^{\mathcal{X}}u^{i}/{}^{\mathcal{X}}u^{0}$.
 - Assume that source matter is slow-moving: $|^{\mathcal{X}}\vec{v}| \ll 1$.
- Use $\epsilon = |\mathcal{X} \vec{v}|$ as perturbation parameter.
- Assign velocity orders $\mathcal{O}(n) \sim \epsilon^n$ to all quantities.

• Energy-momentum tensor of a perfect fluid:

 $T^{\mu\nu} = (\rho + \rho \Pi + \rho) u^{\mu} u^{\nu} + \rho g^{\mu\nu}.$

- Rest mass density $\rho \sim \mathcal{O}(2)$.
- Specific internal energy $\Pi \sim \mathcal{O}(2)$.
- Pressure $p \sim \mathcal{O}(4)$.
- Four-velocity u^{μ} .
- Universe rest frame and slow-moving source matter:
 - Consider some gauge $\mathcal{X} : M_0 \to M$ ("universe rest frame").
 - $\circ~$ Pullback of metric and matter variables along $\mathcal{X}.$
 - Velocity of the source matter: ${}^{\mathcal{X}}v^{i} = {}^{\mathcal{X}}u^{i}/{}^{\mathcal{X}}u^{\bar{0}}$.
 - Assume that source matter is slow-moving: $|^{\mathcal{X}}\vec{v}| \ll 1$.
- Use $\epsilon = |\mathcal{X} \vec{v}|$ as perturbation parameter.
- Assign velocity orders $\mathcal{O}(n) \sim \epsilon^n$ to all quantities.
- Quasi-static: assign additional $\mathcal{O}(1)$ to time derivatives ∂_0 .

Post-Newtonian metric

$${}^{\mathcal{X}}g_{\mu\nu}={}^{\mathcal{X}}\overset{0}{g}_{\mu\nu}+{}^{\mathcal{X}}\overset{1}{g}_{\mu\nu}+{}^{\mathcal{X}}\overset{2}{g}_{\mu\nu}+{}^{\mathcal{X}}\overset{3}{g}_{\mu\nu}+{}^{\mathcal{X}}\overset{4}{g}_{\mu\nu}+\mathcal{O}(5)\,.$$

Post-Newtonian metric

• Standard post-Newtonian metric expansion:

$${}^{\mathcal{X}}g_{\mu\nu} = {}^{\mathcal{X}}\overset{0}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{1}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{2}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{3}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{4}{g}_{\mu\nu} + \mathcal{O}(5) \,.$$

• Note difference in notation: ${}^{\mathcal{X}}{}^{k}g = {}^{\mathcal{X}}g^{(k)}\epsilon^{k}/k!$.

$${}^{\mathcal{X}}g_{\mu\nu} = {}^{\mathcal{X}}{}^{0}_{g\mu\nu} + {}^{\mathcal{X}}{}^{1}_{g\mu\nu} + {}^{\mathcal{X}}{}^{2}_{g\mu\nu} + {}^{\mathcal{X}}{}^{3}_{g\mu\nu} + {}^{\mathcal{X}}{}^{4}_{g\mu\nu} + \mathcal{O}(5) \,.$$

- Note difference in notation: ${}^{\mathcal{X}}{}^{k}g = {}^{\mathcal{X}}g^{(k)}\epsilon^{k}/k!$.
- Background metric given by Minkowski metric: ${}^{\mathcal{X}}\overset{0}{g}_{\mu\nu} = \eta_{\mu\nu}$.

$${}^{\mathcal{X}}g_{\mu\nu} = {}^{\mathcal{X}}\overset{0}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{1}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{2}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{3}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{4}{g}_{\mu\nu} + \mathcal{O}(5).$$

- Note difference in notation: ${}^{\mathcal{X}}{}^{k}g = {}^{\mathcal{X}}g^{(k)}\epsilon^{k}/k!$.
- Background metric given by Minkowski metric: ${}^{\mathcal{X}}\overset{0}{g}_{\mu\nu} = \eta_{\mu\nu}$.
- Higher than fourth velocity order $\mathcal{O}(4)$ is not considered.

$${}^{\mathcal{X}}g_{\mu\nu} = {}^{\mathcal{X}}\overset{0}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{1}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{2}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{3}{g}_{\mu\nu} + {}^{\mathcal{X}}\overset{4}{g}_{\mu\nu} + \mathcal{O}(5) \,.$$

- Note difference in notation: ${}^{\mathcal{X}}{}^{k}g = {}^{\mathcal{X}}g^{(k)}\epsilon^{k}/k!$.
- Background metric given by Minkowski metric: $\mathcal{X}_{g\mu\nu}^{0} = \eta_{\mu\nu}$.
- Higher than fourth velocity order $\mathcal{O}(4)$ is not considered.
- Only certain components are relevant and non-vanishing:

$$\chi^{2}_{g_{00}}, \quad \chi^{2}_{g_{ij}}, \quad \chi^{3}_{g_{0i}}, \quad \chi^{4}_{g_{00}}, \quad \chi^{4}_{g_{ij}}.$$

$${}^{\mathcal{X}}g_{\mu\nu} = {}^{\mathcal{X}} \overset{0}{g}_{\mu\nu} + {}^{\mathcal{X}} \overset{1}{g}_{\mu\nu} + {}^{\mathcal{X}} \overset{2}{g}_{\mu\nu} + {}^{\mathcal{X}} \overset{3}{g}_{\mu\nu} + {}^{\mathcal{X}} \overset{4}{g}_{\mu\nu} + \mathcal{O}(5) \,.$$

- Note difference in notation: ${}^{\mathcal{X}}{}^{k}g = {}^{\mathcal{X}}g^{(k)}\epsilon^{k}/k!$.
- Background metric given by Minkowski metric: ${}^{\mathcal{X}}\overset{0}{g}_{\mu\nu} = \eta_{\mu\nu}$.
- Higher than fourth velocity order $\mathcal{O}(4)$ is not considered.
- Only certain components are relevant and non-vanishing:

• $\chi^{4}_{g_{ij}}$ not used in standard PPN formalism, but may couple.

• PPN formalism assumes fixed standard gauge \mathcal{P} .

- PPN formalism assumes fixed standard gauge \mathcal{P} .
- Metric in standard PPN gauge:

$$\begin{split} {}^{\mathcal{P}} \overset{2}{g}_{00} &= 2^{\mathcal{P}} U \,, \\ {}^{\mathcal{P}} \overset{2}{g}_{ij} &= 2 \gamma^{\mathcal{P}} U \delta_{ij} \,, \\ {}^{\mathcal{P}} \overset{3}{g}_{0i} &= -\frac{1}{2} (3 + 4 \gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi)^{\mathcal{P}} V_i - \frac{1}{2} (1 + \alpha_2 - \zeta_1 + 2\xi)^{\mathcal{P}} W_i \,, \\ {}^{\mathcal{P}} \overset{4}{g}_{00} &= -2\beta^{\mathcal{P}} U^2 + (2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi)^{\mathcal{P}} \Phi_1 + 2(1 + 3\gamma - 2\beta + \zeta_2 + \xi)^{\mathcal{P}} \Phi_2 \\ &\quad + 2(1 + \zeta_3)^{\mathcal{P}} \Phi_3 + 2(3\gamma + 3\zeta_4 - 2\xi)^{\mathcal{P}} \Phi_4 - 2\xi^{\mathcal{P}} \Phi_W - (\zeta_1 - 2\xi)^{\mathcal{P}} \mathfrak{A} \,, \end{split}$$

- PPN formalism assumes fixed standard gauge \mathcal{P} .
- Metric in standard PPN gauge:

$$\begin{split} {}^{\mathcal{P}} \overset{2}{g}_{00} &= 2^{\mathcal{P}} U \,, \\ {}^{\mathcal{P}} \overset{2}{g}_{ij} &= 2\gamma^{\mathcal{P}} U \delta_{ij} \,, \\ {}^{\mathcal{P}} \overset{3}{g}_{0i} &= -\frac{1}{2} (3 + 4\gamma + \alpha_{1} - \alpha_{2} + \zeta_{1} - 2\xi)^{\mathcal{P}} V_{i} - \frac{1}{2} (1 + \alpha_{2} - \zeta_{1} + 2\xi)^{\mathcal{P}} W_{i} \,, \\ {}^{\mathcal{P}} \overset{4}{g}_{00} &= -2\beta^{\mathcal{P}} U^{2} + (2 + 2\gamma + \alpha_{3} + \zeta_{1} - 2\xi)^{\mathcal{P}} \Phi_{1} + 2(1 + 3\gamma - 2\beta + \zeta_{2} + \xi)^{\mathcal{P}} \Phi_{2} \\ &\quad + 2(1 + \zeta_{3})^{\mathcal{P}} \Phi_{3} + 2(3\gamma + 3\zeta_{4} - 2\xi)^{\mathcal{P}} \Phi_{4} - 2\xi^{\mathcal{P}} \Phi_{W} - (\zeta_{1} - 2\xi)^{\mathcal{P}} \mathfrak{A} \,, \end{split}$$

• Metric contains PPN parameters and PPN potentials.

- PPN formalism assumes fixed standard gauge \mathcal{P} .
- Metric in standard PPN gauge:

$$\begin{split} {}^{\mathcal{P}} \overset{2}{g}_{00} &= 2^{\mathcal{P}} U \,, \\ {}^{\mathcal{P}} \overset{2}{g}_{ij} &= 2\gamma^{\mathcal{P}} U \delta_{ij} \,, \\ {}^{\mathcal{P}} \overset{3}{g}_{0i} &= -\frac{1}{2} (3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi)^{\mathcal{P}} V_i - \frac{1}{2} (1 + \alpha_2 - \zeta_1 + 2\xi)^{\mathcal{P}} W_i \,, \\ {}^{\mathcal{P}} \overset{4}{g}_{00} &= -2\beta^{\mathcal{P}} U^2 + (2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi)^{\mathcal{P}} \Phi_1 + 2(1 + 3\gamma - 2\beta + \zeta_2 + \xi)^{\mathcal{P}} \Phi_2 \\ &\quad + 2(1 + \zeta_3)^{\mathcal{P}} \Phi_3 + 2(3\gamma + 3\zeta_4 - 2\xi)^{\mathcal{P}} \Phi_4 - 2\xi^{\mathcal{P}} \Phi_W - (\zeta_1 - 2\xi)^{\mathcal{P}} \mathfrak{A} \,, \end{split}$$

- Metric contains PPN parameters and PPN potentials.
- Properties of standard PPN metric:
 - Second-order spatial part $\mathcal{P}_{g_{ij}}^2$ is diagonal.

- PPN formalism assumes fixed standard gauge \mathcal{P} .
- Metric in standard PPN gauge:

$$\begin{split} {}^{\mathcal{P}} \overset{2}{g}_{00} &= 2^{\mathcal{P}} U \,, \\ {}^{\mathcal{P}} \overset{2}{g}_{ij} &= 2\gamma^{\mathcal{P}} U \delta_{ij} \,, \\ {}^{\mathcal{P}} \overset{3}{g}_{0i} &= -\frac{1}{2} (3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi)^{\mathcal{P}} V_i - \frac{1}{2} (1 + \alpha_2 - \zeta_1 + 2\xi)^{\mathcal{P}} W_i \,, \\ {}^{\mathcal{P}} \overset{4}{g}_{00} &= -2\beta^{\mathcal{P}} U^2 + (2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi)^{\mathcal{P}} \Phi_1 + 2(1 + 3\gamma - 2\beta + \zeta_2 + \xi)^{\mathcal{P}} \Phi_2 \\ &\quad + 2(1 + \zeta_3)^{\mathcal{P}} \Phi_3 + 2(3\gamma + 3\zeta_4 - 2\xi)^{\mathcal{P}} \Phi_4 - 2\xi^{\mathcal{P}} \Phi_W - (\zeta_1 - 2\xi)^{\mathcal{P}} \mathfrak{A} \,, \end{split}$$

- Metric contains PPN parameters and PPN potentials.
- Properties of standard PPN metric:
 - Second-order spatial part ${}^{\mathcal{P}}\overset{_{2}}{g}_{ij}$ is diagonal.
 - Fourth-order temporal part ${}^{\mathcal{P}}g_{00}^{4}$ does not contain potential \mathfrak{B} .

- γ : spatial curvature genrated by unit mass.
- β : non-linearity in gravity superposition law.
- $\alpha_1, \alpha_2, \alpha_3$: violation of local Lorentz invariance.
- $\alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4$: violation of energy-momentum conservation.
- ξ : violation of local position invariance.

- γ : spatial curvature genrated by unit mass.
- β : non-linearity in gravity superposition law.
- $\alpha_1, \alpha_2, \alpha_3$: violation of local Lorentz invariance.
- $\alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4$: violation of energy-momentum conservation.
- ξ : violation of local position invariance.
- In GR $\gamma = \beta = 1$ and $\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0$.

- γ : spatial curvature genrated by unit mass.
- β : non-linearity in gravity superposition law.
- $\circ \ \alpha_1, \alpha_2, \alpha_3$: violation of local Lorentz invariance.
- $\alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4$: violation of energy-momentum conservation.
- ξ : violation of local position invariance.
- In GR $\gamma = \beta = 1$ and $\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0$.
- ⇒ Fully conservative gravity theory:
 - No preferred frame or preferred location effects.
 - Total energy-momentum is conserved.

- γ : spatial curvature genrated by unit mass.
- β : non-linearity in gravity superposition law.
- $\alpha_1, \alpha_2, \alpha_3$: violation of local Lorentz invariance.
- $\alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4$: violation of energy-momentum conservation.
- ξ : violation of local position invariance.
- In GR $\gamma = \beta = 1$ and $\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0$.
- ⇒ Fully conservative gravity theory:
 - No preferred frame or preferred location effects.
 - Total energy-momentum is conserved.
- \Rightarrow Other theories will receive bounds from experiments.

Bound	Effects	Experiment
2.3 · 10 ⁻⁵	Time delay, light deflection	Cassini tracking
8 · 10 ^{−5}	Perihelion shift	Perihelion shift
4 · 10 ^{−9}	Spin precession	Millisecond pulsars
10 ⁻⁴	Orbital polarization	Lunar laser ranging
4 · 10 ^{−5}	Orbital polarization	PSR J1738+0333
2 · 10 ⁻⁹	Spin precession	Millisecond pulsars
$4 \cdot 10^{-20}$	Self-acceleration	Pulsar spin-down statistics
$9 \cdot 10^{-4}$	Nordtvedt effect	Lunar Laser Ranging
0.02	Combined PPN bounds	—
4 · 10 ^{−5}	Binary pulsar acceleration	PSR 1913+16
10 ⁻⁸	Newton's 3rd law	Lunar acceleration
0.006	—	Kreuzer experiment
	$\begin{array}{r} \text{Bound} \\ 2.3 \cdot 10^{-5} \\ 8 \cdot 10^{-5} \\ 4 \cdot 10^{-9} \\ 10^{-4} \\ 4 \cdot 10^{-5} \\ 2 \cdot 10^{-9} \\ 4 \cdot 10^{-20} \\ 9 \cdot 10^{-4} \\ 0.02 \\ 4 \cdot 10^{-5} \\ 10^{-8} \\ 0.006 \end{array}$	BoundEffects $2.3 \cdot 10^{-5}$ Time delay, light deflection $8 \cdot 10^{-5}$ Perihelion shift $4 \cdot 10^{-9}$ Spin precession 10^{-4} Orbital polarization $4 \cdot 10^{-5}$ Orbital polarization $2 \cdot 10^{-9}$ Spin precession $4 \cdot 10^{-20}$ Self-acceleration $9 \cdot 10^{-4}$ Nordtvedt effect 0.02 Combined PPN bounds $4 \cdot 10^{-5}$ Binary pulsar acceleration 10^{-8} Newton's 3rd law 0.006 —

$${}^{1}\eta_{N} = 4\beta - \gamma - 3 - \frac{10}{3}\xi - \alpha_{1} + \frac{2}{3}\alpha_{2} - \frac{2}{3}\zeta_{1} - \frac{1}{3}\zeta_{2}$$

PPN potentials

• Newtonian potential:

$${}^{\mathcal{X}}\chi = -\int d^3x' \,{}^{\mathcal{X}}\rho' |\vec{x} - \vec{x}'|, \quad {}^{\mathcal{X}}U = \int d^3x' \frac{{}^{\mathcal{X}}\rho'}{|\vec{x} - \vec{x}'|}, \quad {}^{\mathcal{X}}\rho' \equiv {}^{\mathcal{X}}\rho(t, \vec{x}').$$

PPN potentials

• Newtonian potential:

$${}^{\mathcal{X}}\chi = -\int d^{3}x' \,{}^{\mathcal{X}}\rho' |\vec{x} - \vec{x}'|, \quad {}^{\mathcal{X}}U = \int d^{3}x' \frac{{}^{\mathcal{X}}\rho'}{|\vec{x} - \vec{x}'|}, \quad {}^{\mathcal{X}}\rho' \equiv {}^{\mathcal{X}}\rho(t, \vec{x}').$$

• Vector potentials:

$${}^{\mathcal{X}}V_{i} = \int d^{3}x' \frac{{}^{\mathcal{X}}\rho' \,{}^{\mathcal{X}}v'_{i}}{|\vec{x}-\vec{x}'|}, \quad {}^{\mathcal{X}}W_{i} = \int d^{3}x' \frac{{}^{\mathcal{X}}\rho' \,{}^{\mathcal{X}}v'_{j}(x_{i}-x_{i}')(x_{j}-x_{j}')}{|\vec{x}-\vec{x}'|^{3}}.$$

PPN potentials

• Newtonian potential:

$${}^{\mathcal{X}}\chi = -\int d^{3}x' {}^{\mathcal{X}}\rho' |\vec{x} - \vec{x}'|, \quad {}^{\mathcal{X}}U = \int d^{3}x' \frac{{}^{\mathcal{X}}\rho'}{|\vec{x} - \vec{x}'|}, \quad {}^{\mathcal{X}}\rho' \equiv {}^{\mathcal{X}}\rho(t, \vec{x}').$$

• Vector potentials:

$${}^{\mathcal{X}}V_{i} = \int d^{3}x' \frac{{}^{\mathcal{X}}\rho' {}^{\mathcal{X}}v'_{i}}{|\vec{x}-\vec{x}'|}, \quad {}^{\mathcal{X}}W_{i} = \int d^{3}x' \frac{{}^{\mathcal{X}}\rho' {}^{\mathcal{X}}v'_{j}(x_{i}-x_{i}')(x_{j}-x_{j}')}{|\vec{x}-\vec{x}'|^{3}}.$$

• Fourth-order scalar potentials:

$${}^{\mathcal{X}} \Phi_{1} = \int d^{3}x' \frac{{}^{\mathcal{X}} \rho' {}^{\mathcal{X}} v'^{2}}{|\vec{x} - \vec{x}'|} , \quad {}^{\mathcal{X}} \Phi_{4} = \int d^{3}x' \frac{{}^{\mathcal{X}} p'}{|\vec{x} - \vec{x}'|} ,$$

$${}^{\mathcal{X}} \Phi_{2} = \int d^{3}x' \frac{{}^{\mathcal{X}} \rho' {}^{\mathcal{X}} U'}{|\vec{x} - \vec{x}'|} , \quad {}^{\mathcal{X}} \mathfrak{A} = \int d^{3}x' \frac{{}^{\mathcal{X}} \rho' \left[{}^{\mathcal{X}} v'_{i}(x_{i} - x'_{i}) \right]^{2}}{|\vec{x} - \vec{x}'|^{3}} ,$$

$${}^{\mathcal{X}} \Phi_{3} = \int d^{3}x' \frac{{}^{\mathcal{X}} \rho' {}^{\mathcal{X}} \Pi'}{|\vec{x} - \vec{x}'|} , \quad {}^{\mathcal{X}} \mathfrak{B} = \int d^{3}x' \frac{{}^{\mathcal{X}} \rho' \left[{}^{\mathcal{X}} v'_{i}(x_{i} - x'_{i}) \right]^{2}}{|\vec{x} - \vec{x}'|^{3}} ,$$

$${}^{\mathcal{X}} \Phi_{W} = \int d^{3}x' d^{3}x'' {}^{\mathcal{X}} \rho' {}^{\mathcal{X}} \rho'' \frac{x_{i} - x'_{i}}{|\vec{x} - \vec{x}'|^{3}} \left(\frac{x'_{i} - x''_{i}}{|\vec{x} - \vec{x}''|} - \frac{x_{i} - x''_{i}}{|\vec{x}' - \vec{x}''|} \right) .$$

Manuel Hohmann (University of Tartu)

• Expand energy-momentum tensor in velocity orders:

• Expand energy-momentum tensor in velocity orders:

• Behavior under gauge transformations:

$$\begin{split} \mathcal{Y} \stackrel{2}{T}_{00} &= \mathcal{X} \stackrel{2}{T}_{00} , \quad \mathcal{Y} \stackrel{2}{T}_{ij} &= \mathcal{X} \stackrel{2}{T}_{ij} , \quad \mathcal{Y} \stackrel{3}{T}_{0i} &= \mathcal{X} \stackrel{3}{T}_{0i} , \\ \mathcal{Y} \stackrel{4}{T}_{00} &= \mathcal{X} \stackrel{4}{T}_{00} + \stackrel{2}{\xi}_{i} \partial_{i} \mathcal{X} \stackrel{2}{T}_{00} , \quad \mathcal{Y} \stackrel{4}{T}_{ij} &= \mathcal{X} \stackrel{4}{T}_{ij} . \end{split}$$

• Expand energy-momentum tensor in velocity orders:

• Behavior under gauge transformations:

$$\begin{split} \mathcal{Y} \, & \stackrel{\mathcal{Y}}{T}_{00} = \mathcal{X} \, \stackrel{\mathcal{Z}}{T}_{00} \,, \quad \mathcal{Y} \, \stackrel{\mathcal{Y}}{T}_{ij} = \mathcal{X} \, \stackrel{\mathcal{Z}}{T}_{ij} \,, \quad \mathcal{Y} \, \stackrel{\mathcal{Y}}{T}_{0i} = \mathcal{X} \, \stackrel{\mathcal{X}}{T}_{0i} \,, \\ & \mathcal{Y} \, \stackrel{\mathcal{Y}}{T}_{00} = \mathcal{X} \, \stackrel{\mathcal{Y}}{T}_{00} \,, \quad \stackrel{\mathcal{Y}}{\xi}_{i} \partial_{i} \, \mathcal{X} \, \stackrel{\mathcal{Z}}{T}_{00} \,, \quad \mathcal{Y} \, \stackrel{\mathcal{Y}}{T}_{ij} = \mathcal{X} \, \stackrel{\mathcal{Y}}{T}_{ij} \,. \end{split}$$

• Energy-momentum tensor ~ derivatives of PPN potentials.

• Expand energy-momentum tensor in velocity orders:

Behavior under gauge transformations:

$$\begin{split} \mathcal{Y} \, & \vec{T}_{00} = \mathcal{X} \, \vec{T}_{00} \,, \quad \mathcal{Y} \, \vec{T}_{ij} = \mathcal{X} \, \vec{T}_{ij} \,, \quad \mathcal{Y} \, \vec{T}_{0i} = \mathcal{X} \, \vec{T}_{0i} \,, \\ \mathcal{Y} \, \vec{T}_{00} = \mathcal{X} \, \vec{T}_{00} \,, \quad \vec{\xi}_{i} \partial_{i} \, \mathcal{X} \, \vec{T}_{00} \,, \quad \mathcal{Y} \, \vec{T}_{ij} = \mathcal{X} \, \vec{T}_{ij} \,. \end{split}$$

- Energy-momentum tensor ~ derivatives of PPN potentials.
- ⇒ Solve for PPN parameters by PPN expanding field equations.

• Expand energy-momentum tensor in velocity orders:

Behavior under gauge transformations:

$$\begin{split} \mathcal{V} \, & \stackrel{2}{T}_{00} = \mathcal{X} \, \stackrel{2}{T}_{00} \,, \quad \mathcal{V} \, \stackrel{2}{T}_{ij} = \mathcal{X} \, \stackrel{2}{T}_{ij} \,, \quad \mathcal{V} \, \stackrel{3}{T}_{0i} = \mathcal{X} \, \stackrel{3}{T}_{0i} \,, \\ \mathcal{V} \, \stackrel{4}{T}_{00} = \mathcal{X} \, \stackrel{4}{T}_{00} \,, \quad \stackrel{2}{\xi}_{i} \partial_{i} \, \mathcal{X} \, \stackrel{2}{T}_{00} \,, \quad \mathcal{V} \, \stackrel{4}{T}_{ij} = \mathcal{X} \, \stackrel{4}{T}_{ij} \,. \end{split}$$

- Energy-momentum tensor ~ derivatives of PPN potentials.
- ⇒ Solve for PPN parameters by PPN expanding field equations.
- f Equations may be gauge dependent & hard to solve.

• Expand energy-momentum tensor in velocity orders:

Behavior under gauge transformations:

$$\begin{split} \mathcal{V} \, & \vec{T}_{00} = \mathcal{X} \, \vec{T}_{00} \,, \quad \mathcal{V} \, \vec{T}_{ij} = \mathcal{X} \, \vec{T}_{ij} \,, \quad \mathcal{V} \, \vec{T}_{0i} = \mathcal{X} \, \vec{T}_{0i} \,, \\ \mathcal{V} \, \vec{T}_{00} = \mathcal{X} \, \vec{T}_{00} \,, \quad \vec{\xi}_{i} \partial_{i} \, \mathcal{X} \, \vec{T}_{00} \,, \quad \mathcal{V} \, \vec{T}_{ij} = \mathcal{X} \, \vec{T}_{ij} \,. \end{split}$$

- Energy-momentum tensor ~ derivatives of PPN potentials.
- ⇒ Solve for PPN parameters by PPN expanding field equations.
- f Equations may be gauge dependent & hard to solve.
- → Use gauge-invariant formalism to decouple equations.

Introduction

- 2 Gauge-invariant higher order perturbations
- Parametrized post-Newtonian formalism

Gauge-invariant PPN formalism

- 5) Tetrad and teleparallel PPN formalisms
- 6 Example: PPN limit of scalar-tensor gravity

7 Conclusion
• Allow only gauge transformations preserving PPN assumptions:

$$\xi_{i}^{2}, \xi_{0}^{3}, \xi_{i}^{4}$$

• Allow only gauge transformations preserving PPN assumptions:

$$\xi_{i}^{2}, \xi_{0}^{3}, \xi_{i}^{4}.$$

• Relation between metrics in gauges \mathcal{X} and \mathcal{Y} :

$$\begin{split} {}^{\mathcal{Y}} \overset{2}{g}_{00} &= {}^{\mathcal{X}} \overset{2}{g}_{00} \,, \\ {}^{\mathcal{Y}} \overset{2}{g}_{ij} &= {}^{\mathcal{X}} \overset{2}{g}_{ij} + 2 \partial_{(i} \overset{2}{\xi}_{j)} \,, \\ {}^{\mathcal{Y}} \overset{3}{g}_{0i} &= {}^{\mathcal{X}} \overset{3}{g}_{0i} + \partial_{i} \overset{3}{\xi}_{0} + \partial_{0} \overset{2}{\xi}_{i} \,, \\ {}^{\mathcal{Y}} \overset{4}{g}_{00} &= {}^{\mathcal{X}} \overset{4}{g}_{00} + 2 \partial_{0} \overset{3}{\xi}_{0} + \overset{2}{\xi}_{i} \partial_{i} {}^{\mathcal{X}} \overset{2}{g}_{00} \,, \\ {}^{\mathcal{Y}} \overset{4}{g}_{ij} &= {}^{\mathcal{X}} \overset{4}{g}_{ij} + 2 \partial_{(i} \overset{4}{\xi}_{j)} + 2 {}^{\mathcal{X}} \overset{2}{g}_{k(i} \partial_{j)} \overset{2}{\xi}_{k} + \overset{2}{\xi}_{k} \partial_{k} {}^{\mathcal{X}} \overset{2}{g}_{ij} + \partial_{(i} (\overset{2}{\xi}_{|k} \partial_{k}| \overset{2}{\xi}_{j)}) + \partial_{i} \overset{2}{\xi}_{k} \partial_{j} \overset{2}{\xi}_{k} \,. \end{split}$$

• Allow only gauge transformations preserving PPN assumptions:

$$\xi_{i}^{2}, \xi_{0}^{3}, \xi_{i}^{4}.$$

• Relation between metrics in gauges \mathcal{X} and \mathcal{Y} :

$$\begin{split} &\mathcal{V}_{g_{00}}^{2} = \mathcal{X}_{g_{00}}^{2}, \\ &\mathcal{V}_{g_{ij}}^{2} = \mathcal{X}_{g_{ij}}^{2} + 2\partial_{(i}\xi_{j)}^{2}, \\ &\mathcal{V}_{g_{0i}}^{3} = \mathcal{X}_{g_{0i}}^{3} + \partial_{i}\xi_{0}^{3} + \partial_{0}\xi_{i}^{2}, \\ &\mathcal{V}_{g_{00}}^{4} = \mathcal{X}_{g_{00}}^{4} + 2\partial_{0}\xi_{0}^{3} + \xi_{i}^{2}\partial_{i}\mathcal{X}_{g_{00}}^{2}, \\ &\mathcal{V}_{g_{ij}}^{4} = \mathcal{X}_{g_{ij}}^{4} + 2\partial_{(i}\xi_{j)}^{4} + 2\mathcal{X}_{g_{k}(i}^{2}\partial_{j})\xi_{k}^{2} + \xi_{k}^{2}\partial_{k}\mathcal{X}_{g_{ij}}^{2} + \partial_{(i}(\xi_{|k}\partial_{k|}\xi_{j)}) + \partial_{i}\xi_{k}\partial_{j}\xi_{k}^{2}. \end{split}$$

Use gauge transformation to eliminate metric components.

• Definition of gauge-invariant metric components:

$$\mathbf{g}_{00} = \mathbf{g}^{\star}, \quad \mathbf{g}_{0i} = \mathbf{g}_{i}^{\diamond}, \quad \mathbf{g}_{ij} = \mathbf{g}^{\bullet} \delta_{ij} + \mathbf{g}_{ij}^{\dagger}.$$

• Definition of gauge-invariant metric components:

$$\mathbf{g}_{00} = \mathbf{g}^{\star}, \quad \mathbf{g}_{0i} = \mathbf{g}_{i}^{\diamond}, \quad \mathbf{g}_{ij} = \mathbf{g}^{\bullet} \delta_{ij} + \mathbf{g}_{ij}^{\dagger}.$$

• Conditions imposed on components:

$$\partial^{i} \mathbf{g}_{i}^{\diamond} = \mathbf{0} \,, \quad \partial^{i} \mathbf{g}_{ij}^{\dagger} = \mathbf{0} \,, \quad \mathbf{g}_{[ij]}^{\dagger} = \mathbf{0} \,, \quad \mathbf{g}_{ii}^{\dagger} = \mathbf{0} \,.$$

• Definition of gauge-invariant metric components:

$$\mathbf{g}_{00} = \mathbf{g}^{\star}, \quad \mathbf{g}_{0i} = \mathbf{g}_{i}^{\diamond}, \quad \mathbf{g}_{ij} = \mathbf{g}^{\bullet} \delta_{ij} + \mathbf{g}_{ij}^{\dagger}.$$

• Conditions imposed on components:

$$\partial^{i} \mathbf{g}_{i}^{\diamond} = \mathbf{0}, \quad \partial^{i} \mathbf{g}_{ij}^{\dagger} = \mathbf{0}, \quad \mathbf{g}_{[ij]}^{\dagger} = \mathbf{0}, \quad \mathbf{g}_{ii}^{\dagger} = \mathbf{0}.$$

• Relation to arbitrary gauge \mathcal{X} :

$$\mathcal{X}_{g_{00}}^{2} = \mathbf{\hat{g}}^{*},$$

$$\mathcal{X}_{g_{ij}}^{2} = \mathbf{\hat{g}}^{\bullet} \delta_{ij} + \mathbf{\hat{g}}_{ij}^{\dagger} + 2\partial_{i}\partial_{j}\mathbf{\hat{X}}^{\bullet} + 2\partial_{(i}\mathbf{\hat{X}}_{j)}^{\circ},$$

$$\mathcal{X}_{g_{0i}}^{3} = \mathbf{\hat{g}}_{i}^{\circ} + \partial_{i}\mathbf{\hat{X}}^{*} + \partial_{0}\partial_{i}\mathbf{\hat{X}}^{\bullet} + \partial_{0}\mathbf{\hat{X}}_{i}^{\circ},$$

$$\mathcal{X}_{g_{00}}^{4} = \mathbf{\hat{g}}^{*} + 2\partial_{0}\mathbf{\hat{X}}^{*} + (\partial_{i}\mathbf{\hat{X}}^{\bullet} + \mathbf{\hat{X}}_{i}^{\circ})\partial_{i}\mathbf{\hat{g}}^{*},$$

$$\mathcal{X}_{g_{ij}}^{4} = \mathbf{\hat{g}}^{\bullet} \delta_{ij} + \mathbf{\hat{g}}_{ij}^{\dagger} + 2\partial_{i}\partial_{j}\mathbf{\hat{X}}^{*} + \mathcal{O}(2) \cdot \mathcal{O}(2)$$

.

• Definition of gauge-invariant metric components:

$$\mathbf{g}_{00} = \mathbf{g}^{\star}, \quad \mathbf{g}_{0i} = \mathbf{g}_{i}^{\diamond}, \quad \mathbf{g}_{ij} = \mathbf{g}^{\bullet} \delta_{ij} + \mathbf{g}_{ij}^{\dagger}.$$

• Conditions imposed on components:

$$\partial^{i} \mathbf{g}_{i}^{\diamond} = \mathbf{0} \,, \quad \partial^{i} \mathbf{g}_{ij}^{\dagger} = \mathbf{0} \,, \quad \mathbf{g}_{[ij]}^{\dagger} = \mathbf{0} \,, \quad \mathbf{g}_{ii}^{\dagger} = \mathbf{0} \,.$$

• Relation to arbitrary gauge \mathcal{X} :

$$\begin{aligned} & \overset{\mathcal{X}}{g}_{00}^{2} = \overset{2}{\mathbf{g}}^{\star} , \\ & \overset{\mathcal{X}}{g}_{ij}^{2} = \overset{2}{\mathbf{g}}^{\bullet} \delta_{ij} + \overset{2}{\mathbf{g}}_{ij}^{\dagger} + 2\partial_{i}\partial_{j}\overset{2}{X}^{\bullet} + 2\partial_{(i}\overset{2}{X}_{j)}^{\circ} , \\ & \overset{\mathcal{X}}{g}_{0i}^{3} = \overset{3}{\mathbf{g}}_{i}^{\diamond} + \partial_{i}\overset{3}{X}^{\star} + \partial_{0}\partial_{i}\overset{2}{X}^{\bullet} + \partial_{0}\overset{2}{X}_{i}^{\diamond} , \\ & \overset{\mathcal{X}}{g}_{00}^{4} = \overset{4}{\mathbf{g}}^{\star} + 2\partial_{0}\overset{3}{X}^{\star} + (\partial_{i}\overset{2}{X}^{\bullet} + \overset{2}{X}_{i}^{\diamond})\partial_{i}\overset{2}{\mathbf{g}}^{\star} , \\ & \overset{\mathcal{X}}{g}_{ij}^{4} = \overset{4}{\mathbf{g}}^{\bullet} \delta_{ij} + \overset{4}{\mathbf{g}}_{ij}^{\dagger} + 2\partial_{i}\partial_{j}\overset{4}{X}^{\bullet} + \mathcal{O}(2) \cdot \mathcal{O}(2) \end{aligned}$$

• Gauge defining vector fields:

$$X_i = \partial_i X^{\bullet} + X_i^{\diamond}, \quad X_0 = X^{\star}, \quad \partial^i X_i^{\diamond} = 0.$$

.

• Count number of independent components at each order:

total		invariant		pure gauge		
X	\hat{g}_{00}	1	g *	1	-	0
X	\hat{g}_{ij}	6	$\hat{\mathbf{g}}^{\star}, \hat{\mathbf{g}}_{ij}^{\dagger}$	1 + 2	$\hat{X}^{\bullet}, \hat{X}_{i}^{\diamond}$	1 + 2
X	³ g 0i	3	$\overset{3}{\mathbf{g}}_{i}^{\diamond}$	2	$\overset{3}{X}^{\star}$	1
<i>X</i>	$\overset{\scriptscriptstyle4}{g}_{00}$	1	⁴ g*	1	-	0
X	9 ij	6	$\overset{4}{\mathbf{g}}^{\star},\overset{4}{\mathbf{g}}_{ij}^{\dagger}$	1 + 2	$\overset{4}{X}, \overset{4}{X}_{i}$	1 + 2

• Count number of independent components at each order:

tota		invariant		pure gauge	
$\mathcal{X}^{2}_{\boldsymbol{g}_{00}}$	1	g *	1	-	0
${}^{\mathcal{X}}\overset{\scriptscriptstyle 2}{\boldsymbol{g}}_{ij}$	6	$\hat{\mathbf{g}}^{\star}, \hat{\mathbf{g}}_{ij}^{\dagger}$	1 + 2	$\hat{X}^{\bullet}, \hat{X}_{i}^{\diamond}$	1 + 2
${}^{\mathcal{X}}\overset{\scriptscriptstyle{3}}{\boldsymbol{g}}_{0i}$	3	$\overset{3}{\mathbf{g}}_{i}^{\diamond}$	2	$\overset{\mathfrak{s}}{X}^{\star}$	1
${}^{\mathcal{X}}\overset{\scriptscriptstyle{4}}{g}_{00}$	1	g *	1	-	0
${}^{\mathcal{X}}\overset{\scriptscriptstyle{4}}{{m{g}}}_{ij}$	6	$\overset{4}{\mathbf{g}}^{\star},\overset{4}{\mathbf{g}}_{ij}^{\dagger}$	1 + 2	$\overset{4}{X}, \overset{4}{X}_{i}$	1 + 2

⇒ Components split into invariant and gauge parts.

• Count number of independent components at each order:

tota		invariant		pure gauge	
$\mathcal{X}^{2}_{\boldsymbol{g}_{00}}$	1	g *	1	-	0
${}^{\mathcal{X}}{}^{2}_{{m{g}}_{ij}}$	6	$\hat{\mathbf{g}}^{\star}, \hat{\mathbf{g}}_{ij}^{\dagger}$	1 + 2	$\hat{X}^{\bullet}, \hat{X}_{i}^{\diamond}$	1 + 2
${}^{\mathcal{X}}\overset{\mathfrak{g}}{\boldsymbol{g}}_{0i}$	3	^³ g _i	2	X^{3}	1
${}^{\mathcal{X}}\overset{\scriptscriptstyle{4}}{g}_{00}$	1	⁴ g*	1	-	0
${}^{\mathcal{X}}\overset{\scriptscriptstyle{4}}{g}_{ij}$	6	$\overset{4}{\mathbf{g}}^{\star},\overset{4}{\mathbf{g}}_{ij}^{\dagger}$	1 + 2	$\overset{4}{X}, \overset{4}{X}_{i}$	1 + 2

- ⇒ Components split into invariant and gauge parts.
- ⇒ Possible to separate physical information from coordinate choice.

• Use relation between expansion coefficients:

$$\mathcal{P}_{g}^{k} = \sum_{0 \le l_{1}+2l_{2}+\ldots \le k} \frac{1}{l_{1}!l_{2}!\cdots} \mathfrak{L}_{p}^{l_{1}} \cdots \mathfrak{L}_{p}^{l_{k}} \cdots \mathfrak{g}_{\cdot}^{l_{k-1}-2l_{2}-\cdots}$$

• Use relation between expansion coefficients:

$$\mathcal{P}_{g}^{k} = \sum_{0 \le l_{1}+2l_{2}+\ldots \le k} \frac{1}{l_{1}!l_{2}!\cdots} \mathfrak{L}_{p}^{l_{1}} \cdots \mathfrak{L}_{p}^{l_{k}} \cdots \mathfrak{g}_{\cdot}^{l_{k-1}-2l_{2}-\ldots}$$

• Split components of ${}^{\mathcal{P}}g_{\mu\nu}$ into $\mathbf{g}_{\mu\nu}$ and P^{μ} .

• Use relation between expansion coefficients:

$${}^{\mathcal{P}}\overset{k}{g} = \sum_{0 \le l_1 + 2l_2 + \ldots \le k} \frac{1}{l_1! l_2! \cdots} \underbrace{\mathfrak{L}_{l_1}^{l_1} \cdots \mathfrak{L}_{k}^{l_k}}_{P} \underbrace{\mathfrak{L}_{k}^{l_k} \cdots \mathfrak{L}_{k}^{l_{k-1}}}_{P} \mathbf{g}.$$

- Split components of ${}^{\mathcal{P}}g_{\mu\nu}$ into $\mathbf{g}_{\mu\nu}$ and P^{μ} .
- ⇒ Gauge defining vector fields:

$$\overset{2}{P} = 0, \quad \overset{2}{P}_{i}^{\diamond} = 0, \quad \overset{3}{P}^{\star} = -\frac{1}{4}(2+4\gamma+\alpha_{1}-2\alpha_{2}+2\zeta_{1}-4\xi)\chi_{,0}.$$

• Use relation between expansion coefficients:

$${}^{\mathcal{P}}\overset{k}{g} = \sum_{0 \le l_1 + 2l_2 + \ldots \le k} \frac{1}{l_1! l_2! \cdots} \underbrace{\mathfrak{L}_1^{l_1} \cdots \mathfrak{L}_k^{l_k}}_{P} \underbrace{\mathfrak{L}_k^{l_k} \cdots \mathfrak{L}_k^{l_{k-1}}}_{P} \mathbf{g}.$$

- Split components of ${}^{\mathcal{P}}g_{\mu\nu}$ into $\mathbf{g}_{\mu\nu}$ and P^{μ} .
- ⇒ Gauge defining vector fields:

$$\overset{2}{P} = 0$$
, $\overset{2}{P}_{i}^{\diamond} = 0$, $\overset{3}{P}^{\star} = -\frac{1}{4}(2+4\gamma+\alpha_{1}-2\alpha_{2}+2\zeta_{1}-4\xi)\chi_{,0}$.

⇒ Gauge-invariant metric components:

$${\stackrel{2}{\mathbf{g}}}^{\star} = 2\mathbf{U}, \quad {\stackrel{2}{\mathbf{g}}}^{\bullet} = 2\gamma\mathbf{U}, \quad {\stackrel{2}{\mathbf{g}}}{\stackrel{1}{ij}} = 0, \quad {\stackrel{3}{\mathbf{g}}}{\stackrel{1}{i}} = -\left(1 + \gamma + \frac{\alpha_1}{4}\right)(\mathbf{V}_i + \mathbf{W}_i),$$

$$\mathbf{\dot{g}}^{*} = \frac{1}{2} (2 - \alpha_{1} + 2\alpha_{2} + 2\alpha_{3}) \mathbf{\Phi}_{1} + 2(1 + 3\gamma - 2\beta + \zeta_{2} + \xi) \mathbf{\Phi}_{2} + 2(1 + \zeta_{3}) \mathbf{\Phi}_{3} + 2(3\gamma + 3\zeta_{4} - 2\xi) \mathbf{\Phi}_{4} - 2\xi \mathbf{\Phi}_{W} - 2\beta \mathbf{U}^{2} + \frac{1}{2} (2 + 4\gamma + \alpha_{1} - 2\alpha_{2}) \mathfrak{A} + \frac{1}{2} (2 + 4\gamma + \alpha_{1} - 2\alpha_{2} + 2\zeta_{1} - 4\xi) \mathfrak{B} .$$

• Perform similar decomposition of energy-momentum tensor:

$$\mathbf{T}^{\star} = \mathbf{T}_{00} = \rho \left(1 - \mathbf{g}_{00}^{2} + \mathbf{v}^{2} + \mathbf{\Pi} \right) + \mathcal{O}(6) ,$$

$$\mathbf{T}_{i}^{\diamond} + \partial_{i} \mathbf{T}^{\bullet} = \mathbf{T}_{0i} = -\rho \mathbf{v}_{i} + \mathcal{O}(5) ,$$

$$\mathbf{T}^{\bullet} \delta_{ij} + \Delta_{ij} \mathbf{T}^{\blacktriangle} + 2\partial_{(i} \mathbf{T}_{j)}^{\bigtriangleup} + \mathbf{T}_{ij}^{\dagger} = \mathbf{T}_{ij} = \rho \mathbf{v}_{i} \mathbf{v}_{j} + \mathbf{p} \delta_{ij} + \mathcal{O}(6) .$$

• Perform similar decomposition of energy-momentum tensor:

$$\begin{split} \mathbf{T}^{\star} &= \mathbf{T}_{00} = \rho \left(1 - \overset{2}{\mathbf{g}}_{00} + \mathbf{v}^{2} + \mathbf{\Pi} \right) + \mathcal{O}(6) \,, \\ \mathbf{T}_{i}^{\diamond} &+ \partial_{i} \mathbf{T}^{\bullet} = \mathbf{T}_{0i} = -\rho \mathbf{v}_{i} + \mathcal{O}(5) \,, \\ \mathbf{T}^{\bullet} \delta_{ij} + \Delta_{ij} \mathbf{T}^{\bullet} + 2\partial_{(i} \mathbf{T}_{j)}^{\triangle} + \mathbf{T}_{ij}^{\dagger} = \mathbf{T}_{ij} = \rho \mathbf{v}_{i} \mathbf{v}_{j} + \mathbf{p} \delta_{ij} + \mathcal{O}(6) \,. \end{split}$$

• Express components in terms of PPN potentials:

$$\overset{2}{\mathbf{T}}^{\star} = \rho = -\frac{1}{4\pi} \bigtriangleup \mathbf{U}, \quad \overset{3}{\mathbf{T}}^{\bullet} = -\frac{1}{4\pi} \partial_{0} \mathbf{U}, \quad \overset{3}{\mathbf{T}}^{\circ}_{i} = \frac{1}{8\pi} \bigtriangleup (\mathbf{V}_{i} + \mathbf{W}_{i}),$$

$$\overset{4}{\mathbf{T}}^{\star} = \rho \left(\mathbf{\Pi} + \mathbf{v}^{2} - \overset{2}{\mathbf{g}}^{\star} \right) = -\frac{1}{4\pi} \bigtriangleup (\mathbf{\Phi}_{3} + \mathbf{\Phi}_{1} - 2\mathbf{\Phi}_{2}),$$

$$\overset{4}{\mathbf{T}}^{\bullet} = \frac{1}{3} \rho \mathbf{v}^{2} + \mathbf{p} = -\frac{1}{12\pi} \bigtriangleup (\mathbf{\Phi}_{1} + 3\mathbf{\Phi}_{4}), \quad \overset{4}{\mathbf{T}}^{\bullet} = \frac{1}{16\pi} (3\mathfrak{A} - \mathbf{\Phi}_{1}).$$

• Perform similar decomposition of energy-momentum tensor:

$$\mathbf{T}^{\star} = \mathbf{T}_{00} = \rho \left(1 - \mathbf{g}_{00}^{2} + \mathbf{v}^{2} + \mathbf{\Pi} \right) + \mathcal{O}(6) ,$$

$$\mathbf{T}_{i}^{\diamond} + \partial_{i} \mathbf{T}^{\bullet} = \mathbf{T}_{0i} = -\rho \mathbf{v}_{i} + \mathcal{O}(5) ,$$

$$\mathbf{T}^{\bullet} \delta_{ij} + \Delta_{ij} \mathbf{T}^{\bullet} + 2\partial_{(i} \mathbf{T}_{j)}^{\Delta} + \mathbf{T}_{ij}^{\dagger} = \mathbf{T}_{ij} = \rho \mathbf{v}_{i} \mathbf{v}_{j} + \mathbf{p} \delta_{ij} + \mathcal{O}(6) .$$

• Express components in terms of PPN potentials:

$$\overset{2}{\mathbf{T}}^{\star} = \rho = -\frac{1}{4\pi} \bigtriangleup \mathbf{U}, \quad \overset{3}{\mathbf{T}}^{\bullet} = -\frac{1}{4\pi} \partial_{0} \mathbf{U}, \quad \overset{3}{\mathbf{T}}^{\circ}_{i} = \frac{1}{8\pi} \bigtriangleup (\mathbf{V}_{i} + \mathbf{W}_{i}),$$

$$\overset{4}{\mathbf{T}}^{\star} = \rho \left(\mathbf{\Pi} + \mathbf{v}^{2} - \overset{2}{\mathbf{g}}^{\star} \right) = -\frac{1}{4\pi} \bigtriangleup (\mathbf{\Phi}_{3} + \mathbf{\Phi}_{1} - 2\mathbf{\Phi}_{2}),$$

$$\overset{4}{\mathbf{T}}^{\bullet} = \frac{1}{3} \rho \mathbf{v}^{2} + \mathbf{p} = -\frac{1}{12\pi} \bigtriangleup (\mathbf{\Phi}_{1} + 3\mathbf{\Phi}_{4}), \quad \overset{4}{\mathbf{T}}^{\bullet} = \frac{1}{16\pi} (3\mathfrak{A} - \mathbf{\Phi}_{1}).$$

Decompose also gravity side ≃ △g.

• Perform similar decomposition of energy-momentum tensor:

$$\mathbf{T}^{\star} = \mathbf{T}_{00} = \rho \left(1 - \overset{2}{\mathbf{g}}_{00} + \mathbf{v}^{2} + \mathbf{\Pi} \right) + \mathcal{O}(6) ,$$

$$\mathbf{T}_{i}^{\diamond} + \partial_{i} \mathbf{T}^{\bullet} = \mathbf{T}_{0i} = -\rho \mathbf{v}_{i} + \mathcal{O}(5) ,$$

$$\mathbf{T}^{\bullet} \delta_{ij} + \Delta_{ij} \mathbf{T}^{\bullet} + 2\partial_{(i} \mathbf{T}_{j)}^{\triangle} + \mathbf{T}_{ij}^{\dagger} = \mathbf{T}_{ij} = \rho \mathbf{v}_{i} \mathbf{v}_{j} + \mathbf{p} \delta_{ij} + \mathcal{O}(6) .$$

• Express components in terms of PPN potentials:

$$\overset{2}{\mathbf{T}}^{\star} = \boldsymbol{\rho} = -\frac{1}{4\pi} \bigtriangleup \mathbf{U}, \quad \overset{3}{\mathbf{T}}^{\bullet} = -\frac{1}{4\pi} \partial_{0} \mathbf{U}, \quad \overset{3}{\mathbf{T}}^{\circ}_{i} = \frac{1}{8\pi} \bigtriangleup (\mathbf{V}_{i} + \mathbf{W}_{i}),$$

$$\overset{4}{\mathbf{T}}^{\star} = \boldsymbol{\rho} \left(\mathbf{\Pi} + \mathbf{v}^{2} - \overset{2}{\mathbf{g}}^{\star} \right) = -\frac{1}{4\pi} \bigtriangleup (\mathbf{\Phi}_{3} + \mathbf{\Phi}_{1} - 2\mathbf{\Phi}_{2}),$$

$$\overset{4}{\mathbf{T}}^{\bullet} = \frac{1}{3} \boldsymbol{\rho} \mathbf{v}^{2} + \mathbf{p} = -\frac{1}{12\pi} \bigtriangleup (\mathbf{\Phi}_{1} + 3\mathbf{\Phi}_{4}), \quad \overset{4}{\mathbf{T}}^{\bullet} = \frac{1}{16\pi} (3\mathfrak{A} - \mathbf{\Phi}_{1}).$$

- Decompose also gravity side ≃ △g.
- ⇒ Find PPN parameters by comparing coefficients on both sides.

Introduction

- 2 Gauge-invariant higher order perturbations
- Parametrized post-Newtonian formalism
- 4 Gauge-invariant PPN formalism
- 5 Tetrad and teleparallel PPN formalisms
- 6 Example: PPN limit of scalar-tensor gravity

7 Conclusion

- Fundamental fields:
 - Coframe field $\theta^{A} = \theta^{A}_{\mu} dx^{\mu}$.
 - Flat spin connection $\dot{\omega}^{A}{}_{B} = \omega^{A}{}_{B\mu}dx^{\mu}$.
 - Arbitrary matter fields χ .

- Fundamental fields:
 - Coframe field $\theta^{A} = \theta^{A}_{\mu} dx^{\mu}$.
 - Flat spin connection $\omega^{A}{}_{B} = \omega^{A}{}_{B\mu}dx^{\mu}$.
 - Arbitrary matter fields χ .
- Derived quantities:
 - Frame field $e_A = e_A^{\mu}\partial_{\mu}$ with $e_A^{\mu}\theta^B{}_{\mu} = \delta^B_A$ and $e_A^{\mu}\theta^A{}_{\nu} = \delta^{\mu}{}_{\nu}$.
 - Metric $g_{\mu\nu} = \eta_{AB} \theta^{A}{}_{\mu} \theta^{B}{}_{\nu}$.
 - Determinant $\theta = \det(\theta^{A}_{\mu})$.
 - Teleparallel connection $\Gamma^{\mu}{}_{\nu\rho} = e_{A}{}^{\mu}(\partial_{\rho}\theta^{A}{}_{\nu} + \omega^{A}{}_{B\rho}\theta^{B}{}_{\nu}).$
 - Levi-Civita connection $\overset{\circ}{\Gamma}^{\mu}{}_{\nu\rho} = \frac{1}{2}g^{\mu\sigma}(\partial_{\nu}g_{\sigma\rho} + \partial_{\rho}g_{\nu\sigma} \partial_{\sigma}g_{\nu\rho}).$

- Fundamental fields:
 - Coframe field $\theta^{A} = \theta^{A}_{\mu} dx^{\mu}$.
 - Flat spin connection $\omega^{A}{}_{B} = \omega^{A}{}_{B\mu}dx^{\mu}$.
 - Arbitrary matter fields χ .
- Derived quantities:
 - Frame field $e_A = e_A^{\mu}\partial_{\mu}$ with $e_A^{\mu}\theta^B{}_{\mu} = \delta^B_A$ and $e_A^{\mu}\theta^A{}_{\nu} = \delta^{\mu}{}_{\nu}$.
 - Metric $g_{\mu\nu} = \eta_{AB} \theta^{A}{}_{\mu} \theta^{B}{}_{\nu}$.
 - Determinant $\theta = \det(\theta^{A}_{\mu})$.
 - Teleparallel connection $\Gamma^{\mu}{}_{\nu\rho} = e_{A}{}^{\mu}(\partial_{\rho}\theta^{A}{}_{\nu} + \omega^{A}{}_{B\rho}\theta^{B}{}_{\nu}).$
 - Levi-Civita connection $\tilde{\Gamma}^{\mu}_{\nu\rho} = \frac{1}{2}g^{\mu\sigma}(\partial_{\nu}g_{\sigma\rho} + \partial_{\rho}g_{\nu\sigma} \partial_{\sigma}g_{\nu\rho}).$
- Properties of the teleparallel connection:
 - Vanishing curvature: $R^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho}\Gamma^{\mu}{}_{\nu\sigma} \partial_{\sigma}\Gamma^{\mu}{}_{\nu\rho} + \Gamma^{\mu}{}_{\tau\rho}\Gamma^{\tau}{}_{\nu\sigma} \Gamma^{\mu}{}_{\tau\sigma}\Gamma^{\tau}{}_{\nu\rho} = 0.$
 - Vanishing nonmetricity: $Q_{\mu\nu\rho} = \nabla_{\mu}g_{\nu\rho} = 0.$
 - Nonvanishing torsion: $T^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\rho\nu} \Gamma^{\mu}{}_{\nu\rho} \neq 0.$

- Fundamental fields:
 - Coframe field $\theta^{A} = \theta^{A}_{\mu} dx^{\mu}$.
 - Flat spin connection $\omega^{A}{}_{B} = \omega^{A}{}_{B\mu}dx^{\mu}$.
 - Arbitrary matter fields χ .
- Derived quantities:
 - Frame field $e_A = e_A^{\mu}\partial_{\mu}$ with $e_A^{\mu}\theta^B{}_{\mu} = \delta^B_A$ and $e_A^{\mu}\theta^A{}_{\nu} = \delta^{\mu}{}_{\nu}$.
 - Metric $g_{\mu\nu} = \eta_{AB} \theta^A{}_{\mu} \theta^B{}_{\nu}$.
 - Determinant $\theta = \det(\theta^{A}_{\mu})$.
 - Teleparallel connection $\Gamma^{\mu}{}_{\nu\rho} = e_{A}{}^{\mu}(\partial_{\rho}\theta^{A}{}_{\nu} + \omega^{A}{}_{B\rho}\theta^{B}{}_{\nu}).$
 - Levi-Civita connection $\overset{\circ}{\Gamma}^{\mu}{}_{\nu\rho} = \frac{1}{2}g^{\mu\sigma}(\partial_{\nu}g_{\sigma\rho} + \partial_{\rho}g_{\nu\sigma} \partial_{\sigma}g_{\nu\rho}).$
- Properties of the teleparallel connection:
 - Vanishing curvature: $R^{\mu}_{\nu\rho\sigma} = \partial_{\rho}\Gamma^{\mu}_{\nu\sigma} \partial_{\sigma}\Gamma^{\mu}_{\nu\rho} + \Gamma^{\mu}_{\tau\rho}\Gamma^{\tau}_{\nu\sigma} \Gamma^{\mu}_{\tau\sigma}\Gamma^{\tau}_{\nu\rho} = 0.$
 - Vanishing nonmetricity: $Q_{\mu\nu\rho} = \nabla_{\mu}g_{\nu\rho} = 0.$
 - Nonvanishing torsion: $T^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\rho\nu} \Gamma^{\mu}{}_{\nu\rho} \neq 0.$

⇒ Possible to use Weitzenböck gauge: $\omega^{A}_{B\mu} \equiv 0$.

• Post-Newtonian tetrad expansion:

$${}^{\mathcal{X}}\theta^{A}{}_{\mu} = {}^{\mathcal{X}}{}^{0}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{1}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{2}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{3}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{4}_{\theta}{}^{A}{}_{\mu} + \mathcal{O}(5) \,.$$

• Post-Newtonian tetrad expansion:

$${}^{\mathcal{X}}\theta^{A}{}_{\mu} = {}^{\mathcal{X}}{}^{0}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{1}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{2}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{3}_{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}{}^{4}_{\theta}{}^{A}{}_{\mu} + \mathcal{O}(5)$$

• Background tetrad is diagonal: ${}^{\mathcal{X}}{}^{0}_{\theta}{}^{A}_{\mu} = \Delta^{A}_{\mu} = \text{diag}(1, 1, 1, 1).$

• Post-Newtonian tetrad expansion:

$${}^{\mathcal{X}}\theta^{A}{}_{\mu} = {}^{\mathcal{X}}\overset{0}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{1}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{2}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{3}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{4}{\theta}{}^{A}{}_{\mu} + \mathcal{O}(5)$$

- Background tetrad is diagonal: ${}^{\mathcal{X}}{}^{0}_{\theta}{}^{A}_{\mu} = \Delta^{A}_{\mu} = \text{diag}(1, 1, 1, 1).$
- Higher than fourth velocity order $\mathcal{O}(4)$ is not considered.

• Post-Newtonian tetrad expansion:

$${}^{\mathcal{X}}\theta^{A}{}_{\mu} = {}^{\mathcal{X}}\overset{0}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{1}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{2}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{3}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{4}{\theta}{}^{A}{}_{\mu} + \mathcal{O}(5)$$

- Background tetrad is diagonal: ${}^{\mathcal{X}}{}^{0}_{\theta}{}^{A}_{\mu} = \Delta^{A}_{\mu} = \text{diag}(1, 1, 1, 1).$
- Higher than fourth velocity order $\mathcal{O}(4)$ is not considered.
- Useful to define tetrad with lower spacetime indices:

$${}^{\mathcal{X}}{}^{k}_{\theta\mu\nu} = \Delta^{A}{}_{\mu}\eta_{AB} {}^{\mathcal{X}}{}^{k}_{\theta}{}^{B}{}_{\nu}.$$

• Post-Newtonian tetrad expansion:

$${}^{\mathcal{X}}\theta^{A}{}_{\mu} = {}^{\mathcal{X}}\overset{0}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{1}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{2}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{3}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{4}{\theta}{}^{A}{}_{\mu} + \mathcal{O}(5)$$

- Background tetrad is diagonal: ${}^{\mathcal{X}}{}^{0}_{\theta}{}^{A}_{\mu} = \Delta^{A}_{\mu} = \text{diag}(1, 1, 1, 1).$
- Higher than fourth velocity order $\mathcal{O}(4)$ is not considered.
- Useful to define tetrad with lower spacetime indices:

$${}^{\mathcal{X}}{}^{k}_{\theta\mu\nu} = \Delta^{A}{}_{\mu}\eta_{AB} {}^{\mathcal{X}}{}^{k}_{\theta}{}^{B}{}_{\nu}.$$

• Only certain components are relevant and non-vanishing:

$$x^2_{\theta_{00}}, \quad x^2_{\theta_{ij}}, \quad x^3_{\theta_{0i}}, \quad x^4_{\theta_{00}}, \quad x^4_{\theta_{ij}}.$$

• Post-Newtonian tetrad expansion:

$${}^{\mathcal{X}}\theta^{A}{}_{\mu} = {}^{\mathcal{X}}\overset{0}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{1}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{2}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{3}{\theta}{}^{A}{}_{\mu} + {}^{\mathcal{X}}\overset{4}{\theta}{}^{A}{}_{\mu} + \mathcal{O}(5)$$

- Background tetrad is diagonal: ${}^{\mathcal{X}}{}^{0}_{\theta}{}^{A}_{\mu} = \Delta^{A}_{\mu} = \text{diag}(1, 1, 1, 1).$
- Higher than fourth velocity order $\mathcal{O}(4)$ is not considered.
- Useful to define tetrad with lower spacetime indices:

$${}^{\mathcal{X}}{}^{k}_{\theta\mu\nu} = \Delta^{A}{}_{\mu}\eta_{AB} {}^{\mathcal{X}}{}^{k}_{\theta}{}^{B}{}_{\nu}.$$

• Only certain components are relevant and non-vanishing:

$$x^2_{\theta_{00}}, \quad x^2_{\theta_{ij}}, \quad x^3_{\theta_{0i}}, \quad x^4_{\theta_{00}}, \quad x^4_{\theta_{ij}}.$$

• Relation to metric components:

$$\begin{split} & {}^{\mathcal{X}} \overset{2}{g}_{00} = 2^{\mathcal{X}} \overset{2}{\theta}_{00} \,, \quad {}^{\mathcal{X}} \overset{2}{g}_{ij} = 2^{\mathcal{X}} \overset{2}{\theta}_{(ij)} \,, \quad {}^{\mathcal{X}} \overset{3}{g}_{0i} = 2^{\mathcal{X}} \overset{3}{\theta}_{(i0)} \,, \\ & {}^{\mathcal{X}} \overset{4}{g}_{00} = - ({}^{\mathcal{X}} \overset{2}{\theta}_{00})^{2} + 2^{\mathcal{X}} \overset{4}{\theta}_{00} \,, \quad {}^{\mathcal{X}} \overset{4}{g}_{ij} = 2^{\mathcal{X}} \overset{4}{\theta}_{(ij)} + {}^{\mathcal{X}} \overset{2}{\theta}_{ki} {}^{\mathcal{X}} \overset{2}{\theta}_{kj} \,, \end{split}$$

• Split tetrad perturbations in symmetric and antisymmetric parts:

$$\mathcal{X}_{\theta_{\mu\nu}}^{k} = \mathcal{X}_{\boldsymbol{S}_{\mu\nu}}^{k} + \mathcal{X}_{\boldsymbol{a}_{\mu\nu}}^{k}, \quad \mathcal{X}_{\boldsymbol{S}_{\mu\nu}}^{k} = \mathcal{X}_{\theta_{(\mu\nu)}}^{k}, \quad \mathcal{X}_{\boldsymbol{a}_{\mu\nu}}^{k} = \mathcal{X}_{\theta_{[\mu\nu]}}^{k}.$$

• Split tetrad perturbations in symmetric and antisymmetric parts:

$${}^{\mathcal{X}} \overset{k}{\theta}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\mathbf{S}}_{\mu\nu} + {}^{\mathcal{X}} \overset{k}{\mathbf{a}}_{\mu\nu} , \quad {}^{\mathcal{X}} \overset{k}{\mathbf{S}}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\theta}_{(\mu\nu)} , \quad {}^{\mathcal{X}} \overset{k}{\mathbf{a}}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\theta}_{[\mu\nu]} .$$

• Gauge transformation of the tetrad:

$$\begin{split} &\mathcal{V}_{\theta_{00}}^{2} = \mathcal{X}_{\theta_{00}}^{2}, \\ &\mathcal{V}_{\theta_{ij}}^{2} = \mathcal{X}_{\theta_{ij}}^{2} + \partial_{j} \xi_{i}, \\ &\mathcal{V}_{\theta_{0i}}^{3} = \mathcal{X}_{\theta_{0i}}^{3} + \partial_{i} \xi_{0}, \\ &\mathcal{V}_{\theta_{i0}}^{3} = \mathcal{X}_{\theta_{i0}}^{3} + \partial_{0} \xi_{i}^{2}, \\ &\mathcal{V}_{\theta_{00}}^{4} = \mathcal{X}_{\theta_{00}}^{4} + \partial_{0} \xi_{0}^{3} + \xi_{i} \partial_{i} \mathcal{X}_{\theta_{00}}^{2}, \\ &\mathcal{V}_{\theta_{ij}}^{4} = \mathcal{X}_{\theta_{ij}}^{4} + \partial_{j} \xi_{i}^{4} + \partial_{j} \xi_{k}^{2} \mathcal{X}_{\theta_{ik}}^{2} + \xi_{k}^{2} \partial_{k} \mathcal{X}_{\theta_{ij}}^{2} + \frac{1}{2} \partial_{j} (\xi_{k}^{2} \partial_{k} \xi_{i}). \end{split}$$

• Split tetrad perturbations in symmetric and antisymmetric parts:

$${}^{\mathcal{X}} \overset{k}{\theta}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\mathbf{S}}_{\mu\nu} + {}^{\mathcal{X}} \overset{k}{\mathbf{a}}_{\mu\nu} , \quad {}^{\mathcal{X}} \overset{k}{\mathbf{S}}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\theta}_{(\mu\nu)} , \quad {}^{\mathcal{X}} \overset{k}{\mathbf{a}}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\theta}_{[\mu\nu]} .$$

• Gauge transformation of the tetrad:

$$\begin{split} \mathcal{Y}_{\theta_{00}}^{2} &= \mathcal{X}_{\theta_{00}}^{2}, \\ \mathcal{Y}_{\theta_{ij}}^{2} &= \mathcal{X}_{\theta_{ij}}^{2} + \partial_{j} \xi_{i}, \\ \mathcal{Y}_{\theta_{0i}}^{3} &= \mathcal{X}_{\theta_{0i}}^{3} + \partial_{i} \xi_{0}^{3}, \\ \mathcal{Y}_{\theta_{i0}}^{3} &= \mathcal{X}_{\theta_{i0}}^{3} + \partial_{0} \xi_{i}^{2}, \\ \mathcal{Y}_{\theta_{i0}}^{4} &= \mathcal{X}_{\theta_{i0}}^{4} + \partial_{0} \xi_{0}^{2} + \xi_{i} \partial_{i} \mathcal{X}_{\theta_{i0}}^{2}, \\ \mathcal{Y}_{\theta_{ij}}^{4} &= \mathcal{X}_{\theta_{ij}}^{4} + \partial_{j} \xi_{i}^{4} + \partial_{j} \xi_{k}^{2} \mathcal{X}_{\theta_{ik}}^{2} + \xi_{k}^{2} \partial_{k} \mathcal{X}_{\theta_{ij}}^{2} + \frac{1}{2} \partial_{j} (\xi_{k} \partial_{k} \xi_{i}). \end{split}$$

• Use gauge transformation to eliminate certain tetrad components.

• Split tetrad perturbations in symmetric and antisymmetric parts:

$${}^{\mathcal{X}} \overset{k}{\theta}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\mathbf{S}}_{\mu\nu} + {}^{\mathcal{X}} \overset{k}{\mathbf{a}}_{\mu\nu} , \quad {}^{\mathcal{X}} \overset{k}{\mathbf{S}}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\theta}_{(\mu\nu)} , \quad {}^{\mathcal{X}} \overset{k}{\mathbf{a}}_{\mu\nu} = {}^{\mathcal{X}} \overset{k}{\theta}_{[\mu\nu]} .$$

• Gauge transformation of the tetrad:

$$\begin{split} &\mathcal{V}_{\theta_{00}}^{2} = \mathcal{X}_{\theta_{00}}^{2}, \\ &\mathcal{V}_{\theta_{ij}}^{2} = \mathcal{X}_{\theta_{ij}}^{2} + \partial_{j} \xi_{i}, \\ &\mathcal{V}_{\theta_{0i}}^{3} = \mathcal{X}_{\theta_{0i}}^{3} + \partial_{i} \xi_{0}, \\ &\mathcal{V}_{\theta_{i0}}^{3} = \mathcal{X}_{\theta_{i0}}^{3} + \partial_{0} \xi_{i}, \\ &\mathcal{V}_{\theta_{i0}}^{4} = \mathcal{X}_{\theta_{00}}^{4} + \partial_{0} \xi_{0}^{2} + \xi_{i} \partial_{i} \mathcal{X}_{\theta_{00}}^{2}, \\ &\mathcal{V}_{\theta_{ij}}^{4} = \mathcal{X}_{\theta_{ij}}^{4} + \partial_{j} \xi_{i}^{4} + \partial_{j} \xi_{k} \mathcal{X}_{\theta_{ik}}^{2} + \xi_{k}^{2} \partial_{k} \mathcal{X}_{\theta_{ij}}^{2} + \frac{1}{2} \partial_{j} (\xi_{k}^{2} \partial_{k} \xi_{i}). \end{split}$$

- Use gauge transformation to eliminate certain tetrad components.
- Gauge-invariant tetrad components:

$$\mathbf{s}_{00} = \boldsymbol{\theta}^{\star}, \quad \mathbf{s}_{0i} = \boldsymbol{\theta}_{i}^{\diamond}, \quad \mathbf{s}_{ij} = \boldsymbol{\theta}^{\bullet} \delta_{ij} + \boldsymbol{\theta}_{ij}^{\dagger}, \quad \mathbf{a}_{0i} = \partial_{i} \boldsymbol{\theta}^{\bullet} + \boldsymbol{\theta}_{i}^{\circ}, \quad \mathbf{a}_{ij} = \epsilon_{ijk} (\partial_{k} \boldsymbol{\theta}^{\bullet} + \boldsymbol{\theta}_{k}^{\Box}).$$

Gauge-invariant tetrad in arbitrary gauge

• Gauge-invariant tetrad components:

$$\boldsymbol{\theta}_{00} = \boldsymbol{\theta}^{\star}, \quad \boldsymbol{\theta}_{0i} = \partial_{i}\boldsymbol{\theta}^{\bullet} + \boldsymbol{\theta}_{i}^{\diamond} + \boldsymbol{\theta}_{i}^{\diamond}, \quad \boldsymbol{\theta}_{i0} = -\partial_{i}\boldsymbol{\theta}^{\bullet} + \boldsymbol{\theta}_{i}^{\diamond} - \boldsymbol{\theta}_{i}^{\diamond}, \quad \boldsymbol{\theta}_{ij} = \boldsymbol{\theta}^{\bullet}\delta_{ij} + \boldsymbol{\theta}_{ij}^{\dagger} + \epsilon_{ijk}(\partial_{k}\boldsymbol{\theta}^{\bullet} + \boldsymbol{\theta}_{k}^{\Box}).$$

Gauge-invariant tetrad in arbitrary gauge

• Gauge-invariant tetrad components:

$$\boldsymbol{\theta}_{00} = \boldsymbol{\theta}^{\star}, \quad \boldsymbol{\theta}_{0i} = \partial_i \boldsymbol{\theta}^{\bullet} + \boldsymbol{\theta}_i^{\diamond} + \boldsymbol{\theta}_i^{\circ}, \quad \boldsymbol{\theta}_{i0} = -\partial_i \boldsymbol{\theta}^{\bullet} + \boldsymbol{\theta}_i^{\diamond} - \boldsymbol{\theta}_i^{\circ}, \quad \boldsymbol{\theta}_{ij} = \boldsymbol{\theta}^{\bullet} \delta_{ij} + \boldsymbol{\theta}_{ij}^{\dagger} + \epsilon_{ijk} (\partial_k \boldsymbol{\theta}^{\bullet} + \boldsymbol{\theta}_k^{\Box}).$$

• Conditions imposed on components:

$$\partial^{i}\boldsymbol{\theta}_{i}^{\diamond}=\partial^{i}\boldsymbol{\theta}_{i}^{\diamond}=\partial^{i}\boldsymbol{\theta}_{i}^{\Box}=\mathbf{0}\,,\quad\partial^{i}\boldsymbol{\theta}_{ij}^{\dagger}=\mathbf{0}\,,\quad\boldsymbol{\theta}_{[ij]}^{\dagger}=\mathbf{0}\,,\quad\boldsymbol{\theta}_{ii}^{\dagger}=\mathbf{0}\,.$$

Gauge-invariant tetrad in arbitrary gauge

• Gauge-invariant tetrad components:

$$\boldsymbol{\theta}_{00} = \boldsymbol{\theta}^{\star}, \quad \boldsymbol{\theta}_{0i} = \partial_i \boldsymbol{\theta}^{\bullet} + \boldsymbol{\theta}_i^{\diamond} + \boldsymbol{\theta}_i^{\circ}, \quad \boldsymbol{\theta}_{i0} = -\partial_i \boldsymbol{\theta}^{\bullet} + \boldsymbol{\theta}_i^{\diamond} - \boldsymbol{\theta}_i^{\circ}, \quad \boldsymbol{\theta}_{ij} = \boldsymbol{\theta}^{\bullet} \delta_{ij} + \boldsymbol{\theta}_{ij}^{\dagger} + \epsilon_{ijk} (\partial_k \boldsymbol{\theta}^{\bullet} + \boldsymbol{\theta}_k^{\Box}).$$

• Conditions imposed on components:

$$\partial^{i}\boldsymbol{\theta}_{i}^{\diamond} = \partial^{i}\boldsymbol{\theta}_{i}^{\diamond} = \partial^{i}\boldsymbol{\theta}_{i}^{\Box} = \mathbf{0}, \quad \partial^{i}\boldsymbol{\theta}_{ij}^{\dagger} = \mathbf{0}, \quad \boldsymbol{\theta}_{[ij]}^{\dagger} = \mathbf{0}, \quad \boldsymbol{\theta}_{ii}^{\dagger} = \mathbf{0}.$$

• Transformation into arbitrary gauge \mathcal{X} with defining vector fields \hat{X} :

$$\begin{split} & \overset{\mathcal{X}}{\theta}_{00}^{2} = \overset{2}{\theta}^{\star} , \\ & \overset{\mathcal{X}}{\theta}_{ij}^{2} = \overset{2}{\theta}^{\bullet} \delta_{ij} + \overset{2}{\theta}_{ij}^{\dagger} + \epsilon_{ijk} (\partial_{k} \overset{2}{\theta}^{\bullet} + \overset{2}{\theta}_{k}^{\Box}) + \partial_{i} \partial_{j} \overset{2}{X}^{\bullet} + \partial_{j} \overset{2}{X}^{\circ} , \\ & \overset{\mathcal{X}}{\theta}_{0i}^{3} = \partial_{i} \overset{3}{\theta}^{\bullet} + \overset{3}{\theta}_{i}^{\circ} + \overset{3}{\theta}_{i}^{\circ} + \partial_{i} \overset{3}{X}^{\star} , \\ & \overset{\mathcal{X}}{\theta}_{i0}^{3} = -\partial_{i} \overset{3}{\theta}^{\bullet} + \overset{3}{\theta}_{i}^{\circ} - \overset{3}{\theta}_{i}^{\circ} + \partial_{0} \partial_{i} \overset{2}{X}^{\bullet} + \partial_{0} \overset{2}{X}^{\circ} , \\ & \overset{\mathcal{X}}{\theta}_{00}^{4} = \overset{4}{\theta}^{\star} + \partial_{0} \overset{3}{X}^{\star} + \partial_{i} \overset{2}{\theta}^{\star} (\partial_{i} \overset{2}{X}^{\bullet} + \overset{2}{X}_{i}^{\circ}) , \\ & \overset{\mathcal{X}}{\theta}_{ij}^{4} = \overset{4}{\theta}^{\bullet} \delta_{ij} + \overset{4}{\theta}_{ij}^{\dagger} + \epsilon_{ijk} (\partial_{k} \overset{4}{\theta}^{\bullet} + \overset{4}{\theta}_{k}^{\Box}) + \partial_{i} \partial_{j} \overset{X}{X}^{\bullet} + \partial_{j} \overset{X}{X}^{\circ} + \mathcal{O}(2) \cdot \mathcal{O}(2) . \end{split}$$
• Compare gauge-invariant metric with metric in standard PPN gauge \mathcal{P} .

- Compare gauge-invariant metric with metric in standard PPN gauge \mathcal{P} .
- ⇒ Gauge-invariant tetrad components in terms of PPN potentials and parameters:

$$\hat{\theta}^{\star} = \mathbf{U}, \quad \hat{\theta}^{\bullet} = \gamma \mathbf{U}, \quad \hat{\theta}^{\dagger}_{ij} = 0, \quad \hat{\theta}^{\circ}_{i} = -\frac{1}{2} \left(1 + \gamma + \frac{\alpha_1}{4} \right) \left(\mathbf{V}_i + \mathbf{W}_i \right),$$

$$\hat{\theta}^{\star} = \frac{1}{4} \left(2 - \alpha_1 + 2\alpha_2 + 2\alpha_3 \right) \mathbf{\Phi}_1 + \left(1 + 3\gamma - 2\beta + \zeta_2 + \xi \right) \mathbf{\Phi}_2 + \left(1 + \zeta_3 \right) \mathbf{\Phi}_3 + \left(3\gamma + 3\zeta_4 - 2\xi \right) \mathbf{\Phi}_4 \\ -\xi \mathbf{\Phi}_W + \frac{1}{2} \left(1 - 2\beta \right) \mathbf{U}^2 + \frac{1}{4} \left(2 + 4\gamma + \alpha_1 - 2\alpha_2 \right) \mathfrak{A} + \frac{1}{4} \left(2 + 4\gamma + \alpha_1 - 2\alpha_2 + 2\zeta_1 - 4\xi \right) \mathfrak{B}.$$

- Compare gauge-invariant metric with metric in standard PPN gauge \mathcal{P} .
- ⇒ Gauge-invariant tetrad components in terms of PPN potentials and parameters:

$$\hat{\theta}^{*} = \mathbf{U}, \quad \hat{\theta}^{\bullet} = \gamma \mathbf{U}, \quad \hat{\theta}^{\dagger}_{ij} = 0, \quad \hat{\theta}^{\circ}_{i} = -\frac{1}{2} \left(1 + \gamma + \frac{\alpha_{1}}{4} \right) (\mathbf{V}_{i} + \mathbf{W}_{i}),$$

$$\hat{\theta}^{*} = \frac{1}{4} (2 - \alpha_{1} + 2\alpha_{2} + 2\alpha_{3}) \mathbf{\Phi}_{1} + (1 + 3\gamma - 2\beta + \zeta_{2} + \xi) \mathbf{\Phi}_{2} + (1 + \zeta_{3}) \mathbf{\Phi}_{3} + (3\gamma + 3\zeta_{4} - 2\xi) \mathbf{\Phi}_{4} \\ -\xi \mathbf{\Phi}_{W} + \frac{1}{2} (1 - 2\beta) \mathbf{U}^{2} + \frac{1}{4} (2 + 4\gamma + \alpha_{1} - 2\alpha_{2}) \mathfrak{A} + \frac{1}{4} (2 + 4\gamma + \alpha_{1} - 2\alpha_{2} + 2\zeta_{1} - 4\xi) \mathfrak{B}.$$

• PPN parameters can be obtained directly from solution for tetrad perturbations.

Introduction

- 2 Gauge-invariant higher order perturbations
- Parametrized post-Newtonian formalism
- 4 Gauge-invariant PPN formalism
- 5 Tetrad and teleparallel PPN formalisms
- Example: PPN limit of scalar-tensor gravity

7 Conclusion

Action and field equations

Action of scalar-tensor gravity with massless scalar field: [Nordtvedt '70]

$$S = \frac{1}{2\kappa^2} \int_M d^4x \sqrt{-g} \left(\psi R - \frac{\omega(\psi)}{\psi} \partial_\rho \psi \partial^\rho \psi \right) + S_m[g_{\mu\nu}, \chi].$$

• Action of scalar-tensor gravity with massless scalar field: [Nordtvedt '70]

$$S = \frac{1}{2\kappa^2} \int_M d^4 x \sqrt{-g} \left(\psi R - \frac{\omega(\psi)}{\psi} \partial_\rho \psi \partial^\rho \psi \right) + S_m[g_{\mu\nu}, \chi].$$

• Free function $\omega(\psi)$ of the scalar field ψ .

• Action of scalar-tensor gravity with massless scalar field: [Nordtvedt '70]

$$S = \frac{1}{2\kappa^2} \int_M d^4 x \sqrt{-g} \left(\psi R - \frac{\omega(\psi)}{\psi} \partial_\rho \psi \partial^\rho \psi \right) + S_m[g_{\mu\nu}, \chi].$$

- Free function $\omega(\psi)$ of the scalar field ψ .
- Work in Jordan conformal frame: no direct coupling between matter and scalar field.

• Action of scalar-tensor gravity with massless scalar field: [Nordtvedt '70]

$$S = \frac{1}{2\kappa^2} \int_M d^4 x \sqrt{-g} \left(\psi R - \frac{\omega(\psi)}{\psi} \partial_\rho \psi \partial^\rho \psi \right) + S_m[g_{\mu\nu}, \chi].$$

- Free function $\omega(\psi)$ of the scalar field ψ .
- Work in Jordan conformal frame: no direct coupling between matter and scalar field.
 Field equations:

$$\begin{split} \psi R_{\mu\nu} - \nabla_{\mu} \partial_{\nu} \psi - \frac{\omega}{\psi} \partial_{\mu} \psi \partial_{\nu} \psi + \frac{g_{\mu\nu}}{4\omega + 6} \frac{d\omega}{d\psi} \partial_{\rho} \psi \partial^{\rho} \psi = \kappa^2 \left(T_{\mu\nu} - \frac{\omega + 1}{2\omega + 3} g_{\mu\nu} T \right) , \\ (2\omega + 3) \Box \psi + \frac{d\omega}{d\psi} \partial_{\rho} \psi \partial^{\rho} \psi = \kappa^2 T . \end{split}$$

• Consider arbitrary gauge \mathcal{X} to pull equations and fields to reference spacetime M_0 .

- Consider arbitrary gauge \mathcal{X} to pull equations and fields to reference spacetime M_0 .
- Relevant components of scalar field: ${}^{\mathcal{X}} \overset{0}{\psi} = \Psi, {}^{\mathcal{X}} \overset{2}{\psi}, {}^{\mathcal{X}} \overset{4}{\psi}.$

- Consider arbitrary gauge \mathcal{X} to pull equations and fields to reference spacetime M_0 .
- Relevant components of scalar field: ${}^{\mathcal{X}} \overset{0}{\psi} = \Psi, {}^{\mathcal{X}} \overset{2}{\psi}, {}^{\mathcal{X}} \overset{4}{\psi}.$
- Cosmological background value Ψ assumed to be constant.

- Consider arbitrary gauge \mathcal{X} to pull equations and fields to reference spacetime M_0 .
- Relevant components of scalar field: ${}^{\mathcal{X}} \overset{0}{\psi} = \Psi, {}^{\mathcal{X}} \overset{2}{\psi}, {}^{\mathcal{X}} \overset{4}{\psi}.$
- Cosmological background value Ψ assumed to be constant.
- Relation to gauge-invariant scalar field perturbations $\dot{\vec{\psi}}$ and $\dot{\vec{\psi}}$:

$$\mathcal{X}_{\psi}^{2} = \overset{2}{\psi}, \quad \mathcal{X}_{\psi}^{4} = \overset{4}{\psi} + (\partial_{i} \overset{2}{X}^{\bullet} + \overset{2}{X}_{i}^{\diamond})\overset{2}{\psi}_{,i}.$$

- Consider arbitrary gauge \mathcal{X} to pull equations and fields to reference spacetime M_0 .
- Relevant components of scalar field: ${}^{\mathcal{X}} \overset{0}{\psi} = \Psi, {}^{\mathcal{X}} \overset{2}{\psi}, {}^{\mathcal{X}} \overset{4}{\psi}.$
- Cosmological background value Ψ assumed to be constant.
- Relation to gauge-invariant scalar field perturbations $\overset{^2}{\psi}$ and $\overset{^2}{\psi}$:

$$\mathcal{X}_{\psi}^{2} = \overset{2}{\psi}, \quad \mathcal{X}_{\psi}^{4} = \overset{4}{\psi} + (\partial_{i} \overset{2}{X} \bullet + \overset{2}{X}_{i}^{\diamond}) \overset{2}{\psi}_{,i}.$$

• Taylor expansion of free function ω around cosmological background value:

$$\omega_0 = \omega(\Psi), \quad \omega_1 = \omega'(\Psi).$$

- Consider arbitrary gauge \mathcal{X} to pull equations and fields to reference spacetime M_0 .
- Relevant components of scalar field: ${}^{\mathcal{X}} \overset{0}{\psi} = \Psi, {}^{\mathcal{X}} \overset{2}{\psi}, {}^{\mathcal{X}} \overset{4}{\psi}.$
- Cosmological background value Ψ assumed to be constant.
- Relation to gauge-invariant scalar field perturbations $\overset{^2}{\psi}$ and $\overset{^2}{\psi}$:

$${}^{\mathcal{X}} \overset{2}{\psi} = \overset{2}{\psi}, \quad {}^{\mathcal{X}} \overset{4}{\psi} = \overset{4}{\psi} + (\partial_i \overset{2}{X} \bullet + \overset{2}{X} \overset{\circ}{}_i) \overset{2}{\psi}_{,i}.$$

• Taylor expansion of free function ω around cosmological background value:

$$\omega_0 = \omega(\Psi), \quad \omega_1 = \omega'(\Psi).$$

⇒ Zeroth order ${}^{\mathcal{X}} \overset{0}{\psi} = \Psi, {}^{\mathcal{X}} \overset{0}{g}_{\mu\nu} = \eta_{\mu\nu}$ solves (vacuum) field equations.

• Time component of second-order metric equation:

$$-\frac{1}{2}\Psi \bigtriangleup^{\mathcal{X}} \overset{2}{g}_{00} = \kappa^{2} \left[\overset{\mathcal{X}}{T} \overset{2}{T}_{00} + \frac{\omega_{0}+1}{2\omega_{0}+3} (\overset{\mathcal{X}}{T} \overset{2}{T}_{ii} - \overset{\mathcal{X}}{T} \overset{2}{T}_{00}) \right].$$

• Time component of second-order metric equation:

$$-\frac{1}{2}\Psi \bigtriangleup^{\mathcal{X}} \overset{2}{g}_{00} = \kappa^{2} \left[\overset{\mathcal{X}}{\mathcal{T}} \overset{2}{T}_{00} + \frac{\omega_{0}+1}{2\omega_{0}+3} (\overset{\mathcal{X}}{\mathcal{T}} \overset{2}{I}_{ii} - \overset{\mathcal{X}}{\mathcal{T}} \overset{2}{T}_{00}) \right].$$

• Substitute metric by gauge-invariant component $\chi^2 g_{00} = \hat{\mathbf{g}}^*$.

• Time component of second-order metric equation:

$$-\frac{1}{2}\Psi \bigtriangleup^{\mathcal{X}} \overset{2}{g}_{00} = \kappa^{2} \left[\overset{\mathcal{X}}{\mathcal{T}} \overset{2}{T}_{00} + \frac{\omega_{0}+1}{2\omega_{0}+3} (\overset{\mathcal{X}}{\mathcal{T}} \overset{2}{I}_{ii} - \overset{\mathcal{X}}{\mathcal{T}} \overset{2}{T}_{00}) \right].$$

• Substitute metric by gauge-invariant component $\chi^2 g_{00} = \hat{\mathbf{g}}^{\star}$.

• Substitute energy-momentum tensor:

$$\mathcal{X}^{2} T_{00} = \overset{2}{\mathbf{T}}_{00} = \overset{2}{\mathbf{T}}^{\star} = \boldsymbol{\rho}, \quad \mathcal{X}^{2} T_{ii} = \overset{2}{\mathbf{T}}_{ii} = 3\overset{2}{\mathbf{T}}^{\bullet} = 0.$$

• Time component of second-order metric equation:

$$-\frac{1}{2}\Psi \bigtriangleup^{\mathcal{X}} \overset{2}{g}_{00} = \kappa^{2} \left[\overset{\mathcal{X}}{\mathcal{T}} \overset{2}{T}_{00} + \frac{\omega_{0}+1}{2\omega_{0}+3} (\overset{\mathcal{X}}{\mathcal{T}} \overset{2}{_{ii}} - \overset{\mathcal{X}}{\mathcal{T}} \overset{2}{_{00}}) \right].$$

- Substitute metric by gauge-invariant component $\chi^2_{g_{00}} = \hat{\mathbf{g}}^*$.
- Substitute energy-momentum tensor:

$${}^{\mathcal{X}} {}^{2}_{T_{00}} = {}^{2}_{\mathbf{T}_{00}} = {}^{2}_{\mathbf{T}^{\star}} = \boldsymbol{\rho} \,, \qquad {}^{\mathcal{X}} {}^{2}_{T_{ii}} = {}^{2}_{\mathbf{T}_{ii}} = {}^{2}_{\mathbf{T}^{\bullet}} = {}^{2}_{\mathbf{T}^{\bullet}} = {}^{0}_{\mathbf{T}^{\bullet}} \,. \label{eq:constraint}$$

⇒ Equation becomes fully gauge-invariant and can be solved:

$$-\frac{1}{2}\Psi \bigtriangleup \overset{2}{\mathbf{g}}^{\star} = \kappa^{2}\frac{\omega_{0}+2}{2\omega_{0}+3}\rho \quad \Rightarrow \quad \overset{2}{\mathbf{g}}^{\star} = \frac{\kappa^{2}}{2\pi\Psi}\frac{\omega_{0}+2}{2\omega_{0}+3}\mathbf{U}.$$

• Time component of second-order metric equation:

$$-\frac{1}{2}\Psi \bigtriangleup^{\mathcal{X}} \overset{2}{g}_{00} = \kappa^{2} \left[\overset{\mathcal{X}}{} \overset{2}{T}_{00} + \frac{\omega_{0}+1}{2\omega_{0}+3} (\overset{\mathcal{X}}{} \overset{2}{T}_{ii} - \overset{\mathcal{X}}{} \overset{2}{T}_{00}) \right].$$

• Substitute metric by gauge-invariant component $\chi^2_{g_{00}} = \mathbf{g}^2_{\mathbf{x}}$.

• Substitute energy-momentum tensor:

$${}^{\mathcal{X}} {}^{2}_{T_{00}} = {}^{2}_{\mathbf{T}_{00}} = {}^{2}_{\mathbf{T}^{\star}} = \boldsymbol{\rho} \,, \qquad {}^{\mathcal{X}} {}^{2}_{T_{ii}} = {}^{2}_{\mathbf{T}_{ii}} = {}^{2}_{\mathbf{T}^{\bullet}} = {}^{2}_{\mathbf{T}^{\bullet}} = {}^{0}_{\mathbf{T}^{\bullet}} \,.$$

⇒ Equation becomes fully gauge-invariant and can be solved:

$$-\frac{1}{2}\Psi \bigtriangleup \overset{2}{\mathbf{g}}^{\star} = \kappa^{2}\frac{\omega_{0}+2}{2\omega_{0}+3}\rho \quad \Rightarrow \quad \overset{2}{\mathbf{g}}^{\star} = \frac{\kappa^{2}}{2\pi\Psi}\frac{\omega_{0}+2}{2\omega_{0}+3}\mathbf{U}.$$

• Normalization $\hat{\mathbf{g}}^{\star} = 2\mathbf{U}$ of the gravitational constant:

$$\kappa^2 = 4\pi\Psi \frac{2\omega_0+3}{\omega_0+2} \,.$$

$$(2\omega_0+3) \bigtriangleup^{\mathcal{X}} \psi^2 = \kappa^2 ({}^{\mathcal{X}} {}^2_{ii} - {}^{\mathcal{X}} {}^2_{00}).$$

$$(2\omega_0+3) \bigtriangleup^{\mathcal{X}} \overset{2}{\psi} = \kappa^2 \big(\overset{\mathcal{X}}{T} \overset{2}{T}_{ij} - \overset{\mathcal{X}}{T} \overset{2}{T}_{00} \big) \,.$$

$$(2\omega_0+3) \bigtriangleup \psi^2 = -\kappa^2 \rho \quad \Rightarrow \quad \psi^2 = \frac{\kappa^2}{4\pi(2\omega_0+3)} \mathbf{U} = \frac{\Psi}{\omega_0+2} \mathbf{U}.$$

$$(2\omega_0+3) \bigtriangleup^{\mathcal{X}} \frac{^2}{\psi} = \kappa^2 ({}^{\mathcal{X}} \frac{^2}{T}_{ii} - {}^{\mathcal{X}} \frac{^2}{T}_{00}).$$

$$(2\omega_0+3) \bigtriangleup \psi^2 = -\kappa^2 \rho \implies \psi^2 = \frac{\kappa^2}{4\pi(2\omega_0+3)} \mathbf{U} = \frac{\Psi}{\omega_0+2} \mathbf{U}.$$

- Substitutions applied here:
 - Replaced scalar field ${}^{\mathcal{X}} \overset{^{2}}{\psi} = \overset{^{2}}{\psi}$ with gauge-invariant term.

$$(2\omega_0+3) \bigtriangleup^{\mathcal{X}} \psi^2 = \kappa^2 (\frac{\chi^2}{T_{ii}} - \frac{\chi^2}{T_{00}}).$$

$$(2\omega_0+3) \bigtriangleup \psi^2 = -\kappa^2 \rho \implies \psi^2 = \frac{\kappa^2}{4\pi(2\omega_0+3)} \mathbf{U} = \frac{\Psi}{\omega_0+2} \mathbf{U}.$$

- Substitutions applied here:
 - Replaced scalar field ${}^{\mathcal{X}} \overset{2}{\psi} = \overset{2}{\psi}$ with gauge-invariant term.
 - Substituted energy-momentum tensor as for the Newtonian limit before.

$$(2\omega_0+3) \bigtriangleup^{\mathcal{X}} \overset{^2}{\psi} = \kappa^2 \big(\overset{\mathcal{X}}{T} \overset{^2}{_{ii}} - \overset{\mathcal{X}}{\mathcal{X}} \overset{^2}{_{T}} _{00} \big) \,.$$

$$(2\omega_0+3) \bigtriangleup \psi^2 = -\kappa^2 \rho \quad \Rightarrow \quad \psi^2 = \frac{\kappa^2}{4\pi(2\omega_0+3)} \mathbf{U} = \frac{\Psi}{\omega_0+2} \mathbf{U}.$$

- Substitutions applied here:
 - Replaced scalar field ${}^{\mathcal{X}} \overset{^{2}}{\psi} = \overset{^{2}}{\psi}$ with gauge-invariant term.
 - Substituted energy-momentum tensor as for the Newtonian limit before.
 - Used normalization of the gravitational constant to substitute κ^2 .

-

• Spatial components of second-order metric equations:

$$-\frac{1}{2}\Psi\left(\bigtriangleup^{\mathcal{X}}\overset{2}{g}_{ij}-\overset{\mathcal{X}}{\mathcal{Y}}\overset{2}{g}_{00,ij}+\overset{\mathcal{X}}{\mathcal{Y}}\overset{2}{g}_{kk,ij}-\overset{\mathcal{X}}{\mathcal{Y}}\overset{2}{g}_{ik,jk}-\overset{\mathcal{X}}{\mathcal{Y}}\overset{2}{g}_{jk,ik}\right)-\overset{\mathcal{X}}{\mathcal{Y}}\overset{2}{\psi}_{,ij}=\kappa^{2}\left[\overset{\mathcal{X}}{\mathcal{T}}\overset{2}{ij}-\frac{\omega_{0}+1}{2\omega_{0}+3}\delta_{ij}(\overset{\mathcal{X}}{\mathcal{T}}\overset{2}{ii}-\overset{\mathcal{X}}{\mathcal{T}}\overset{2}{0})\right].$$

• Spatial components of second-order metric equations:

$$-\frac{1}{2}\Psi\left(\bigtriangleup^{\mathcal{X}}\overset{2}{g}_{ij}-\overset{\mathcal{X}}{\mathcal{Y}}\overset{2}{g}_{00,ij}+\overset{\mathcal{X}}{\mathcal{Y}}\overset{2}{g}_{kk,ij}-\overset{\mathcal{X}}{\mathcal{Y}}\overset{2}{g}_{ik,jk}-\overset{\mathcal{X}}{\mathcal{Y}}\overset{2}{g}_{jk,ik}\right)-\overset{\mathcal{X}}{\mathcal{V}}\overset{2}{\psi}_{,ij}=\kappa^{2}\left[\overset{\mathcal{X}}{\mathcal{T}}\overset{2}{ij}-\frac{\omega_{0}+1}{2\omega_{0}+3}\delta_{ij}(\overset{\mathcal{X}}{\mathcal{T}}\overset{2}{ii}-\overset{\mathcal{X}}{\mathcal{T}}\overset{2}{0}_{0})\right].$$

• Substitute gauge-invariant variables:

$$-\frac{1}{2}\Psi(\delta_{ij} \bigtriangleup \overset{2}{\mathbf{g}}^{\bullet} + \overset{2}{\mathbf{g}}_{,ij}^{\bullet} - \overset{2}{\mathbf{g}}_{,ij}^{\star} + \bigtriangleup \overset{2}{\mathbf{g}}_{ij}^{\dagger}) - \overset{2}{\psi}_{,ij} = \kappa^{2}\frac{\omega_{0}+1}{2\omega_{0}+3}\delta_{ij}\boldsymbol{\rho}.$$

• Spatial components of second-order metric equations:

$$-\frac{1}{2}\Psi\left(\triangle^{\mathcal{X}}\overset{2}{g}_{ij}-\overset{\mathcal{X}}{\mathcal{G}}\overset{2}{g}_{00,ij}+\overset{\mathcal{X}}{\mathcal{G}}\overset{2}{g}_{kk,ij}-\overset{\mathcal{X}}{\mathcal{G}}\overset{2}{g}_{ik,jk}-\overset{\mathcal{X}}{\mathcal{G}}\overset{2}{g}_{jk,ik}\right)-\overset{\mathcal{X}}{\mathcal{V}}\overset{2}{\psi}_{,ij}=\kappa^{2}\left[\overset{\mathcal{X}}{\mathcal{T}}\overset{2}{ij}-\frac{\omega_{0}+1}{2\omega_{0}+3}\delta_{ij}(\overset{\mathcal{X}}{\mathcal{T}}\overset{2}{i}-\overset{\mathcal{X}}{\mathcal{T}}\overset{2}{0}_{0})\right]$$

Substitute gauge-invariant variables:

$$-\frac{1}{2}\Psi(\delta_{ij}\bigtriangleup \overset{2}{\mathbf{g}}^{\bullet}+\overset{2}{\mathbf{g}}_{,ij}^{\bullet}-\overset{2}{\mathbf{g}}_{,ij}^{*}+\bigtriangleup \overset{2}{\mathbf{g}}_{ij}^{\dagger})-\overset{2}{\psi}_{,ij}=\kappa^{2}\frac{\omega_{0}+1}{2\omega_{0}+3}\delta_{ij}\rho.$$

- Canonical differential decomposition of gauge-invariant equations:
 - Trace part yields solution for $\hat{\mathbf{g}}^{\bullet}$:

$$-\frac{1}{2}\Psi(4\bigtriangleup \overset{2}{\mathbf{g}}^{\bullet}-\bigtriangleup \overset{2}{\mathbf{g}}^{\star})-\bigtriangleup \overset{2}{\psi}=3\kappa^{2}\frac{\omega_{0}+1}{2\omega_{0}+3}\rho \quad \Rightarrow \quad \overset{2}{\mathbf{g}}^{\bullet}=\frac{\kappa^{2}}{2\pi\Psi}\frac{\omega_{0}+1}{2\omega_{0}+3}\mathbf{U}=2\frac{\omega_{0}+1}{\omega_{0}+2}\mathbf{U}.$$

• Spatial components of second-order metric equations:

$$-\frac{1}{2}\Psi\left(\triangle^{\mathcal{X}}\overset{2}{g}_{ij}-\overset{\mathcal{X}}{\mathcal{G}}\overset{2}{g}_{00,ij}+\overset{\mathcal{X}}{\mathcal{G}}\overset{2}{g}_{kk,ij}-\overset{\mathcal{X}}{\mathcal{G}}\overset{2}{g}_{ik,jk}-\overset{\mathcal{X}}{\mathcal{G}}\overset{2}{g}_{jk,ik}\right)-\overset{\mathcal{X}}{\mathcal{V}}\overset{2}{\psi}_{,ij}=\kappa^{2}\left[\overset{\mathcal{X}}{\mathcal{T}}\overset{2}{ij}-\frac{\omega_{0}+1}{2\omega_{0}+3}\delta_{ij}(\overset{\mathcal{X}}{\mathcal{T}}\overset{2}{i}-\overset{\mathcal{X}}{\mathcal{T}}\overset{2}{0}_{0})\right]$$

Substitute gauge-invariant variables:

$$-\frac{1}{2}\Psi(\delta_{ij}\bigtriangleup \overset{2}{\mathbf{g}}^{\bullet}+\overset{2}{\mathbf{g}}_{,ij}^{\bullet}-\overset{2}{\mathbf{g}}_{,ij}^{*}+\bigtriangleup \overset{2}{\mathbf{g}}_{ij}^{\dagger})-\overset{2}{\psi}_{,ij}=\kappa^{2}\frac{\omega_{0}+1}{2\omega_{0}+3}\delta_{ij}\rho.$$

- Canonical differential decomposition of gauge-invariant equations:
 - Trace part yields solution for $\hat{\mathbf{g}}^{\bullet}$:

$$-\frac{1}{2}\Psi(4\bigtriangleup \overset{2}{\mathbf{g}}^{\bullet}-\bigtriangleup \overset{2}{\mathbf{g}}^{\star})-\bigtriangleup \overset{2}{\psi}=3\kappa^{2}\frac{\omega_{0}+1}{2\omega_{0}+3}\rho \quad \Rightarrow \quad \overset{2}{\mathbf{g}}^{\bullet}=\frac{\kappa^{2}}{2\pi\Psi}\frac{\omega_{0}+1}{2\omega_{0}+3}\mathbf{U}=2\frac{\omega_{0}+1}{\omega_{0}+2}\mathbf{U}.$$

⇒ Trace-free second derivative part is satisfied by preceding solutions:

$$- \bigtriangleup_{ij} \left[\frac{1}{2} \Psi (\overset{2}{\mathbf{g}} \bullet - \overset{2}{\mathbf{g}} \star) + \overset{2}{\psi} \right] = 0.$$

• Spatial components of second-order metric equations:

$$-\frac{1}{2}\Psi\left(\triangle^{\mathcal{X}}\overset{2}{g}_{ij}-\overset{\mathcal{X}}{\mathcal{G}}^{2}_{00,ij}+\overset{\mathcal{X}}{\mathcal{G}}^{2}_{kk,ij}-\overset{\mathcal{X}}{\mathcal{G}}^{2}_{ik,jk}-\overset{\mathcal{X}}{\mathcal{G}}^{2}_{jk,ik}\right)-\overset{\mathcal{X}}{\mathcal{V}}\overset{2}{\psi}_{,ij}=\kappa^{2}\left[\overset{\mathcal{X}}{\mathcal{T}}^{2}_{ij}-\frac{\omega_{0}+1}{2\omega_{0}+3}\delta_{ij}(\overset{\mathcal{X}}{\mathcal{T}}^{2}_{ii}-\overset{\mathcal{X}}{\mathcal{T}}^{2}_{00})\right]$$

Substitute gauge-invariant variables:

$$-\frac{1}{2}\Psi(\delta_{ij}\bigtriangleup \overset{2}{\mathbf{g}}^{\bullet}+\overset{2}{\mathbf{g}}_{,ij}^{\bullet}-\overset{2}{\mathbf{g}}_{,ij}^{\star}+\bigtriangleup \overset{2}{\mathbf{g}}_{ij}^{\dagger})-\overset{2}{\psi}_{,ij}=\kappa^{2}\frac{\omega_{0}+1}{2\omega_{0}+3}\delta_{ij}\boldsymbol{\rho}.$$

- Canonical differential decomposition of gauge-invariant equations:
 - Trace part yields solution for $\hat{\mathbf{g}}^{\bullet}$:

$$-\frac{1}{2}\Psi(4\bigtriangleup \overset{2}{\mathbf{g}}^{\bullet}-\bigtriangleup \overset{2}{\mathbf{g}}^{\star})-\bigtriangleup \overset{2}{\psi}=3\kappa^{2}\frac{\omega_{0}+1}{2\omega_{0}+3}\rho \quad \Rightarrow \quad \overset{2}{\mathbf{g}}^{\bullet}=\frac{\kappa^{2}}{2\pi\Psi}\frac{\omega_{0}+1}{2\omega_{0}+3}\mathbf{U}=2\frac{\omega_{0}+1}{\omega_{0}+2}\mathbf{U}.$$

⇒ Trace-free second derivative part is satisfied by preceding solutions:

$$- \bigtriangleup_{ij} \left[\frac{1}{2} \Psi (\overset{2}{\mathbf{g}} \bullet - \overset{2}{\mathbf{g}} \star) + \overset{2}{\psi} \right] = \mathbf{0} \,.$$

• Trace-free, divergence-free part yields trivial solution: $\triangle \hat{\mathbf{g}}_{ij}^{\dagger} = 0 \Rightarrow \hat{\mathbf{g}}_{ij}^{\dagger} = 0$.

• Spatial components of second-order metric equations:

$$-\frac{1}{2}\Psi\left(\triangle^{\mathcal{X}}\overset{2}{g}_{ij}-\overset{\mathcal{X}}{\mathcal{G}}\overset{2}{g}_{00,ij}+\overset{\mathcal{X}}{\mathcal{G}}\overset{2}{g}_{kk,ij}-\overset{\mathcal{X}}{\mathcal{G}}\overset{2}{g}_{ik,jk}-\overset{\mathcal{X}}{\mathcal{G}}\overset{2}{g}_{jk,ik}\right)-\overset{\mathcal{X}}{\mathcal{V}}\overset{2}{\psi}_{,ij}=\kappa^{2}\left[\overset{\mathcal{X}}{\mathcal{T}}\overset{2}{ij}-\frac{\omega_{0}+1}{2\omega_{0}+3}\delta_{ij}(\overset{\mathcal{X}}{\mathcal{T}}\overset{2}{ii}-\overset{\mathcal{X}}{\mathcal{T}}\overset{2}{f}_{00})\right]$$

Substitute gauge-invariant variables:

$$-\frac{1}{2}\Psi(\delta_{ij}\bigtriangleup \overset{2}{\mathbf{g}}^{\bullet}+\overset{2}{\mathbf{g}}_{,ij}^{\bullet}-\overset{2}{\mathbf{g}}_{,ij}^{\star}+\bigtriangleup \overset{2}{\mathbf{g}}_{ij}^{\dagger})-\overset{2}{\psi}_{,ij}=\kappa^{2}\frac{\omega_{0}+1}{2\omega_{0}+3}\delta_{ij}\rho.$$

- Canonical differential decomposition of gauge-invariant equations:
 - Trace part yields solution for ²/_g•:

$$-\frac{1}{2}\Psi(4\bigtriangleup \overset{2}{\mathbf{g}}^{\bullet}-\bigtriangleup \overset{2}{\mathbf{g}}^{\star})-\bigtriangleup \overset{2}{\psi}=3\kappa^{2}\frac{\omega_{0}+1}{2\omega_{0}+3}\rho \quad \Rightarrow \quad \overset{2}{\mathbf{g}}^{\bullet}=\frac{\kappa^{2}}{2\pi\Psi}\frac{\omega_{0}+1}{2\omega_{0}+3}\mathbf{U}=2\frac{\omega_{0}+1}{\omega_{0}+2}\mathbf{U}.$$

⇒ Trace-free second derivative part is satisfied by preceding solutions:

$$- \bigtriangleup_{ij} \left[\frac{1}{2} \Psi (\overset{2}{\mathbf{g}} \bullet - \overset{2}{\mathbf{g}} \star) + \overset{2}{\psi} \right] = \mathbf{0} \,.$$

- Trace-free, divergence-free part yields trivial solution: $\triangle \hat{\mathbf{g}}_{ij}^{\dagger} = 0 \Rightarrow \hat{\mathbf{g}}_{ij}^{\dagger} = 0$.
- Pure vector divergence part $\partial_{(i} \mathbf{E}_{j)}$ does not appear.

• Metric equations at third velocity order:

$$-\frac{1}{2}\Psi(\triangle^{\mathcal{X}}\overset{3}{g}_{0i}-\overset{\mathcal{X}}{g}\overset{3}{g}_{0j,ij}+\overset{\mathcal{X}}{z}\overset{2}{g}_{jj,0i}-\overset{\mathcal{X}}{z}\overset{2}{g}_{ij,0j})-\overset{\mathcal{X}}{z}\overset{2}{\psi}_{,0i}=\kappa^{2\,\mathcal{X}}\overset{3}{T}_{0i}\,.$$

• Metric equations at third velocity order:

$$-\frac{1}{2}\Psi(\triangle^{\mathcal{X}}\overset{3}{g}_{0i}-\overset{\mathcal{X}}{g}\overset{3}{g}_{0j,ij}+\overset{\mathcal{X}}{g}\overset{2}{g}_{jj,0i}-\overset{\mathcal{X}}{\chi}\overset{2}{g}_{ij,0j})-\overset{\mathcal{X}}{\psi}^{2}_{,0i}=\kappa^{2\,\mathcal{X}}\overset{3}{T}_{0i}.$$

• Substitute energy-momentum tensor:

$$\mathcal{X}\overset{3}{T}_{0i} = \overset{3}{\mathbf{T}}_{0i} = \overset{3}{\mathbf{T}}_{i}^{\diamond} + \partial_{i}\overset{3}{\mathbf{T}}^{\diamond} = -\boldsymbol{\rho}\mathbf{v}_{i}.$$

• Metric equations at third velocity order:

$$-\frac{1}{2}\Psi(\triangle^{\mathcal{X}}\overset{3}{g}_{0i}-\overset{\mathcal{X}}{g}\overset{3}{g}_{0j,ij}+\overset{\mathcal{X}}{\xi}\overset{2}{g}_{jj,0i}-\overset{\mathcal{X}}{\xi}\overset{2}{g}_{ij,0j})-\overset{\mathcal{X}}{\psi}^{2}_{,0i}=\kappa^{2\,\mathcal{X}}\overset{3}{T}_{0i}.$$

• Substitute energy-momentum tensor:

$${}^{\mathcal{X}}\overset{3}{T}_{0i}=\overset{3}{\mathbf{T}}_{0i}=\overset{3}{\mathbf{T}}_{i}^{\diamond}+\partial_{i}\overset{3}{\mathbf{T}}^{\diamond}=-\boldsymbol{\rho}\mathbf{v}_{i}\,.$$

• Gauge-invariant field equation:

$$-\frac{1}{2}\Psi(\triangle \mathbf{\ddot{g}}_{i}^{\diamond}+2\mathbf{\ddot{g}}_{,0i}^{\bullet})-\mathbf{\ddot{\psi}}_{,0i}=\kappa^{2}(\mathbf{\ddot{T}}_{i}^{\diamond}+\partial_{i}\mathbf{\ddot{T}}^{\bullet})=-\kappa^{2}\rho\mathbf{v}_{i}.$$

• Metric equations at third velocity order:

$$-\frac{1}{2}\Psi(\bigtriangleup^{\mathcal{X}}\overset{3}{g}_{0i}-\overset{\mathcal{X}}{g}\overset{3}{g}_{0j,ij}+\overset{\mathcal{X}}{z}\overset{2}{g}_{jj,0i}-\overset{\mathcal{X}}{z}\overset{2}{g}_{ij,0j})-\overset{\mathcal{X}}{\psi}^{2}_{,0i}=\kappa^{2\mathcal{X}}\overset{3}{T}_{0i}.$$

• Substitute energy-momentum tensor:

$${}^{\mathcal{X}}\overset{3}{T}_{0i}=\overset{3}{\mathbf{T}}_{0i}=\overset{3}{\mathbf{T}}_{i}^{\diamond}+\partial_{i}\overset{3}{\mathbf{T}}^{\diamond}=-\boldsymbol{\rho}\mathbf{v}_{i}\,.$$

• Gauge-invariant field equation:

$$-\frac{1}{2}\Psi(\triangle \mathbf{\ddot{g}}_{i}^{\diamond}+2\mathbf{\ddot{g}}_{,0i}^{\bullet})-\mathbf{\ddot{\psi}}_{,0i}^{2}=\kappa^{2}(\mathbf{\ddot{T}}_{i}^{\diamond}+\partial_{i}\mathbf{\ddot{T}}^{\bullet})=-\kappa^{2}\rho\mathbf{v}_{i}.$$

- Canonical differential decomposition:
 - ⇒ Pure divergence part is satisfied identically by previous solutions:

$$-\Psi \mathbf{\hat{g}}_{,0i}^{2} - \psi_{,0i}^{2} = \kappa^{2} \partial_{i} \mathbf{\hat{T}}^{\dagger} = -\frac{\kappa^{2}}{4\pi} \mathbf{U}_{,0i}.$$

• Metric equations at third velocity order:

$$-\frac{1}{2}\Psi(\bigtriangleup^{\mathcal{X}}\overset{3}{g}_{0i}-\overset{\mathcal{X}}{g}\overset{3}{g}_{0j,ij}+\overset{\mathcal{X}}{z}\overset{2}{g}_{jj,0i}-\overset{\mathcal{X}}{z}\overset{2}{g}_{ij,0j})-\overset{\mathcal{X}}{\psi}^{2}_{,0i}=\kappa^{2\mathcal{X}}\overset{3}{T}_{0i}.$$

• Substitute energy-momentum tensor:

$${}^{\mathcal{X}}\overset{3}{T}_{0i}=\overset{3}{\mathsf{T}}_{0i}=\overset{3}{\mathsf{T}}_{i}^{\diamond}+\partial_{i}\overset{3}{\mathsf{T}}^{\diamond}=-\rho\mathsf{v}_{i}\,.$$

• Gauge-invariant field equation:

$$-\frac{1}{2}\Psi(\triangle \mathbf{\ddot{g}}_{i}^{\diamond}+2\mathbf{\ddot{g}}_{,0i}^{\bullet})-\mathbf{\ddot{\psi}}_{,0i}=\kappa^{2}(\mathbf{\ddot{T}}_{i}^{\diamond}+\partial_{i}\mathbf{\ddot{T}}^{\bullet})=-\kappa^{2}\rho\mathbf{v}_{i}.$$

- Canonical differential decomposition:
 - ⇒ Pure divergence part is satisfied identically by previous solutions:

$$-\Psi \mathbf{\hat{g}}_{,0i}^{\bullet} - \mathbf{\hat{\psi}}_{,0i}^{\circ} = \kappa^2 \partial_i \mathbf{\hat{T}}^{\bullet} = -\frac{\kappa^2}{4\pi} \mathbf{U}_{,0i}$$

Divergence-free part yields solution for third-order metric component g^o_i:

$$-\frac{1}{2}\Psi \bigtriangleup \overset{3}{\mathbf{g}}_{i}^{\diamond} = \kappa^{2}\overset{3}{\mathbf{T}}_{i}^{\diamond} = \frac{\kappa^{2}}{8\pi} \bigtriangleup (\mathbf{V}_{i} + \mathbf{W}_{i}) \quad \Rightarrow \quad \overset{3}{\mathbf{g}}_{i}^{\diamond} = -\frac{\kappa^{2}}{4\pi\Psi} (\mathbf{V}_{i} + \mathbf{W}_{i}) = -\frac{2\omega_{0} + 3}{\omega_{0} + 2} (\mathbf{V}_{i} + \mathbf{W}_{i}).$$

Manuel Hohmann (University of Tartu)

Fourth-order metric equation

• Metric equation at fourth velocity order:

$$\begin{split} & - \overset{\mathcal{X}}{\psi}_{,00}^{2} - \frac{1}{2} \Psi \left[\bigtriangleup^{\mathcal{X}} \overset{4}{g}_{00} + \overset{\mathcal{X}}{g}_{ji,00}^{2} - 2 \overset{\mathcal{X}}{g}_{0i,0i}^{3} + \frac{1}{2} \overset{\mathcal{X}}{g}_{00,i}^{2} \left(\overset{\mathcal{X}}{g}_{00,i}^{2} - 2 \overset{\mathcal{X}}{g}_{ij,j}^{2} + \overset{\mathcal{X}}{g}_{jj,i}^{2} \right) - \overset{\mathcal{X}}{g}_{ij}^{2} \overset{\mathcal{X}}{g}_{00,ij}^{2} \right] \\ & - \frac{1}{2} \overset{\mathcal{X}}{\psi} \bigtriangleup^{\mathcal{X}} \overset{\mathcal{Z}}{g}_{00} - \frac{1}{2} \overset{\mathcal{X}}{g}_{00,i}^{2} \overset{\mathcal{X}}{\psi}_{,i}^{2} - \frac{\omega_{1}}{4\omega_{0} + 6} \overset{\mathcal{X}}{\psi}_{,i}^{2} \overset{\mathcal{X}}{\psi}_{,i}^{2} = \kappa^{2} \left[\overset{\mathcal{X}}{T}_{00} - \frac{\omega_{0} + 1}{2\omega_{0} + 3} \overset{\mathcal{X}}{g}_{00}^{2} \left(\overset{\mathcal{X}}{T}_{ij} - \overset{\mathcal{X}}{T}_{00}^{2} \right) \right. \\ & + \frac{\omega_{1}}{(2\omega_{0} + 3)^{2}} \overset{\mathcal{X}}{\psi} \left(\overset{\mathcal{X}}{T}_{ij}^{2} - \overset{\mathcal{X}}{T}_{00}^{2} \right) + \frac{\omega_{0} + 1}{2\omega_{0} + 3} \left(\overset{\mathcal{X}}{T}_{ij} - \overset{\mathcal{X}}{T}_{00} - \overset{\mathcal{X}}{g}_{ij}^{2} \overset{\mathcal{X}}{T}_{ij}^{2} - \overset{\mathcal{X}}{g}_{00}^{2} \overset{\mathcal{X}}{T}_{00} \right) \right]. \end{split}$$
Fourth-order metric equation

• Metric equation at fourth velocity order:

$$\begin{split} & - \overset{\mathcal{X}}{\psi}_{,00}^{2} - \frac{1}{2} \Psi \left[\bigtriangleup^{\mathscr{X}} \overset{4}{g}_{00} + \overset{\mathscr{X}}{g}_{ji,00}^{2} - 2 \overset{\mathscr{X}}{g}_{0i,0i}^{3} + \frac{1}{2} \overset{\mathscr{X}}{g}_{00,i}^{2} \left(\overset{\mathscr{X}}{g}_{00,i}^{2} - 2 \overset{\mathscr{X}}{g}_{ji,j}^{2} + \overset{\mathscr{X}}{g}_{ji,i}^{2} \right) - \overset{\mathscr{X}}{g}_{ij}^{2} \overset{\mathscr{X}}{g}_{00,ij}^{2} \right] \\ & - \frac{1}{2} \overset{\mathscr{X}}{\psi} \bigtriangleup^{\mathscr{X}} \overset{\mathscr{Y}}{g}_{00} - \frac{1}{2} \overset{\mathscr{X}}{g}_{00,i}^{2} \overset{\mathscr{X}}{\psi}_{,i}^{2} - \frac{\omega_{1}}{4\omega_{0} + 6} \overset{\mathscr{X}}{\psi}_{,i}^{2} \overset{\mathscr{X}}{\psi}_{,i}^{2} = \kappa^{2} \left[\overset{\mathscr{X}}{T}_{00} - \frac{\omega_{0} + 1}{2\omega_{0} + 3} \overset{\mathscr{X}}{g}_{00} \left(\overset{\mathscr{X}}{T}_{ii} - \overset{\mathscr{X}}{T}_{00} \right) \right. \\ & + \frac{\omega_{1}}{(2\omega_{0} + 3)^{2}} \overset{\mathscr{X}}{\psi} \left(\overset{\mathscr{X}}{T}_{ii}^{2} - \overset{\mathscr{X}}{T}_{00} \right) + \frac{\omega_{0} + 1}{2\omega_{0} + 3} \left(\overset{\mathscr{X}}{T}_{ii} - \overset{\mathscr{X}}{T}_{00} - \overset{\mathscr{X}}{g}_{ij}^{2} \overset{\mathscr{X}}{T}_{ij} - \overset{\mathscr{X}}{g}_{00} \overset{\mathscr{X}}{T}_{00} \right) \right]. \end{split}$$

• Substitute gauge-invariant quantities:

$$-\frac{1}{2}\Psi\left[\triangle\overset{4}{\mathbf{g}}^{\star} + (\overset{2}{X}\overset{6}{,i} + \overset{2}{X}\overset{6}{,i}) \triangle \overset{2}{\mathbf{g}}^{\star}_{,i} + 3\overset{2}{\mathbf{g}}^{\bullet}_{,00} + \frac{1}{2}\overset{2}{\mathbf{g}}^{\star}_{,i}(\overset{2}{\mathbf{g}}^{\star}_{,i} + \overset{2}{\mathbf{g}}^{\bullet}_{,i}) - \overset{2}{\mathbf{g}}^{\star}_{,ij}(\overset{2}{\mathbf{g}}^{\bullet}\delta_{ij} + \overset{2}{\mathbf{g}}^{\dagger}_{ij})\right] \\ -\frac{1}{2}\overset{2}{\psi} \triangle \overset{2}{\mathbf{g}}^{\star} - \overset{2}{\psi}_{,00} - \frac{1}{2}\overset{2}{\mathbf{g}}^{\star}_{,i}\overset{2}{\psi}_{,i} - \frac{\omega_{1}}{4\omega_{0} + 6}\overset{2}{\psi}_{,i}\overset{2}{\psi}_{,i} \\ = \kappa^{2}\left\{\overset{4}{\mathbf{T}}^{\star} + (\overset{2}{X}\overset{6}{,i} + \overset{2}{X}\overset{6}{,i})\overset{2}{\mathbf{T}}^{\star}_{,i} + \frac{\omega_{0} + 1}{2\omega_{0} + 3}\left[3\overset{4}{\mathbf{T}}^{\bullet} - \overset{4}{\mathbf{T}}^{\star} - (\overset{2}{X}\overset{6}{,i} + \overset{2}{X}\overset{6}{,i})\overset{2}{\mathbf{T}}^{\star}_{,i}\right] - \frac{\omega_{1}}{(2\omega_{0} + 3)^{2}}\overset{2}{\psi}\overset{2}{\mathbf{T}}^{\star}\right\}.$$

Fourth-order metric equation

• Metric equation at fourth velocity order:

$$\begin{split} & - \overset{\mathcal{X}}{\psi}_{,00}^{2} - \frac{1}{2} \Psi \left[\bigtriangleup^{\mathscr{X}} \overset{4}{g}_{00} + \overset{\mathscr{X}}{g}_{ji,00}^{2} - 2 \overset{\mathscr{X}}{g}_{0i,0i}^{3} + \frac{1}{2} \overset{\mathscr{X}}{g}_{00,i}^{2} \left(\overset{\mathscr{X}}{g}_{00,i}^{2} - 2 \overset{\mathscr{X}}{g}_{ji,j}^{2} + \overset{\mathscr{X}}{g}_{ji,i}^{2} \right) - \overset{\mathscr{X}}{g}_{ij}^{2} \overset{\mathscr{X}}{g}_{00,ij}^{2} \right] \\ & - \frac{1}{2} \overset{\mathscr{X}}{\psi} \bigtriangleup^{\mathscr{X}} \overset{\mathscr{Z}}{g}_{00} - \frac{1}{2} \overset{\mathscr{X}}{g}_{00,i}^{2} \overset{\mathscr{X}}{\psi}_{,i}^{2} - \frac{\omega_{1}}{4\omega_{0} + 6} \overset{\mathscr{X}}{\psi}_{,i}^{2} \overset{\mathscr{X}}{\psi}_{,i}^{2} = \kappa^{2} \left[\overset{\mathscr{X}}{T}_{00} - \frac{\omega_{0} + 1}{2\omega_{0} + 3} \overset{\mathscr{X}}{g}_{00} \left(\overset{\mathscr{X}}{T}_{ii} - \overset{\mathscr{X}}{T}_{00} \right) \right. \\ & + \frac{\omega_{1}}{(2\omega_{0} + 3)^{2}} \overset{\mathscr{X}}{\psi} \left(\overset{\mathscr{X}}{T}_{ii}^{2} - \overset{\mathscr{X}}{T}_{00} \right) + \frac{\omega_{0} + 1}{2\omega_{0} + 3} \left(\overset{\mathscr{X}}{T}_{ii} - \overset{\mathscr{X}}{T}_{00} - \overset{\mathscr{X}}{g}_{ij} \overset{\mathscr{X}}{T}_{ij}^{2} - \overset{\mathscr{X}}{g}_{00} \overset{\mathscr{X}}{T}_{00} \right) \right]. \end{split}$$

• Substitute gauge-invariant quantities:

$$\begin{aligned} &-\frac{1}{2}\Psi\left[\bigtriangleup_{,i}^{4} + (\overset{2}{X}_{,i}^{\bullet} + \overset{2}{X}_{i}^{\circ})\bigtriangleup_{,i}^{2} + 3\overset{2}{g}_{,i}^{\bullet} + 3\overset{2}{g}_{,00}^{\bullet} + \frac{1}{2}\overset{2}{g}_{,i}^{*}(\overset{2}{g}_{,i}^{*} + \overset{2}{g}_{,i}^{\bullet}) - \overset{2}{g}_{,ij}^{*}(\overset{2}{g}_{,i}^{\bullet} \delta_{ij} + \overset{2}{g}_{ij}^{\dagger})\right] \\ &-\frac{1}{2}\overset{2}{\psi}\bigtriangleup_{,i}^{2} \overset{2}{g}_{,i}^{*} - \overset{2}{\psi}_{,00} - \frac{1}{2}\overset{2}{g}_{,i}^{*}\overset{2}{\psi}_{,i} - \frac{\omega_{1}}{4\omega_{0} + 6}\overset{2}{\psi}_{,i}\overset{2}{\psi}_{,i} \\ &= \kappa^{2}\left\{\overset{4}{\mathsf{T}}^{*} + (\overset{2}{X}_{,i}^{\bullet} + \overset{2}{X}_{i}^{\circ})\overset{2}{\mathsf{T}}_{,i}^{*} + \frac{\omega_{0} + 1}{2\omega_{0} + 3}\left[3\overset{4}{\mathsf{T}}^{\bullet} - \overset{4}{\mathsf{T}}^{*} - (\overset{2}{X}_{,i}^{\bullet} + \overset{2}{X}_{i}^{\circ})\overset{2}{\mathsf{T}}_{,i}^{*}\right] - \frac{\omega_{1}}{(2\omega_{0} + 3)^{2}}\overset{2}{\psi}\overset{2}{\mathsf{T}}^{*}\right\}.\end{aligned}$$

Gauge defining vector fields X appear on both sides of the equation...

Fourth-order metric equation

• Metric equation at fourth velocity order:

$$\begin{split} & - \overset{\mathcal{X}}{\psi}_{,00}^{2} - \frac{1}{2} \Psi \left[\bigtriangleup^{\mathscr{X}} \overset{4}{g}_{00} + \overset{\mathscr{X}}{g}_{ji,00}^{2} - 2 \overset{\mathscr{X}}{g}_{0i,0i}^{3} + \frac{1}{2} \overset{\mathscr{X}}{g}_{00,i}^{2} \left(\overset{\mathscr{X}}{g}_{00,i}^{2} - 2 \overset{\mathscr{X}}{g}_{ji,j}^{2} + \overset{\mathscr{X}}{g}_{ji,i}^{2} \right) - \overset{\mathscr{X}}{g}_{ij}^{2} \overset{\mathscr{X}}{g}_{00,ij}^{2} \right] \\ & - \frac{1}{2} \overset{\mathscr{X}}{\psi} \bigtriangleup^{\mathscr{X}} \overset{\mathscr{Y}}{g}_{00} - \frac{1}{2} \overset{\mathscr{X}}{g}_{00,i}^{2} \overset{\mathscr{X}}{\psi}_{,i}^{2} - \frac{\omega_{1}}{4\omega_{0} + 6} \overset{\mathscr{X}}{\psi}_{,i}^{2} \overset{\mathscr{X}}{\psi}_{,i}^{2} = \kappa^{2} \left[\overset{\mathscr{X}}{T}_{00} - \frac{\omega_{0} + 1}{2\omega_{0} + 3} \overset{\mathscr{X}}{g}_{00} \left(\overset{\mathscr{X}}{T}_{ii} - \overset{\mathscr{X}}{T}_{00} \right) \right. \\ & + \frac{\omega_{1}}{(2\omega_{0} + 3)^{2}} \overset{\mathscr{X}}{\psi} \left(\overset{\mathscr{X}}{T}_{ii}^{2} - \overset{\mathscr{X}}{T}_{00} \right) + \frac{\omega_{0} + 1}{2\omega_{0} + 3} \left(\overset{\mathscr{X}}{T}_{ii} - \overset{\mathscr{X}}{T}_{00} - \overset{\mathscr{X}}{g}_{ij}^{2} \overset{\mathscr{X}}{T}_{ij} - \overset{\mathscr{X}}{g}_{00} \overset{\mathscr{X}}{T}_{00} \right) \right]. \end{split}$$

• Substitute gauge-invariant quantities:

$$-\frac{1}{2}\Psi\left[\bigtriangleup^{4}_{i}\mathbf{g}^{\star} + (\overset{2}{X}^{\bullet}_{,i} + \overset{2}{X}^{\circ}_{i})\bigtriangleup^{2}_{j,i}\mathbf{g}^{\star}_{,i} + 3\overset{2}{\mathbf{g}}^{\bullet}_{,00} + \frac{1}{2}\overset{2}{\mathbf{g}}^{\star}_{,i}(\overset{2}{\mathbf{g}}^{\star}_{,i} + \overset{2}{\mathbf{g}}^{\bullet}_{,i}) - \overset{2}{\mathbf{g}}^{\star}_{,ij}(\overset{2}{\mathbf{g}}^{\bullet}\delta_{ij} + \overset{2}{\mathbf{g}}^{\dagger}_{ij})\right] \\ -\frac{1}{2}\overset{2}{\psi}\bigtriangleup^{2}_{j}\overset{2}{\mathbf{g}}^{\star} - \overset{2}{\psi}_{,00} - \frac{1}{2}\overset{2}{\mathbf{g}}^{\star}_{,i}\overset{2}{\psi}_{,i} - \frac{\omega_{1}}{4\omega_{0} + 6}\overset{2}{\psi}_{,i}\overset{2}{\psi}_{,i} \\ = \kappa^{2}\left\{\overset{4}{\mathbf{T}}^{\star} + (\overset{2}{X}^{\bullet}_{,i} + \overset{2}{X}^{\circ}_{,i})\overset{2}{\mathbf{T}}^{\star}_{,i} + \frac{\omega_{0} + 1}{2\omega_{0} + 3}\left[3\overset{4}{\mathbf{T}}^{\bullet} - \overset{4}{\mathbf{T}}^{\star} - (\overset{2}{X}^{\bullet}_{,i} + \overset{2}{X}^{\circ}_{,i})\overset{2}{\mathbf{T}}^{\star}_{,i}\right] - \frac{\omega_{1}}{(2\omega_{0} + 3)^{2}}\overset{2}{\psi}\overset{2}{\mathbf{T}}^{\star}\right\}.$$

Gauge defining vector fields X appear on both sides of the equation...

 \checkmark ... but cancel due to second order field equation.

Manuel Hohmann (University of Tartu)

Gauge-invariant PPN formalism

Fourth-order solution and PPN parameters

• Gauge-invariant equation for metric component $\overset{4}{\mathbf{g}}^{\star}$:

$$\Delta \mathbf{g}^{4} = 8\pi \left(\frac{3}{\omega_{0} + 2} + \frac{\omega_{1}\Psi}{(2\omega_{0} + 3)(\omega_{0} + 2)^{2}} \right) \rho \mathbf{U} - 8\pi \frac{2\omega_{0} + 3}{\omega_{0} + 2} \rho \mathbf{v}^{2} - 8\pi \rho \mathbf{\Pi} - 24\pi \frac{\omega_{0} + 1}{\omega_{0} + 2} \mathbf{p} - 2\frac{3\omega_{0} + 4}{\omega_{0} + 2} \mathbf{U}_{,00} - \left(4 + \frac{\omega_{1}\Psi}{(2\omega_{0} + 3)(\omega_{0} + 2)^{2}} \right) \mathbf{U}_{,i} \mathbf{U}_{,i} .$$

Fourth-order solution and PPN parameters

• Gauge-invariant equation for metric component $\overset{4}{\mathbf{g}}^{\star}$:

$$\Delta \mathbf{\dot{g}}^{*} = 8\pi \left(\frac{3}{\omega_{0}+2} + \frac{\omega_{1}\Psi}{(2\omega_{0}+3)(\omega_{0}+2)^{2}} \right) \rho \mathbf{U} - 8\pi \frac{2\omega_{0}+3}{\omega_{0}+2} \rho \mathbf{v}^{2} - 8\pi \rho \mathbf{\Pi} - 24\pi \frac{\omega_{0}+1}{\omega_{0}+2} \mathbf{p} - 2\frac{3\omega_{0}+4}{\omega_{0}+2} \mathbf{U}_{,00} - \left(4 + \frac{\omega_{1}\Psi}{(2\omega_{0}+3)(\omega_{0}+2)^{2}} \right) \mathbf{U}_{,i} \mathbf{U}_{,i} .$$

⇒ Solution in terms of PPN potentials:

$$\begin{split} \hat{\mathbf{g}}^{*} &= \frac{3\omega_{0}+4}{\omega_{0}+2} (\mathfrak{A}+\mathfrak{B}) + \Phi_{1} + \left(\frac{4\omega_{0}+2}{\omega_{0}+2} - \frac{\omega_{1}\Psi}{(2\omega_{0}+3)(\omega_{0}+2)^{2}}\right) \Phi_{2} + 3\Phi_{3} + 6\frac{\omega_{0}+1}{\omega_{0}+2} \Phi_{4} \\ &- 2\left(1 + \frac{\omega_{1}\Psi}{4(2\omega_{0}+3)(\omega_{0}+2)^{2}}\right) \mathbf{U}^{2} \,. \end{split}$$

Fourth-order solution and PPN parameters

Gauge-invariant equation for metric component ⁴/_g*:

$$\Delta \mathbf{\dot{g}}^{*} = 8\pi \left(\frac{3}{\omega_{0}+2} + \frac{\omega_{1}\Psi}{(2\omega_{0}+3)(\omega_{0}+2)^{2}} \right) \rho \mathbf{U} - 8\pi \frac{2\omega_{0}+3}{\omega_{0}+2} \rho \mathbf{v}^{2} - 8\pi \rho \mathbf{\Pi} - 24\pi \frac{\omega_{0}+1}{\omega_{0}+2} \mathbf{p} - 2\frac{3\omega_{0}+4}{\omega_{0}+2} \mathbf{U}_{,00} - \left(4 + \frac{\omega_{1}\Psi}{(2\omega_{0}+3)(\omega_{0}+2)^{2}} \right) \mathbf{U}_{,i} \mathbf{U}_{,i} .$$

⇒ Solution in terms of PPN potentials:

$$\begin{split} \overset{4}{\mathbf{g}}^{*} &= \frac{3\omega_{0}+4}{\omega_{0}+2} \big(\mathfrak{A}+\mathfrak{B}\big) + \Phi_{1} + \left(\frac{4\omega_{0}+2}{\omega_{0}+2} - \frac{\omega_{1}\Psi}{(2\omega_{0}+3)(\omega_{0}+2)^{2}}\right) \Phi_{2} + 3\Phi_{3} + 6\frac{\omega_{0}+1}{\omega_{0}+2} \Phi_{4} \\ &- 2\left(1 + \frac{\omega_{1}\Psi}{4(2\omega_{0}+3)(\omega_{0}+2)^{2}}\right) \mathbf{U}^{2} \,. \end{split}$$

⇒ PPN parameters reproduce well-known result: [Nordtvedt '70]

$$\gamma = \frac{\omega_0 + 1}{\omega_0 + 2}, \quad \beta = 1 + \frac{\omega_1 \Psi}{4(2\omega_0 + 3)(\omega_0 + 2)^2}, \quad \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = \xi = 0.$$

• Express metric in terms of tetrad and solve for tetrad components.

- Express metric in terms of tetrad and solve for tetrad components.
- ⇒ Solution for tetrad perturbations:

$$\hat{\theta}^{\star} = \mathbf{U}, \quad \hat{\theta}^{\bullet} = \frac{\omega_{0} + 1}{\omega_{0} + 2} \mathbf{U}, \quad \hat{\theta}^{\dagger}_{ij} = 0, \quad \hat{\theta}^{\circ}_{i} = -\frac{2\omega_{0} + 3}{2\omega_{0} + 4} (\mathbf{V}_{i} + \mathbf{W}_{i}),$$

$$\hat{\theta}^{\star} = \frac{3\omega_{0} + 4}{2\omega_{0} + 4} (\mathfrak{A} + \mathfrak{B}) - \left(\frac{1}{2} + \frac{\omega_{1}\Psi}{4(2\omega_{0} + 3)(\omega_{0} + 2)^{2}}\right) \mathbf{U}^{2}$$

$$+ \frac{1}{2} \Phi_{1} + \left(\frac{2\omega_{0} + 1}{\omega_{0} + 2} - \frac{\omega_{1}\Psi}{2(2\omega_{0} + 3)(\omega_{0} + 2)^{2}}\right) \Phi_{2} + \frac{3}{2} \Phi_{3} + 3\frac{\omega_{0} + 1}{\omega_{0} + 2} \Phi_{4}.$$

- Express metric in terms of tetrad and solve for tetrad components.
- ⇒ Solution for tetrad perturbations:

$$\hat{\theta}^{\star} = \mathbf{U}, \quad \hat{\theta}^{\bullet} = \frac{\omega_{0} + 1}{\omega_{0} + 2} \mathbf{U}, \quad \hat{\theta}^{\dagger}_{ij} = 0, \quad \hat{\theta}^{\circ}_{i} = -\frac{2\omega_{0} + 3}{2\omega_{0} + 4} (\mathbf{V}_{i} + \mathbf{W}_{i}),$$

$$\hat{\theta}^{\star} = \frac{3\omega_{0} + 4}{2\omega_{0} + 4} (\mathfrak{A} + \mathfrak{B}) - \left(\frac{1}{2} + \frac{\omega_{1}\Psi}{4(2\omega_{0} + 3)(\omega_{0} + 2)^{2}}\right) \mathbf{U}^{2}$$

$$+ \frac{1}{2} \mathbf{\Phi}_{1} + \left(\frac{2\omega_{0} + 1}{\omega_{0} + 2} - \frac{\omega_{1}\Psi}{2(2\omega_{0} + 3)(\omega_{0} + 2)^{2}}\right) \mathbf{\Phi}_{2} + \frac{3}{2} \mathbf{\Phi}_{3} + 3\frac{\omega_{0} + 1}{\omega_{0} + 2} \mathbf{\Phi}_{4}.$$

✓ Obtain same PPN parameters as in metric formulation.

- Express metric in terms of tetrad and solve for tetrad components.
- ⇒ Solution for tetrad perturbations:

$$\hat{\theta}^{*} = \mathbf{U}, \quad \hat{\theta}^{\bullet} = \frac{\omega_{0} + 1}{\omega_{0} + 2} \mathbf{U}, \quad \hat{\theta}^{\dagger}_{ij} = 0, \quad \hat{\theta}^{\circ}_{i} = -\frac{2\omega_{0} + 3}{2\omega_{0} + 4} (\mathbf{V}_{i} + \mathbf{W}_{i}),$$

$$\hat{\theta}^{*} = \frac{3\omega_{0} + 4}{2\omega_{0} + 4} (\mathfrak{A} + \mathfrak{B}) - \left(\frac{1}{2} + \frac{\omega_{1}\Psi}{4(2\omega_{0} + 3)(\omega_{0} + 2)^{2}}\right) \mathbf{U}^{2}$$

$$+ \frac{1}{2} \mathbf{\Phi}_{1} + \left(\frac{2\omega_{0} + 1}{\omega_{0} + 2} - \frac{\omega_{1}\Psi}{2(2\omega_{0} + 3)(\omega_{0} + 2)^{2}}\right) \mathbf{\Phi}_{2} + \frac{3}{2} \mathbf{\Phi}_{3} + 3\frac{\omega_{0} + 1}{\omega_{0} + 2} \mathbf{\Phi}_{4}.$$

✓ Obtain same PPN parameters as in metric formulation.

• Tetrad formulation is more useful in teleparallel gravity etc.

Introduction

- 2 Gauge-invariant higher order perturbations
- Parametrized post-Newtonian formalism
- 4 Gauge-invariant PPN formalism
- 5 Tetrad and teleparallel PPN formalisms
- 6 Example: PPN limit of scalar-tensor gravity

Conclusion

- Gauge-invariant perturbation theory:
 - Distinguish between physical and background spacetime.
 - Gauge pulls physical metric to background spacetime.
 - ⇒ Gauge dependent comparison between both metrics.
 - Decompose perturbations into physical data and gauge data.

- Gauge-invariant perturbation theory:
 - Distinguish between physical and background spacetime.
 - Gauge pulls physical metric to background spacetime.
 - ⇒ Gauge dependent comparison between both metrics.
 - Decompose perturbations into physical data and gauge data.
- Parametrized post-Newtonian formalism:
 - Weak-field approximation of metric gravity theories.
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.

- Gauge-invariant perturbation theory:
 - Distinguish between physical and background spacetime.
 - Gauge pulls physical metric to background spacetime.
 - ⇒ Gauge dependent comparison between both metrics.
 - Decompose perturbations into physical data and gauge data.
- Parametrized post-Newtonian formalism:
 - Weak-field approximation of metric gravity theories.
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.
- Gauge-invariant PPN formalism:
 - Apply gauge-invariant perturbation theory to PPN formalism.
 - Decomposition of metric and field equations.
 - Avoids issues arising from necessity to choose a gauge.
 - ⇒ Simpler set of equations to determine PPN parameters.
 - Can also be formulated for tetrad instead of metric.

- Gauge-invariant perturbation theory:
 - Distinguish between physical and background spacetime.
 - Gauge pulls physical metric to background spacetime.
 - ⇒ Gauge dependent comparison between both metrics.
 - Decompose perturbations into physical data and gauge data.
- Parametrized post-Newtonian formalism:
 - Weak-field approximation of metric gravity theories.
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.
- Gauge-invariant PPN formalism:
 - Apply gauge-invariant perturbation theory to PPN formalism.
 - Decomposition of metric and field equations.
 - Avoids issues arising from necessity to choose a gauge.
 - ⇒ Simpler set of equations to determine PPN parameters.
 - Can also be formulated for tetrad instead of metric.
- Post-Newtonian limit of scalar-tensor gravity:
 - Perturbative field equations simplify in gauge-invariant formulation.
 - Consistency check: obtain well-known PPN parameters.
 - Also possible to use tetrad formulation to calculate solution.

Outlook

- Extend formalism by including higher perturbation orders:
 - General covariant expansion instead of space-time split.
 - Allow also for fast-moving source masses.
 - · Consider inspiral phase of black hole merger event.
 - Devise method for calculating gravitational waves.

Outlook

- Extend formalism by including higher perturbation orders:
 - General covariant expansion instead of space-time split.
 - Allow also for fast-moving source masses.
 - Consider inspiral phase of black hole merger event.
 - Devise method for calculating gravitational waves.
- Further possible extensions and modifications:
 - Apply to formalism based on modified density $\rho^* = \rho \sqrt{-g} u^0$. [Will '18]
 - Allow for multiple dynamical metrics / tetrads.
 - Take into account Vainshtein or other screening mechanisms.
 - Consider cosmological background and time variability of PPN parameters.
 - Include further PPN potentials appearing in higher derivative theories.

Outlook

- Extend formalism by including higher perturbation orders:
 - General covariant expansion instead of space-time split.
 - Allow also for fast-moving source masses.
 - Consider inspiral phase of black hole merger event.
 - Devise method for calculating gravitational waves.
- Further possible extensions and modifications:
 - Apply to formalism based on modified density $\rho^* = \rho \sqrt{-g} u^0$. [Will '18]
 - Allow for multiple dynamical metrics / tetrads.
 - Take into account Vainshtein or other screening mechanisms.
 - Consider cosmological background and time variability of PPN parameters.
 - Include further PPN potentials appearing in higher derivative theories.
- Apply formalism to complicated gravity theories:
 - Bimetric and multimetric gravity theories.
 - Multi-scalar Horndeski generalizations.
 - Theories involving generalized Proca fields.
 - Extensions based on metric-affine geometry.
 - Extensions of teleparallel and symmetric teleparallel gravity.

Further reading

MH,

"Gauge invariant approach to the parametrized post-Newtonian formalism", arXiv:1910.09245 [gr-qc].

Further reading

MH,

"Gauge invariant approach to the parametrized post-Newtonian formalism", arXiv:1910.09245 [gr-qc].

One-sentence summary

The gauge-invariant approach provides a significant simplification of the PPN formalism.