Outline

1. Introduction
2. Gauge-invariant higher order perturbations
3. Parametrized post-Newtonian formalism
4. Gauge-invariant PPN formalism
5. Example: PPN limit of scalar-tensor gravity
6. Conclusion
Outline

1. Introduction
2. Gauge-invariant higher order perturbations
3. Parametrized post-Newtonian formalism
4. Gauge-invariant PPN formalism
5. Example: PPN limit of scalar-tensor gravity
6. Conclusion
Motivation

- Experimental tests of modified gravity theories:
 - Cosmological observations (CMB, supernovae, ...).
 - Gravitational waves.
 - Direct observation of black holes.
 - Solar system, pulsars, ...
Motivation

- Experimental tests of modified gravity theories:
 - Cosmological observations (CMB, supernovae, ...).
 - Gravitational waves.
 - Direct observation of black holes.
 - Solar system, pulsars, ...

- Parametrized post-Newtonian formalism:
 - Weak-field approximation of metric gravity theories.
 - Assumes particular coordinate system (“universe rest frame”).
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.
Motivation

- Experimental tests of modified gravity theories:
 - Cosmological observations (CMB, supernovae, ...).
 - Gravitational waves.
 - Direct observation of black holes.
 - Solar system, pulsars, ...

- Parametrized post-Newtonian formalism:
 - Weak-field approximation of metric gravity theories.
 - Assumes particular coordinate system ("universe rest frame").
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.

- Extensions of the PPN formalism:
 - More fundamental fields constituting the metric.
 - More than one dynamical metric.
 - Diffeomorphism invariant / purely geometric formalism.
Motivation

- Experimental tests of modified gravity theories:
 - Cosmological observations (CMB, supernovae, ...).
 - Gravitational waves.
 - Direct observation of black holes.
 - Solar system, pulsars, ...
- Parametrized post-Newtonian formalism:
 - Weak-field approximation of metric gravity theories.
 - Assumes particular coordinate system ("universe rest frame").
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.

Extensions of the PPN formalism:
- More fundamental fields constituting the metric.
- More than one dynamical metric.
- Diffeomorphism invariant / purely geometric formalism.

Use gauge-invariant higher order perturbation theory.
Outline

1 Introduction

2 Gauge-invariant higher order perturbations

3 Parametrized post-Newtonian formalism

4 Gauge-invariant PPN formalism

5 Example: PPN limit of scalar-tensor gravity

6 Conclusion
Concept and use of gauge

- Reference spacetime:
 - Manifold M_0 with metric $g^{(0)}$ and coordinates (x^μ).
 - Usually some highly symmetric standard spacetime:
 - maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - cosmological (background) solution of a gravity theory
Concept and use of gauge

- Reference spacetime:
 - Manifold M_0 with metric $g^{(0)}$ and coordinates (x^μ).
 - Usually some highly symmetric standard spacetime:
 - maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - cosmological (background) solution of a gravity theory

- Physical spacetime:
 - Manifold M with metric g.
 - No preferred / canonical choice of coordinates.
Concept and use of gauge

- Reference spacetime:
 - Manifold M_0 with metric $g^{(0)}$ and coordinates (x^μ).
 - Usually some highly symmetric standard spacetime:
 - maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - cosmological (background) solution of a gravity theory

- Physical spacetime:
 - Manifold M with metric g.
 - No preferred / canonical choice of coordinates.

\[\text{\texttt{\textbackslash i}} \text{ No canonical relation between physical and reference spacetime.} \]
Concept and use of gauge

- **Reference spacetime:**
 - Manifold M_0 with metric $g^{(0)}$ and coordinates (x^μ).
 - Usually some highly symmetric standard spacetime:
 - maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - cosmological (background) solution of a gravity theory

- **Physical spacetime:**
 - Manifold M with metric g.
 - No preferred / canonical choice of coordinates.

\[\text{No canonical relation between physical and reference spacetime.}\]

1. No identification of points on M and M_0: no coordinates on M.
Concept and use of gauge

- Reference spacetime:
 - Manifold M_0 with metric $g^{(0)}$ and coordinates (x^μ).
 - Usually some highly symmetric standard spacetime:
 - maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - cosmological (background) solution of a gravity theory

- Physical spacetime:
 - Manifold M with metric g.
 - No preferred / canonical choice of coordinates.

\[\frac{\text{No canonical relation between physical and reference spacetime.}}{\text{}}\]

1. No identification of points on M and M_0: no coordinates on M.
2. No possibility to compare g and $g^{(0)}$: different manifolds.
Concept and use of gauge

• Reference spacetime:
 ○ Manifold M_0 with metric $g^{(0)}$ and coordinates (x^μ).
 ○ Usually some highly symmetric standard spacetime:
 - maximally symmetric spacetime: Minkowski, (anti-)de Sitter
 - cosmological (background) solution of a gravity theory

• Physical spacetime:
 ○ Manifold M with metric g.
 ○ No preferred / canonical choice of coordinates.

\[\n \text{No canonical relation between physical and reference spacetime.} \]
\[\text{1. No identification of points on } M \text{ and } M_0: \text{ no coordinates on } M. \]
\[\text{2. No possibility to compare } g \text{ and } g^{(0)}: \text{ different manifolds.} \]

\[\n \text{Introduce a } \textit{gauge}: \text{ diffeomorphism } \chi : M_0 \to M. \]
\[\text{1. Identification of (coordinated) points on } M \text{ and } M_0. \]
\[\text{2. Comparison between reference metric } g^{(0)} \text{ and } \chi^* g = \chi^* g \text{ on } M_0. \]
Parameter dependent physical metric:

- Assume physical metric $g \equiv g_\epsilon$ depends on parameter $\epsilon \in \mathbb{R}$.
- Assume every g_ϵ is defined on its own M_ϵ.
- Assume $g_0 = g^{(0)}$ is the reference metric on M_0.

\Rightarrow Family of physical spacetimes (M_ϵ, g_ϵ).

Aim: perturbative expansion of g_ϵ in ϵ around $g^{(0)}$.

Metrics g_ϵ are defined on different manifolds for different ϵ.

Use gauge to relate different manifolds:

- Family of diffeomorphisms $X_\epsilon : M_0 \to M_\epsilon$.
- Assume $X_0 = \text{id}_{M_0}$ on the reference spacetime.

Perturbative expansion:

- Pullback $X_\epsilon g_\epsilon = X_\epsilon^* g_\epsilon$ defined on M_0.
- Introduce series expansion in ϵ:
 $$X_\epsilon g_\epsilon = \sum_{k=0}^{\infty} \frac{\epsilon^k}{k!} \partial X_\epsilon g_\epsilon |_{\epsilon=0} = \sum_{k=0}^{\infty} \frac{\epsilon^k}{k!} X_\epsilon g_\epsilon^{(k)}.$$
- Series coefficients $X_\epsilon g_\epsilon^{(k)}$ depend on gauge choice X_ϵ.
Gauge and perturbations

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_\epsilon$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_ϵ is defined on its own M_ϵ.
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0.
 \Rightarrow Family of physical spacetimes (M_ϵ, g_ϵ).

- Aim: perturbative expansion of g_ϵ in ϵ around $g^{(0)}$.

Parameter dependent physical metric:
- Assume physical metric $g \equiv g_\epsilon$ depends on parameter $\epsilon \in \mathbb{R}$.
- Assume every g_ϵ is defined on its own M_ϵ.
- Assume $g_0 = g^{(0)}$ is the reference metric on M_0.
 \Rightarrow Family of physical spacetimes (M_ϵ, g_ϵ).

Aim: perturbative expansion of g_ϵ in ϵ around $g^{(0)}$.

\therefore Metrics g_ϵ are defined on different manifolds for different ϵ.
Gauge and perturbations

- Parameter dependent physical metric:
 - Assume physical metric \(g \equiv g_\epsilon \) depends on parameter \(\epsilon \in \mathbb{R} \).
 - Assume every \(g_\epsilon \) is defined on its own \(M_\epsilon \).
 - Assume \(g_0 = g^{(0)} \) is the reference metric on \(M_0 \).
 \Rightarrow\text{Family of physical spacetimes } (M_\epsilon, g_\epsilon).

- Aim: perturbative expansion of \(g_\epsilon \) in \(\epsilon \) around \(g^{(0)} \).
 \text{Metrics } g_\epsilon \text{ are defined on different manifolds for different } \epsilon.
 \Rightarrow\text{Use gauge to relate different manifolds:}
 - Family of diffeomorphisms \(\chi_\epsilon : M_0 \to M_\epsilon \).
 - Assume \(\chi_0 = \text{id}_{M_0} \) on the reference spacetime.
Gauge and perturbations

- Parameter dependent physical metric:
 - Assume physical metric \(g \equiv g_\epsilon \) depends on parameter \(\epsilon \in \mathbb{R} \).
 - Assume every \(g_\epsilon \) is defined on its own \(M_\epsilon \).
 - Assume \(g_0 = g^{(0)} \) is the reference metric on \(M_0 \).
 \(\Rightarrow \) Family of physical spacetimes \((M_\epsilon, g_\epsilon) \).

- Aim: perturbative expansion of \(g_\epsilon \) in \(\epsilon \) around \(g^{(0)} \).

\(\Leftrightarrow \) Metrics \(g_\epsilon \) are defined on different manifolds for different \(\epsilon \).

\(\Rightarrow \) Use gauge to relate different manifolds:
 - Family of diffeomorphisms \(\mathcal{X}_\epsilon : M_0 \to M_\epsilon \).
 - Assume \(\mathcal{X}_0 = \text{id}_{M_0} \) on the reference spacetime.

- Perturbative expansion:
 - Pullback \(\mathcal{X}^* g_\epsilon = \mathcal{X}_\epsilon^* g_\epsilon \) defined on \(M_0 \).
Gauge and perturbations

- Parameter dependent physical metric:
 - Assume physical metric $g \equiv g_\epsilon$ depends on parameter $\epsilon \in \mathbb{R}$.
 - Assume every g_ϵ is defined on its own M_ϵ.
 - Assume $g_0 = g^{(0)}$ is the reference metric on M_0.
 \implies Family of physical spacetimes (M_ϵ, g_ϵ).

- Aim: perturbative expansion of g_ϵ in ϵ around $g^{(0)}$.

‡ Metrics g_ϵ are defined on different manifolds for different ϵ.

\implies Use gauge to relate different manifolds:
 - Family of diffeomorphisms $\chi_\epsilon : M_0 \to M_\epsilon$.
 - Assume $\chi_0 = \text{id}_{M_0}$ on the reference spacetime.

- Perturbative expansion:
 - Pullback $\chi g_\epsilon = \chi_\epsilon^* g_\epsilon$ defined on M_0.
 - Introduce series expansion in ϵ:

\[
\chi g_\epsilon = \sum_{k=0}^{\infty} \frac{\epsilon^k}{k!} \frac{\partial^k \chi g_\epsilon}{\partial \epsilon^k} \bigg|_{\epsilon=0} = \sum_{k=0}^{\infty} \frac{\epsilon^k}{k!} \chi g^{(k)}.
\]
Gauge and perturbations

- Parameter dependent physical metric:
 - Assume physical metric \(g \equiv g_{\epsilon} \) depends on parameter \(\epsilon \in \mathbb{R} \).
 - Assume every \(g_{\epsilon} \) is defined on its own \(M_{\epsilon} \).
 - Assume \(g_0 = g^{(0)} \) is the reference metric on \(M_0 \).
 \[\Rightarrow \] Family of physical spacetimes \((M_\epsilon, g_\epsilon)\).

- Aim: perturbative expansion of \(g_\epsilon \) in \(\epsilon \) around \(g^{(0)} \).

\[/\Rightarrow \] Metrics \(g_\epsilon \) are defined on different manifolds for different \(\epsilon \).

\[\Rightarrow \] Use gauge to relate different manifolds:
 - Family of diffeomorphisms \(\mathcal{X}_\epsilon : M_0 \to M_\epsilon \).
 - Assume \(\mathcal{X}_0 = \text{id}_{M_0} \) on the reference spacetime.

- Perturbative expansion:
 - Pullback \(\mathcal{X} g_\epsilon = \mathcal{X}_\epsilon^* g_\epsilon \) defined on \(M_0 \).
 - Introduce series expansion in \(\epsilon \):
 \[
 \mathcal{X} g_\epsilon = \sum_{k=0}^{\infty} \frac{\epsilon^k}{k!} \frac{\partial^k \mathcal{X} g_\epsilon}{\partial \epsilon^k} \bigg|_{\epsilon=0} = \sum_{k=0}^{\infty} \frac{\epsilon^k}{k!} \mathcal{X} g^{(k)}.
 \]
 - Series coefficients \(\mathcal{X} g^{(k)} \) depend on gauge choice \(\mathcal{X} \).
Gauge invariant perturbations

- Choose a fixed “distinguished” gauge $S_\epsilon : M_0 \rightarrow M_\epsilon$:
 - E.g., impose gauge conditions on the metric.
 - Examples: harmonic gauge used for GWs, standard PPN gauge.
Gauge invariant perturbations

- Choose a fixed “distinguished” gauge $S_\epsilon : M_0 \to M_\epsilon$:
 - E.g., impose gauge conditions on the metric.
 - Examples: harmonic gauge used for GWs, standard PPN gauge.
- Define gauge-invariant metric $g_\epsilon = S g_\epsilon = S_\epsilon^* g_\epsilon$.
Gauge invariant perturbations

- Choose a fixed “distinguished” gauge \(S_\epsilon: M_0 \rightarrow M_\epsilon \):
 - E.g., impose gauge conditions on the metric.
 - Examples: harmonic gauge used for GWs, standard PPN gauge.

- Define gauge-invariant metric \(g_\epsilon = S g_\epsilon = S_\epsilon^* g_\epsilon \).

- Metric in arbitrary gauge \(\mathcal{X} \):
 \[
 \mathcal{X} g_\epsilon = \sum_{l_1=0}^{\infty} \cdots \sum_{l_k=0}^{\infty} \frac{\epsilon^{l_1+\cdots+k l_k+\cdots}}{(1!)^{l_1} (k!) l_k \cdots l_1 \cdots l_k} \mathcal{E}_{l_1}^{X(1)} \cdots \mathcal{E}_{l_k}^{X(k)} \cdots g_\epsilon.
 \]
Gauge invariant perturbations

- Choose a fixed “distinguished” gauge \(S_\epsilon : M_0 \rightarrow M_\epsilon \):
 - E.g., impose gauge conditions on the metric.
 - Examples: harmonic gauge used for GWs, standard PPN gauge.
- Define gauge-invariant metric \(g_\epsilon = S g_\epsilon = S^*_\epsilon g_\epsilon \).
- Metric in arbitrary gauge \(\mathcal{X} \):
 \[
 \mathcal{X} g_\epsilon = \sum_{l_1=0}^{\infty} \cdots \sum_{l_k=0}^{\infty} \frac{\epsilon^{l_1+\cdots+k l_k+\cdots}}{(1!)^{l_1} \cdots (k!)^{l_k} l_1! \cdots l_k! \cdots} \mathcal{E}^{l_1} \cdots \mathcal{E}^{l_k} X_{(1)}(1) \cdots X_{(k)}(k) g_\epsilon .
 \]
- Metric components split into two parts:
 - Gauge-invariant part \(g_\epsilon \): physical content.
 - Gauge defining vector fields \(X_{(k)} \): coordinate choice.
Choose a fixed “distinguished” gauge $S_\epsilon : M_0 \to M_\epsilon$:
- E.g., impose gauge conditions on the metric.
- Examples: harmonic gauge used for GWs, standard PPN gauge.

Define gauge-invariant metric $g_\epsilon = S g_\epsilon = S_\epsilon^* g_\epsilon$.

Metric in arbitrary gauge \mathcal{X}:

$$\mathcal{X} g_\epsilon = \sum_{l_1=0}^{\infty} \cdots \sum_{l_k=0}^{\infty} \frac{\epsilon^{l_1+\cdots+k l_k+\cdots}}{(1!)^{l_1} \cdots (k!)^{l_k} \cdots l_1! \cdots l_k! \cdots} \mathcal{L}^{l_1}_{X(1)} \cdots \mathcal{L}^{l_k}_{X(k)} \cdots g_\epsilon.$$

Metric components split into two parts:
- Gauge-invariant part $g_\epsilon :$ physical content.
- Gauge defining vector fields $X_{(k)} :$ coordinate choice.

Number # of independent components:

$$\#(\mathcal{X} g_\epsilon) = \#(g_\epsilon) + \#(X_{(k)}).$$
Outline

1. Introduction
2. Gauge-invariant higher order perturbations
3. Parametrized post-Newtonian formalism
4. Gauge-invariant PPN formalism
5. Example: PPN limit of scalar-tensor gravity
6. Conclusion
Post-Newtonian matter and velocity orders

- Energy-momentum tensor of a perfect fluid:

\[T^{\mu\nu} = (\rho + \rho \Pi + p) u^{\mu} u^{\nu} + p g^{\mu\nu}. \]

- Rest mass density \(\rho \).
- Specific internal energy \(\Pi \).
- Pressure \(p \).
- Four-velocity \(u^{\mu} \).
Post-Newtonian matter and velocity orders

- Energy-momentum tensor of a perfect fluid:

\[T^{\mu\nu} = (\rho + \rho \Pi + p) u^\mu u^\nu + pg^{\mu\nu}. \]

- Rest mass density \(\rho \).
- Specific internal energy \(\Pi \).
- Pressure \(p \).
- Four-velocity \(u^\mu \).

- Universe rest frame and slow-moving source matter:
 - Consider some gauge \(\mathcal{X} : M_0 \rightarrow M \) ("universe rest frame").
 - Pullback of metric and matter variables along \(\mathcal{X} \).
 - Velocity of the source matter: \(\mathcal{X} \tilde{v}^i = \mathcal{X} u^i / \mathcal{X} u^0 \).
 - Assume that source matter is slow-moving: \(|\mathcal{X} \tilde{v}| \ll 1 \).
Energy-momentum tensor of a perfect fluid:

\[T^{\mu \nu} = \left(\rho + \rho \Pi + p \right) u^\mu u^\nu + pg^{\mu \nu}. \]

- Rest mass density ρ.
- Specific internal energy Π.
- Pressure p.
- Four-velocity u^μ.

Universe rest frame and slow-moving source matter:

- Consider some gauge $\mathcal{X} : M_0 \to M$ (“universe rest frame”).
- Pullback of metric and matter variables along \mathcal{X}.
- Velocity of the source matter: $\mathcal{X} v^i = \mathcal{X} u^i / \mathcal{X} u^0$.
- Assume that source matter is slow-moving: $|\mathcal{X} \tilde{v}| \ll 1$.

Use $\epsilon = |\mathcal{X} \tilde{v}|$ as perturbation parameter.
Post-Newtonian matter and velocity orders

- Energy-momentum tensor of a perfect fluid:

\[T^{\mu\nu} = (\rho + \rho\Pi + p) u^\mu u^\nu + pg^{\mu\nu}. \]

 - Rest mass density \(\rho \sim \mathcal{O}(2). \)
 - Specific internal energy \(\Pi \sim \mathcal{O}(2). \)
 - Pressure \(p \sim \mathcal{O}(4). \)
 - Four-velocity \(u^\mu. \)

- Universe rest frame and slow-moving source matter:

 - Consider some gauge \(\chi : M_0 \to M \) ("universe rest frame").
 - Pullback of metric and matter variables along \(\chi. \)
 - Velocity of the source matter: \(\chi v^i = \chi u^i / \chi u^0. \)
 - Assume that source matter is slow-moving: \(|\chi \tilde{v}| \ll 1. \)

- Use \(\epsilon = |\chi \tilde{v}| \) as perturbation parameter.

- Assign velocity orders \(\mathcal{O}(n) \sim \epsilon^n \) to all quantities.
Post-Newtonian matter and velocity orders

- Energy-momentum tensor of a perfect fluid:

\[T^{\mu\nu} = (\rho + \rho \Pi + p) u^\mu u^\nu + pg^{\mu\nu}. \]

- Rest mass density \(\rho \sim O(2) \).
- Specific internal energy \(\Pi \sim O(2) \).
- Pressure \(p \sim O(4) \).
- Four-velocity \(u^\mu \).

- Universe rest frame and slow-moving source matter:
 - Consider some gauge \(\mathcal{X} : M_0 \to M \) ("universe rest frame").
 - Pullback of metric and matter variables along \(\mathcal{X} \).
 - Velocity of the source matter: \(\mathcal{X} v^i = \mathcal{X} u^i / \mathcal{X} u^0 \).
 - Assume that source matter is slow-moving: \(|\mathcal{X} v| \ll 1 \).

- Use \(\epsilon = |\mathcal{X} v| \) as perturbation parameter.

- Assign velocity orders \(O(n) \sim \epsilon^n \) to all quantities.

- Quasi-static: assign additional \(O(1) \) to time derivatives \(\partial_0 \).
Standard post-Newtonian metric

- PPN formalism assumes fixed standard gauge \mathcal{P}.

\begin{align*}
 P_2 \ g_{00} &= 2 P \ U, \\
 P_2 \ g_{ij} &= 2 \gamma P \ U \delta_{ij}, \\
 P_3 \ g_{0i} &= -\frac{1}{2} \left(3 + 4 \gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2 \xi \right) P V^i - \frac{1}{2} \left(1 + \alpha_2 - \zeta_1 + 2 \xi \right) P W^i, \\
 P_4 \ g_{00} &= -2 \beta P U^2 + \left(2 + 2 \gamma + \alpha_3 + \zeta_1 - 2 \xi \right) P \Phi_1 + 2 \left(1 + 3 \gamma - 2 \beta + \zeta_2 + \xi \right) P \Phi_2 + 2 \left(3 \gamma + 3 \zeta_4 - 2 \xi \right) P \Phi_3 - 2 \xi P \Phi_4 - \left(\zeta_1 - 2 \xi \right) P A,
\end{align*}

- Metric contains PPN parameters and PPN potentials.
 - PPN potentials describe source matter distribution.
 - PPN parameters characterize gravity theory.
Standard post-Newtonian metric

- PPN formalism assumes fixed standard gauge \mathcal{P}.
- Metric in standard PPN gauge:

\[
\begin{align*}
\mathcal{P}^2 g_{00} &= 2^\mathcal{P} U, \\
\mathcal{P}^2 g_{ij} &= 2^\mathcal{P} U \delta_{ij}, \\
\mathcal{P}^3 g_{0i} &= -\frac{1}{2} (3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi)^^\mathcal{P} V_i - \frac{1}{2} (1 + \alpha_2 - \zeta_1 + 2\xi)^^\mathcal{P} W_i, \\
\mathcal{P}^4 g_{00} &= -2^\mathcal{P} U^2 + (2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi)^^\mathcal{P} \Phi_1 + 2(1 + 3\gamma - 2\beta + \zeta_2 + \xi)^^\mathcal{P} \Phi_2 \\
&\quad + 2(1 + \zeta_3)^^\mathcal{P} \Phi_3 + 2(3\gamma + 3\zeta_4 - 2\xi)^^\mathcal{P} \Phi_4 - 2^\mathcal{P} \Phi_W - (\zeta_1 - 2\xi)^^\mathcal{P} \mathcal{A},
\end{align*}
\]

- Metric contains PPN parameters and PPN potentials.
 - PPN potentials describe source matter distribution.
 - PPN parameters characterize gravity theory.
Standard post-Newtonian metric

- PPN formalism assumes fixed standard gauge \mathcal{P}.
- Metric in standard PPN gauge:

\[
\begin{align*}
\mathcal{P}^2 g_{00} &= 2^\mathcal{P} U , \\
\mathcal{P}^2 g_{ij} &= 2\gamma^\mathcal{P} U \delta_{ij} , \\
\mathcal{P}^3 g_{0i} &= -\frac{1}{2}(3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi)^\mathcal{P} V_i - \frac{1}{2}(1 + \alpha_2 - \zeta_1 + 2\xi)^\mathcal{P} W_i , \\
\mathcal{P}^4 g_{00} &= -2\beta^\mathcal{P} U^2 + (2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi)^\mathcal{P} \Phi_1 + 2(1 + 3\gamma - 2\beta + \zeta_2 + \xi)^\mathcal{P} \Phi_2 \\
&\quad + 2(1 + \zeta_3)^\mathcal{P} \Phi_3 + 2(3\gamma + 3\zeta_4 - 2\xi)^\mathcal{P} \Phi_4 - 2\xi^\mathcal{P} \Phi_W - (\zeta_1 - 2\xi)^\mathcal{P} \mathcal{A} ,
\end{align*}
\]

- Metric contains **PPN parameters** and **PPN potentials**.
 - **PPN potentials** describe source matter distribution.
 - **PPN parameters** characterize gravity theory.
Standard post-Newtonian metric

- PPN formalism assumes fixed standard gauge P.
- Metric in standard PPN gauge:

\[P^2 g_{00} = 2^P U, \]
\[P^2 g_{ij} = 2^P \gamma^P U \delta_{ij}, \]
\[P^3 g_{0i} = -\frac{1}{2} (3 + 4 \gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2 \xi)^P V_i - \frac{1}{2} (1 + \alpha_2 - \zeta_1 + 2 \xi)^P W_i, \]
\[P^4 g_{00} = -2^P \beta^P U^2 + (2 + 2 \gamma + \alpha_3 + \zeta_1 - 2 \xi)^P \Phi_1 + 2(1 + 3 \gamma - 2 \beta + \zeta_2 + \xi)^P \Phi_2 \]
\[+ 2(1 + \zeta_3)^P \Phi_3 + 2(3 \gamma + 3 \zeta_4 - 2 \xi)^P \Phi_4 - 2^P \Phi W - (\zeta_1 - 2 \xi)^P \mathcal{A}, \]

- Metric contains PPN parameters and PPN potentials.
 - PPN potentials describe source matter distribution.
 - PPN parameters characterize gravity theory.

\sim Decompose metric into gauge-invariant and pure gauge parts.
Gauge-invariant metric

- Definition of gauge-invariant metric components:

\[g_{00} = g^*, \quad g_{0i} = g_i^\circ, \quad g_{ij} = g^\bullet \delta_{ij} + g_{ij}^+ . \]
Gauge-invariant metric

- Definition of gauge-invariant metric components:
 \[g_{00} = g^*, \quad g_{0i} = g_i^\odot, \quad g_{ij} = g^\bullet \delta_{ij} + g_{ij}^\dagger. \]

- Conditions imposed on components:
 \[\partial^i g_i^\odot = 0, \quad \partial^i g_{ij}^\dagger = 0, \quad g_{[ij]}^\dagger = 0, \quad g_{ii}^\dagger = 0. \]
Gauge-invariant metric

- Definition of gauge-invariant metric components:
 \[g_{00} = g^*, \quad g_{0i} = g_i^\circ, \quad g_{ij} = g^* \delta_{ij} + g_{ij}^\dagger. \]

- Conditions imposed on components:
 \[\partial_i g_i^\circ = 0, \quad \partial_i g_{ij}^\dagger = 0, \quad g_{[ij]} = 0, \quad g_{ii}^\dagger = 0. \]

- Relation to arbitrary gauge \(\chi \):
 \[\chi^2 g_{00} = 2^* g^*, \]
 \[\chi^2 g_{ij} = 2^* \delta_{ij} + 2^\dagger g_{ij} + 2 \partial_i \partial_j 2^\chi + 2 \partial (i 2^\chi_j), \]
 \[\chi^3 g_{0i} = 3^\circ g_i + \partial_i 3^* + \partial_0 \partial_i 2^\chi + \partial_0 2^\chi_i, \]
 \[\chi^4 g_{00} = 4^* + 2 \partial_0 3^* + (\partial_i 2^\chi + 2^\chi_i) \partial_i 2^* g^*, \]
 \[\chi^4 g_{ij} = 4^* \delta_{ij} + 4^\dagger g_{ij} + 2 \partial_i \partial_j 4^\chi + \mathcal{O}(2) \cdot \mathcal{O}(2). \]
Gauge-invariant metric

- Definition of gauge-invariant metric components:
 \[g_{00} = g^*, \quad g_{0i} = g^i, \quad g_{ij} = g^\delta_{ij} + g^\dagger_{ij}. \]

- Conditions imposed on components:
 \[\partial^i g^\diamond_i = 0, \quad \partial^i g^\dagger_{ij} = 0, \quad g^\dagger_{[ij]} = 0, \quad g^\dagger_{ii} = 0. \]

- Relation to arbitrary gauge \(\mathcal{X} \):
 \[
 \mathcal{X}^2 g_{00} = g^2*, \\
 \mathcal{X}^2 g_{ij} = g^\delta_{ij} + g^\dagger_{ij} + 2 \partial_i \partial_j \mathcal{X}^\dagger + 2 \partial_i \partial_j \mathcal{X}^\diamond, \\
 \mathcal{X}^3 g_{0i} = g^i + \partial_i \mathcal{X}^* + \partial_0 \partial_i \mathcal{X}^\dagger + \partial_0 \mathcal{X}^\diamond, \\
 \mathcal{X}^4 g_{00} = g^* + 2 \partial_0 \mathcal{X}^* + (\partial_i \mathcal{X}^\dagger + \mathcal{X}^\diamond) \partial_i g^*, \\
 \mathcal{X}^4 g_{ij} = g^\delta_{ij} + g^\dagger_{ij} + 2 \partial_i \partial_j \mathcal{X}^\dagger + \mathcal{O}(2) \cdot \mathcal{O}(2). \]

- Gauge defining vector fields:
 \[X_i = \partial_i \mathcal{X}^\dagger + \mathcal{X}^\diamond, \quad X_0 = \mathcal{X}^*, \quad \partial^i \mathcal{X}^\dagger = 0. \]
Count number of independent components at each order:

<table>
<thead>
<tr>
<th>$\chi \frac{2}{g_{00}}$</th>
<th>$\chi \frac{2}{g_{ij}}$</th>
<th>$\chi \frac{3}{g_{0i}}$</th>
<th>$\chi \frac{4}{g_{00}}$</th>
<th>$\chi \frac{4}{g_{ij}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>$\mathbf{2}^{*}$</td>
<td>$\mathbf{2}^{*}$</td>
<td>$\mathbf{3}^{\diamond}$</td>
<td>$\mathbf{4}^{*}$</td>
<td>$\mathbf{4}^{*}$</td>
</tr>
<tr>
<td>1</td>
<td>$\mathbf{2}^{*}$</td>
<td>2</td>
<td>1</td>
<td>$\mathbf{2}^{\star}$</td>
</tr>
<tr>
<td>pure gauge</td>
<td>invariant</td>
<td>total</td>
<td>total</td>
<td>total</td>
</tr>
<tr>
<td>-</td>
<td>$\mathbf{2}^{\star}$</td>
<td>$\mathbf{2}^{\star}$</td>
<td>$\mathbf{3}^{\star}$</td>
<td>$\mathbf{4}^{\star}$</td>
</tr>
<tr>
<td>0</td>
<td>$\mathbf{2}^{\star}$</td>
<td>1</td>
<td>1</td>
<td>$\mathbf{4}^{\star}$</td>
</tr>
</tbody>
</table>

Components split into invariant and gauge parts.

Possible to separate physical information from coordinate choice.
Decomposition of metric components

- Count number of independent components at each order:

<table>
<thead>
<tr>
<th>Order</th>
<th>Total</th>
<th>Invariant</th>
<th>Pure Gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_2^0 g_{00}$</td>
<td>1</td>
<td>g^*</td>
<td>-</td>
</tr>
<tr>
<td>$\chi_2 g_{ij}$</td>
<td>6</td>
<td>g^*, g^\dagger_{ij}</td>
<td>X^\diamond, X_i°</td>
</tr>
<tr>
<td>$\chi_3^0 g_{0i}$</td>
<td>3</td>
<td>g_i°</td>
<td>X^*</td>
</tr>
<tr>
<td>$\chi_4^0 g_{00}$</td>
<td>1</td>
<td>g^*</td>
<td>-</td>
</tr>
<tr>
<td>$\chi_4 g_{ij}$</td>
<td>6</td>
<td>g^*, g^\dagger_{ij}</td>
<td>X^\diamond, X_i°</td>
</tr>
</tbody>
</table>

⇒ Components split into invariant and gauge parts.
Decomposition of metric components

- Count number of independent components at each order:

<table>
<thead>
<tr>
<th>Total</th>
<th>Invariant</th>
<th>Pure Gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^2 g_{00}$</td>
<td>g^*, g_{ij}</td>
<td>X^\dagger, X_i°</td>
</tr>
<tr>
<td>$\chi^2 g_{ij}$</td>
<td>2^*, 2^\dagger</td>
<td>$1 + 2$</td>
</tr>
<tr>
<td>$\chi^3 g_{0i}$</td>
<td>3°</td>
<td>1</td>
</tr>
<tr>
<td>$\chi^4 g_{00}$</td>
<td>4^*</td>
<td>1</td>
</tr>
<tr>
<td>$\chi^4 g_{ij}$</td>
<td>4^*, 4^\dagger</td>
<td>$1 + 2$</td>
</tr>
</tbody>
</table>

⇒ Components split into invariant and gauge parts.
⇒ Possible to separate physical information from coordinate choice.
Relation to standard PPN gauge

- Use relation between expansion coefficients:

\[P^k g = \sum_{0 \leq l_1 + 2l_2 + \ldots + k} \frac{1}{l_1! l_2! \ldots} \mathcal{P}^{l_1} \ldots \mathcal{P}^{l_k} g = \mathcal{P}^{k-l_1-2l_2-\ldots} g. \]
Relation to standard PPN gauge

- Use relation between expansion coefficients:

\[
P^k g = \sum_{0 \leq l_1 + 2l_2 + \ldots \leq k} \frac{1}{l_1! l_2! \ldots} \mathcal{E}_{l_1} \mathcal{E}_{l_2} \cdots \mathcal{E}_{l_k} \mathcal{P}_{k-l_1-2l_2-\ldots} g.
\]

- Split components of \(P g_{\mu\nu} \) into \(g_{\mu\nu} \) and \(P^\mu \).
Relation to standard PPN gauge

- Use relation between expansion coefficients:

\[\mathcal{P}^k g = \sum_{0 \leq l_1 + 2l_2 + \ldots \leq k} \frac{1}{l_1! l_2! \ldots} \mathcal{P}^l_1 \ldots \mathcal{P}^l_k \mathcal{P}^{k-l_1-2l_2-\ldots} g. \]

- Split components of \(\mathcal{P} g_{\mu\nu} \) into \(g_{\mu\nu} \) and \(P^\mu \).

⇒ Gauge defining vector fields:

\[
\begin{align*}
P^\diamond &= 0, \\
P^\circ_i &= 0, \\
P^* &= -\frac{1}{4} (2 + 4\gamma + \alpha_1 - 2\alpha_2 + 2\zeta_1 - 4\xi) \chi_0.
\end{align*}
\]
Relation to standard PPN gauge

- Use relation between expansion coefficients:
 \[P^k g = \sum_{0 \leq l_1 + 2l_2 + \ldots \leq k} \frac{1}{l_1! l_2! \ldots} \xi_1^{l_1} \xi_2^{l_2} \ldots g. \]

- Split components of \(P g_{\mu\nu} \) into \(g_{\mu\nu} \) and \(P^\mu \).

 \[P^\mu = 0, \quad P_i^\nu = 0, \quad P^* = -\frac{1}{4} (2 + 4\gamma + \alpha_1 - 2\alpha_2 + 2\zeta_1 - 4\xi) \chi,0. \]

 \[g^* = 2U, \quad g^\nu = 2\gamma U, \quad g^\dagger_{ij} = 0, \quad g_i^\nu = - \left(1 + \gamma + \frac{\alpha_1}{4} \right) (V_i + W_i), \]

 \[g^* = \frac{1}{2} (2 - \alpha_1 + 2\alpha_2 + 2\alpha_3) \Phi_1 + 2 (1 + 3\gamma - 2\beta + \zeta_2 + \xi) \Phi_2 + 2 (1 + \zeta_3) \Phi_3 + 2 (3\gamma + 3\zeta_4 - 2\xi) \Phi_4 - 2\xi \Phi_W - 2\beta U^2 + \frac{1}{2} (2 + 4\gamma + \alpha_1 - 2\alpha_2) \mathfrak{A} + \frac{1}{2} (2 + 4\gamma + \alpha_1 - 2\alpha_2 + 2\zeta_1 - 4\xi) \mathfrak{B}. \]
Gauge-invariant field equations

- Perform similar decomposition of energy-momentum tensor:

\[
T^* = T_{00} = \rho \left(1 - g_{00} + v^2 + \Pi \right) + \mathcal{O}(6),
\]

\[
T^\circ_i + \partial_i T^\dagger = T_{0i} = -\rho v_i + \mathcal{O}(5),
\]

\[
T^* \delta_{ij} + \triangle_{ij} T^\wedge + 2 \partial(i T^\Delta_{j}) + T^\dagger_{ij} = T_{ij} = \rho v_i v_j + p \delta_{ij} + \mathcal{O}(6).
\]
• Perform similar decomposition of energy-momentum tensor:

\[
T^* = T_{00} = \rho \left(1 - \frac{2}{\Pi_{00}} + \mathbf{v}^2 + \Pi \right) + \mathcal{O}(6), \\
T_i^\diamond + \partial_i T^\dagger = T_{0i} = -\rho \mathbf{v}_i + \mathcal{O}(5), \\
T^\dagger \delta_{ij} + \nabla_{ij} T^\bigtriangledown + 2 \partial_i (T_j^\bigtriangledown) + T^\dagger_{ij} = T_{ij} = \rho \mathbf{v}_i \mathbf{v}_j + p \delta_{ij} + \mathcal{O}(6).
\]

• Express components in terms of PPN potentials:

\[
\begin{align*}
\frac{2}{4\pi} T^* &= \rho = -\frac{1}{4\pi} \Delta U, \\
\frac{3}{4\pi} T^\dagger &= -\frac{1}{4\pi} \partial U, \\
\frac{3}{8\pi} T_i^\diamond &= \frac{1}{8\pi} \Delta (V_i + W_i), \\
\frac{4}{4\pi} T^* &= \rho \left(\Pi + \mathbf{v}^2 - \frac{2}{\Pi} \right) = -\frac{1}{4\pi} \Delta (\Phi_3 + \Phi_1 - 2\Phi_2), \\
\frac{4}{3} T^\dagger &= \frac{1}{3} \rho \mathbf{v}^2 + p = -\frac{1}{12\pi} \Delta (\Phi_1 + 3\Phi_4), \\
T^\bigtriangledown &= \frac{1}{16\pi} (3\Phi - \Phi_1).
\end{align*}
\]
Gauge-invariant field equations

- Perform similar decomposition of energy-momentum tensor:

\[
T^* = T_{00} = \rho \left(1 - \frac{2}{\Pi} + \frac{v^2}{\Pi} \right) + O(6),
\]

\[
T^\circ_i + \partial_i T^\dagger = T_{0i} = -\rho v_i + O(5),
\]

\[
T^* \delta_{ij} + \triangle_{ij} T^\dagger + 2\partial_j T^\triangle_i + T^\dagger_{ij} = T_{ij} = \rho v_i v_j + p \delta_{ij} + O(6).
\]

- Express components in terms of PPN potentials:

\[
\begin{align*}
2T^* &= \rho = -\frac{1}{4\pi} \triangle U, \\
3T^\circ &= -\frac{1}{4\pi} \partial_0 U, \\
3T^\dagger &= \frac{1}{8\pi} \triangle (V_i + W_i), \\
4T^* &= \rho \left(\Pi + v^2 - \frac{2}{\Pi} \right) = -\frac{1}{4\pi} \triangle (\Phi_3 + \Phi_1 - 2\Phi_2), \\
4T^\circ &= \frac{1}{3} \rho v^2 + p = -\frac{1}{12\pi} \triangle (\Phi_1 + 3\Phi_4), \\
4T^\dagger &= \frac{1}{16\pi} (3\Omega - \Phi_1).
\end{align*}
\]

- Decompose also gravity side \(\simeq \triangle g \).
Gauge-invariant field equations

1. Perform similar decomposition of energy-momentum tensor:

\[T^* = T_{00} = \rho \left(1 - \frac{2}{\Pi} g_{00} + v^2 + \Pi \right) + \mathcal{O}(6), \]

\[T^i_\circ + \partial_i T^\dagger = T_{0i} = -\rho v_i + \mathcal{O}(5), \]

\[T^\star \delta_{ij} + \Delta_{ij} T^{\Delta} + 2\partial (i T^{\Delta}_j) + T^{\dagger}_{ij} = T_{ij} = \rho v_i v_j + p \delta_{ij} + \mathcal{O}(6). \]

2. Express components in terms of PPN potentials:

\[\frac{2}{\Delta} T^* = \rho = -\frac{1}{4\pi} \Delta U, \quad \frac{3}{\Delta} T^\star = -\frac{1}{4\pi} \partial_0 U, \quad \frac{3}{\Delta} T^\circ_i = \frac{1}{8\pi} \Delta (V_i + W_i), \]

\[\frac{4}{\Delta} T^* = \rho \left(\Pi + v^2 - \frac{2}{\Delta} g^* \right) = -\frac{1}{4\pi} \Delta \left(\Phi_3 + \Phi_1 - 2\Phi_2 \right), \]

\[\frac{4}{\Delta} T^\star = \frac{1}{3} \rho v^2 + p = -\frac{1}{12\pi} \Delta \left(\Phi_1 + 3\Phi_4 \right), \quad \frac{4}{\Delta} T^{\Delta} = \frac{1}{16\pi} (3\Delta - \Phi_1). \]

3. Decompose also gravity side \(\simeq \Delta g \).

\[\Rightarrow \quad \text{Find PPN parameters by comparing coefficients on both sides.} \]
Action and field equations

- Action of scalar-tensor gravity with massless scalar field: [Nordtvedt ’70]

\[S = \frac{1}{2\kappa^2} \int_M d^4x \sqrt{-g} \left(\psi R - \frac{\omega(\psi)}{\psi} \partial_{\rho} \psi \partial^\rho \psi \right) + S_m[g_{\mu\nu}, \chi]. \]
Action and field equations

- Action of scalar-tensor gravity with massless scalar field: [Nordtvedt ‘70]

\[
S = \frac{1}{2\kappa^2} \int_M d^4x \sqrt{-g} \left(\psi R - \frac{\omega(\psi)}{\psi} \partial_\rho \psi \partial^\rho \psi \right) + S_m[g_{\mu\nu}, \chi].
\]

- Free function \(\omega(\psi)\) of the scalar field \(\psi\).
Action and field equations

- Action of scalar-tensor gravity with massless scalar field: \[\text{[Nordtvedt '70]} \]
 \[
 S = \frac{1}{2\kappa^2} \int_M d^4x \sqrt{-g} \left(\frac{\psi R}{\psi} \partial_\rho \psi \partial^\rho \psi \right) + S_m[g_{\mu\nu}, \chi].
 \]

- Free function \(\omega(\psi) \) of the scalar field \(\psi \).
- Work in Jordan conformal frame: no direct coupling between matter and scalar field.
Action and field equations

- Action of scalar-tensor gravity with massless scalar field: \[\text{Nordtvedt '70} \]
 \[
 S = \frac{1}{2\kappa^2} \int_M d^4x \sqrt{-g} \left(\psi R - \frac{\omega(\psi)}{\psi} \partial_\rho \psi \partial^\rho \psi \right) + S_m[g_{\mu\nu}, \chi].
 \]

- Free function \(\omega(\psi) \) of the scalar field \(\psi \).
- Work in Jordan conformal frame: no direct coupling between matter and scalar field.

⇒ Field equations:
 \[
 \psi R_{\mu\nu} - \nabla_\mu \partial_\nu \psi - \frac{\omega}{\psi} \partial_\mu \psi \partial_\nu \psi + \frac{g_{\mu\nu}}{4\omega + 6} \frac{d\omega}{d\psi} \partial_\rho \psi \partial^\rho \psi = \kappa^2 \left(T_{\mu\nu} - \frac{\omega + 1}{2\omega + 3} g_{\mu\nu} T \right)
 \]
 \[
 (2\omega + 3) \Box \psi + \frac{d\omega}{d\psi} \partial_\rho \psi \partial^\rho \psi = \kappa^2 T.
 \]
Action and field equations

- Action of scalar-tensor gravity with massless scalar field: \[\text{[Nordtvedt '70]} \]

\[
S = \frac{1}{2\kappa^2} \int_M d^4x \sqrt{-g} \left(\psi R - \frac{\omega(\psi)}{\psi} \partial_\rho \psi \partial^\rho \psi \right) + S_m[g_{\mu\nu}, \chi].
\]

- Free function \(\omega(\psi) \) of the scalar field \(\psi \).

- Work in Jordan conformal frame: no direct coupling between matter and scalar field.

\[\Rightarrow \text{Field equations:} \]

\[
\psi R_{\mu\nu} - \nabla_\mu \partial_\nu \psi - \frac{\omega}{\psi} \partial_\mu \psi \partial_\nu \psi + \frac{g_{\mu\nu}}{4\omega + 6} \frac{d\omega}{d\psi} \partial_\rho \psi \partial^\rho \psi = \kappa^2 \left(T_{\mu\nu} - \frac{\omega + 1}{2\omega + 3} g_{\mu\nu} T \right),
\]

\[
(2\omega + 3) \Box \psi + \frac{d\omega}{d\psi} \partial_\rho \psi \partial^\rho \psi = \kappa^2 T.
\]

\[\Rightarrow \text{Decompose into gauge-invariant field equations.} \]
Perturbative solution ansatz

- Consider arbitrary gauge \mathcal{X} to pull equations and fields to reference spacetime M_0.

- Relevant components of scalar field:
 - $X^0 \psi = \Psi$
 - $X^2 \psi$
 - $X^4 \psi$

- Cosmological background value Ψ assumed to be constant.

- Relation to gauge-invariant scalar field perturbations:
 - $X^2 \psi = 2 \psi$
 - $X^4 \psi = 4 \psi + (\partial_i X^2 \psi + 2 \Box_i X^2 \psi)^2$

- Taylor expansion of free function ω around cosmological background value:
 - $\omega_0 = \omega(\Psi)$
 - $\omega_1 = \omega'(\Psi)$

\Rightarrow Zeroth order $X^0 \psi = \Psi$, $X^0 g_{\mu\nu} = \eta_{\mu\nu}$ solves (vacuum) field equations.

\Rightarrow Remaining equations determine gauge-invariant metric components.
Perturbative solution ansatz

- Consider arbitrary gauge \mathcal{X} to pull equations and fields to reference spacetime M_0.
- Relevant components of scalar field: $\mathcal{X}_0 \psi = \Psi$, $\mathcal{X}_2 \psi$, $\mathcal{X}_4 \psi$.

Cosmological background value Ψ assumed to be constant.

Relation to gauge-invariant scalar field perturbations $\mathcal{X}_2 \psi$ and $\mathcal{X}_4 \psi$:

$\mathcal{X}_2 \psi = 2 \psi$, $\mathcal{X}_4 \psi = 4 \psi + \left(\partial_i^2 \mathcal{X}_2 \psi \right)$.

Taylor expansion of free function ω around cosmological background value:

$\omega_0 = \omega(\Psi)$, $\omega_1 = \omega'(\Psi)$.

\Rightarrow Zeroth order $\mathcal{X}_0 \psi = \Psi$, $\mathcal{X}_0 g_{\mu\nu} = \eta_{\mu\nu}$ solves (vacuum) field equations.

\Rightarrow Remaining equations determine gauge-invariant metric components.
Perturbative solution ansatz

- Consider arbitrary gauge \mathcal{X} to pull equations and fields to reference spacetime M_0.
- Relevant components of scalar field: $\mathcal{X}_{}^0 \psi = \Psi, \mathcal{X}_{}^2 \psi, \mathcal{X}_{}^4 \psi$.
- Cosmological background value Ψ assumed to be constant.
Consider arbitrary gauge \mathcal{X} to pull equations and fields to reference spacetime M_0.

- Relevant components of scalar field: $\mathcal{X}^0 \psi = \psi$, $\mathcal{X}^2 \psi$, $\mathcal{X}^4 \psi$.

- Cosmological background value Ψ assumed to be constant.

- Relation to gauge-invariant scalar field perturbations ψ and $\bar{\psi}$:

$$\mathcal{X}^2 \psi = \bar{\psi}, \quad \mathcal{X}^4 \psi = \psi + (\partial_i \mathcal{X}^\iota + \mathcal{X}_i^\iota) \bar{\psi}_{,i}.$$

Taylor expansion of free function ω around cosmological background value:

$$\omega_0 = \omega(\Psi), \quad \omega_1 = \omega'(\Psi).$$
Perturbative solution ansatz

- Consider arbitrary gauge \mathcal{X} to pull equations and fields to reference spacetime M_0.
- Relevant components of scalar field: $\mathcal{X}^0\psi = \psi$, $\mathcal{X}^2\psi$, $\mathcal{X}^4\psi$.
- Cosmological background value Ψ assumed to be constant.
- Relation to gauge-invariant scalar field perturbations ψ and $\tilde{\psi}$:
 \[\mathcal{X}^2\psi = \tilde{\psi} , \quad \mathcal{X}^4\psi = \psi + (\partial_i \mathcal{X}^\gamma + \mathcal{X}^\gamma_i) \psi, \]
- Taylor expansion of free function ω around cosmological background value:
 \[\omega_0 = \omega(\Psi) , \quad \omega_1 = \omega'(\Psi) . \]
Perturbative solution ansatz

- Consider arbitrary gauge \mathcal{X} to pull equations and fields to reference spacetime M_0.
- Relevant components of scalar field: $\mathcal{X}^{0}_\psi = \psi, \mathcal{X}^2_\psi, \mathcal{X}^4_\psi$.
- Cosmological background value Ψ assumed to be constant.
- Relation to gauge-invariant scalar field perturbations ψ^2 and ψ^4:
 $$\mathcal{X}^2_\psi = \psi^2, \quad \mathcal{X}^4_\psi = \psi^4 + (\partial_i \mathcal{X}^\psi + \mathcal{X}^\psi_i) \psi_{,i}^2.$$
- Taylor expansion of free function ω around cosmological background value:
 $$\omega_0 = \omega(\Psi), \quad \omega_1 = \omega'(\Psi).$$

\Rightarrow Zeroth order $\mathcal{X}^0_\psi = \psi, \mathcal{X}^0 g_{\mu\nu} = \eta_{\mu\nu}$ solves (vacuum) field equations.
Perturbative solution ansatz

- Consider arbitrary gauge \mathcal{X} to pull equations and fields to reference spacetime M_0.
- Relevant components of scalar field: $\mathcal{X}_0 \psi = \psi$, $\mathcal{X}_2 \psi$, $\mathcal{X}_4 \psi$.
- Cosmological background value Ψ assumed to be constant.
- Relation to gauge-invariant scalar field perturbations $\tilde{\psi}$ and $\tilde{\psi}$:

$$\mathcal{X}^0 \psi = \tilde{\psi}, \quad \mathcal{X}^2 \psi = \psi + (\partial_i \mathcal{X}^0 + \mathcal{X}^i_2) \psi,i.$$

- Taylor expansion of free function ω around cosmological background value:

$$\omega_0 = \omega(\Psi), \quad \omega_1 = \omega'(\Psi).$$

\Rightarrow Zeroth order $\mathcal{X}_0 \psi = \Psi$, $\mathcal{X}_0 g_{\mu \nu} = \eta_{\mu \nu}$ solves (vacuum) field equations.

\Rightarrow Remaining equations determine gauge-invariant metric components.
Post-Newtonian metric and PPN parameters

- Normalization of the gravitational constant:

\[\kappa^2 = 4\pi \psi \frac{2\omega_0 + 3}{\omega_0 + 2}. \]
Post-Newtonian metric and PPN parameters

- Normalization of the gravitational constant:

\[\kappa^2 = 4\pi \Psi \frac{2\omega_0 + 3}{\omega_0 + 2}. \]

⇒ Metric in terms of PPN potentials:

\[
\begin{align*}
\mathbf{g}^* &= 2U, \\
\mathbf{g}^* &= 2\frac{\omega_0 + 1}{\omega_0 + 2}U, \\
\mathbf{g}^t &= 0, \\
\mathbf{g}^\phi &= -\frac{2\omega_0 + 3}{\omega_0 + 2}(V_i + W_i), \\
\mathbf{g}^4 &= \frac{3\omega_0 + 4}{\omega_0 + 2}(\mathbf{A} + \mathbf{B}) + \Phi_1 + \left(4\frac{\omega_0 + 2}{\omega_0 + 2} - \frac{\omega_1 \Psi}{(2\omega_0 + 3)(\omega_0 + 2)^2}\right)\Phi_2 \\
&\quad + 3\Phi_3 + 6\frac{\omega_0 + 1}{\omega_0 + 2}\Phi_4 - 2\left(1 + \frac{\omega_1 \Psi}{4(2\omega_0 + 3)(\omega_0 + 2)^2}\right)U^2.
\end{align*}
\]
Post-Newtonian metric and PPN parameters

- Normalization of the gravitational constant:

\[\kappa^2 = 4\pi \Psi \frac{2\omega_0 + 3}{\omega_0 + 2}. \]

⇒ Metric in terms of PPN potentials:

\[g^* = 2U, \quad g^\omega = 2\omega_0 + 1 \frac{U}{\omega_0 + 2}, \quad g^{\uparrow} = 0, \quad g^\phi = -\frac{2\omega_0 + 3}{\omega_0 + 2} (V_i + W_i), \]

\[g^4 = \frac{3\omega_0 + 4}{\omega_0 + 2} (\mathbf{A} + \mathbf{B}) + \Phi_1 + \left(\frac{4\omega_0 + 2}{\omega_0 + 2} - \frac{\omega_1 \psi}{(2\omega_0 + 3)(\omega_0 + 2)^2} \right) \Phi_2 \]

\[+ 3 \Phi_3 + 6 \frac{\omega_0 + 1}{\omega_0 + 2} \Phi_4 - 2 \left(1 + \frac{\omega_1 \psi}{4(2\omega_0 + 3)(\omega_0 + 2)^2} \right) U^2. \]

⇒ PPN parameters reproduce well-known result: [Nordtvedt '70]

\[\gamma = \frac{\omega_0 + 1}{\omega_0 + 2}, \quad \beta = 1 + \frac{\omega_1 \psi}{4(2\omega_0 + 3)(\omega_0 + 2)^2}, \quad \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = \xi = 0. \]
Outline

1 Introduction
2 Gauge-invariant higher order perturbations
3 Parametrized post-Newtonian formalism
4 Gauge-invariant PPN formalism
5 Example: PPN limit of scalar-tensor gravity
6 Conclusion
Summary

- **Gauge-invariant perturbation theory:**
 - Distinguish between physical and background spacetime.
 - Gauge pulls physical metric to background spacetime.
 - Gauge dependent comparison between both metrics.
 - Decompose perturbations into physical data and gauge data.

- **Parametrized post-Newtonian formalism:**
 - Weak-field approximation of metric gravity theories.
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.

- **Gauge-invariant PPN formalism:**
 - Apply gauge-invariant perturbation theory to PPN formalism.
 - Decomposition of metric and field equations.
 - Avoids issues arising from necessity to choose a gauge.
 - Simpler set of equations to determine PPN parameters.
 - Can also be formulated for tetrad instead of metric.
Summary

- **Gauge-invariant perturbation theory:**
 - Distinguish between physical and background spacetime.
 - Gauge pulls physical metric to background spacetime.
 - Gauge dependent comparison between both metrics.
 - Decompose perturbations into physical data and gauge data.

- **Parametrized post-Newtonian formalism:**
 - Weak-field approximation of metric gravity theories.
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.
Summary

- **Gauge-invariant perturbation theory:**
 - Distinguish between physical and background spacetime.
 - Gauge pulls physical metric to background spacetime.
 - Gauge dependent comparison between both metrics.
 - Decompose perturbations into physical data and gauge data.

- **Parametrized post-Newtonian formalism:**
 - Weak-field approximation of metric gravity theories.
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.

- **Gauge-invariant PPN formalism:**
 - Apply gauge-invariant perturbation theory to PPN formalism.
 - Decomposition of metric and field equations.
 - Avoids issues arising from necessity to choose a gauge.
 - Simpler set of equations to determine PPN parameters.
 - Can also be formulated for tetrad instead of metric.
Summary

- **Gauge-invariant perturbation theory:**
 - Distinguish between physical and background spacetime.
 - Gauge pulls physical metric to background spacetime.
 - Gauge dependent comparison between both metrics.
 - Decompose perturbations into physical data and gauge data.

- **Parametrized post-Newtonian formalism:**
 - Weak-field approximation of metric gravity theories.
 - Characterizes gravity theories by 10 (constant) parameters.
 - Parameters closely related to solar system observations.

- **Gauge-invariant PPN formalism:**
 - Apply gauge-invariant perturbation theory to PPN formalism.
 - Decomposition of metric and field equations.
 - Avoids issues arising from necessity to choose a gauge.
 - Simpler set of equations to determine PPN parameters.
 - Can also be formulated for tetrad instead of metric.

- **Post-Newtonian limit of scalar-tensor gravity:**
 - Perturbative field equations simplify in gauge-invariant formulation.
 - Consistency check: obtain well-known PPN parameters.
 - Also possible to use tetrad formulation to calculate solution.
Outlook

- Extend formalism by including higher perturbation orders:
 - General covariant expansion instead of space-time split.
 - Allow also for fast-moving source masses.
 - Consider inspiral phase of black hole merger event.
 - Devise method for calculating gravitational waves.

- Further possible extensions and modifications:
 - Apply to formalism based on modified density $\rho^* = \rho \sqrt{-g_{00}}$.
 - [Will '18]
 - Allow for multiple dynamical metrics / tetrads.
 - Take into account Vainshtein or other screening mechanisms.
 - Consider cosmological background and time variability of PPN parameters.
 - Include further PPN potentials appearing in higher derivative theories.

- Apply formalism to complicated gravity theories:
 - Bimetric and multimetric gravity theories.
 - Multi-scalar Horndeski generalizations.
 - Theories involving generalized Proca fields.
 - Extensions based on metric-affine geometry.
 - Extensions of teleparallel and symmetric teleparallel gravity.
Outlook

- Extend formalism by including higher perturbation orders:
 - General covariant expansion instead of space-time split.
 - Allow also for fast-moving source masses.
 - Consider inspiral phase of black hole merger event.
 - Devise method for calculating gravitational waves.

- Further possible extensions and modifications:
 - Apply to formalism based on modified density $\rho^* = \rho \sqrt{-g} u^0$. [Will '18]
 - Allow for multiple dynamical metrics / tetrads.
 - Take into account Vainshtein or other screening mechanisms.
 - Consider cosmological background and time variability of PPN parameters.
 - Include further PPN potentials appearing in higher derivative theories.
Outlook

- Extend formalism by including higher perturbation orders:
 - General covariant expansion instead of space-time split.
 - Allow also for fast-moving source masses.
 - Consider inspiral phase of black hole merger event.
 - Devise method for calculating gravitational waves.

- Further possible extensions and modifications:
 - Apply to formalism based on modified density \(\rho^* = \rho \sqrt{-gu^0} \). [Will '18]
 - Allow for multiple dynamical metrics / tetrads.
 - Take into account Vainshtein or other screening mechanisms.
 - Consider cosmological background and time variability of PPN parameters.
 - Include further PPN potentials appearing in higher derivative theories.

- Apply formalism to complicated gravity theories:
 - Bimetric and multimetric gravity theories.
 - Multi-scalar Horndeski generalizations.
 - Theories involving generalized Proca fields.
 - Extensions based on metric-affine geometry.
 - Extensions of teleparallel and symmetric teleparallel gravity.
Further reading

MH,
“Gauge invariant approach to the parametrized post-Newtonian formalism”,