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Why use tetrads in observations?

• Every observer can establish local frame of reference at x ∈ M:
◦ Four-velocity of observer direction of time component.
◦ Clock showing proper time normalization of time component.
◦ Light rays / radar experiment direction of spatial components.
◦ Light turnaround time normalization of spatial components.
◦ Parity-violating particles orientation of frame.

⇒ Established frames are related by proper Lorentz transformation.
• Frames can be chosen independently at every point x ∈ M.
⇒ “Fields of frames” related by local Lorentz transformation.
• Measurements of frequency, distance, time etc relative to frame.
⇒ Observed quantities, in general, depend on choice of frame.
⇒ Need prescription to translate quantities between different frames.
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Inertial observers and frames

• Observers follow world lines γ : R→ M.

• Inertial observers: tangent γ̇µ = e0
µ follows parallel transport:

de0
µ

dτ
+
◦
Γµ

νρe0
νe0

ρ = 0 . (1)

• Inertial frame: frame ea
µ follows parallel transport:

dea
µ

dτ
+
◦
Γµ

νρea
νe0

ρ = 0 . (2)

⇒ Inertial frame defined along world line.
• World lines of initially separated inertial observers may cross.
⇒ Inertial observer world lines may not form congruences.
 Inertial frames in general not extendable beyond world line.
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What is local Lorentz covariance?

Statement of local Lorentz covariance
Observable, physical quantities are Lorentz covariant, i.e., at every
point x ∈ M of spacetime M the physical quantities Q,Q′ measured at
x with respect to orthonormal frames θ, θ′, which are related to each
other by a (proper) Lorentz transformation Λ ∈ SO0(1,3), θ = Λθ′, are
related to each other by some representation ρ : SO0(1,3)→ GL(n) of
the Lorentz group, Q = ρ(Λ)Q′.

Consequence of local Lorentz covariance
Observable, physical fields are described by sections of bundles
associated to the orthonormal frame bundle via their corresponding
representation ρ, i.e., they are tensor fields.
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The Weitzenböck gauge

• Common lore: One can always use the Weitzenböck gauge.
◦ The spin connection is flat:

∂µω
a

bν − ∂νωa
bµ + ωa

cµω
c

bν − ωa
cνω

c
bµ ≡ 0 . (3)

⇒ The spin connection can always be written in the form

ωa
bµ = Λa

c∂µ(Λ−1)c
b . (4)

⇒ One can achieve the Weitzenböck gauge by θa
µ = Λa

b
w

θb
µ.

• Λa
b and

w
θa

µ defined only up to global transform

Λa
b 7→ Λ′ab = Λa

cΩc
b ,

w
θa

µ 7→
w
θ′aµ = (Ω−1)a

b
w
θb

µ . (5)

• Questions posed by the adept of geometry:

1. How can we determine the transformation Λa
b?

2. Is this even true?

• Remark: this holds also in symmetric and general teleparallelism.
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How to obtain the Weitzenböck gauge?

• Recall that we have gauge invariant quantities:
◦ The metric gµν = ηabθ

a
µθ

b
ν .

◦ The teleparallel affine connection Γµ
νρ = ea

µ
(
∂ρθ

a
ν + ωa

bρθ
b
ν

)
.

• The tetrad and connection satisfy the “tetrad postulate”:

∂µθ
a
ν + ωa

bµθ
b
ν − Γρ

νµθ
a
ρ = 0 . (6)

• The tetrad postulate also holds in the Weitzenböck gauge.

⇒ Each component
w
θa

µdxµ is a covariantly constant covector field.
⇒ Recipe for integrating the connection:

1. Choose
w

θa
µ(x) at some x ∈ M to fit with the metric.

2. For any other y ∈ M, choose path x  y , and parallel transport.

• Obtained tetrad satisfies required properties:

X
w

θa
µ gives correct metric, since connection is metric-compatible.

X Global Lorentz invariance encoded in freedom of choice for
w

θa
µ(x).
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Can we always use the Weitzenböck gauge?

• Recipe for integrating the connection:
1. At some x ∈ M,

choose
w

θa
µ(x) to fit with the metric.

2. For any other y ∈ M,

choose path x
γ
 y , and parallel transport.

• What happens if we choose another path x
γ′
 y?

X Vanishing curvature: parallel transport along both path agrees.
 But only if γ and γ′ are homotopic paths!

M

Rµ
νρσ = 0

x

yγ

γ′
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Trouble with the tetrad?

• Starting from an arbitrary tetrad and flat spin connection:
◦ One may always locally transform into Weitzenböck gauge.
◦ One may not always globally transform into Weitzenböck gauge.

• Is there always some global tetrad and flat spin connection?
• The case of the tetrad:

X
◦ We want to be able to describe spinor fields on spacetime.
⇒ Physical spacetime manifold must admit a spin structure.
◦ Spacetime admits a spin structure⇔ it is parallelizable. [Geroch ’68]

⇒ Physical spacetime possesses global frame bundle sections.

• The case of the spin connection:

X
◦ Parallelizable manifold always admits flat affine connection Γ.
⇒ A spin connection can be constructed from the “tetrad postulate”.

⇒ Physical spacetime always has global tetrad and spin connection.
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Palatini and the space of orbits

• Consider local Lorentz transformations Λ : M → SO(1,3):
◦ Simultaneous action on tetrad and spin connection:

(θ, ω) 7→ (Λθ,ΛωΛ−1 + ΛdΛ−1) . (7)

◦ (θ, ω) Λ∼(θ′, ω′) if and only if (g, Γ) = (g′, Γ′).
⇒ Orbits parametrized by metric and teleparallel affine connection.

• Consider locally SO(1,3)-invariant teleparallel gravity theory:
◦ Λ : M → SO(1,3) maps solutions to solutions.

⇒ Only metric and affine connection become dynamical variables.

• Decomposition of the Lorentz group:
◦ Proper Lorentz group SO0(1,3) ⊂ SO(1,3), T,P ∈ SO(1,3).
◦ Standard model of particle physics only invariant under SO0(1,3).
⇒ Need orientation and time orientation in addition to g and Γ.
⇒ Physical geometries parametrized by orbits of SO0(1,3).

• Physical geometry: SO0(1,3) reduction of the frame bundle & Γ.
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What about the teleparallel affine connection?

• Coupling of the teleparallel affine connection Γ:
◦ No direct coupling with matter (commonly considered consistent).
◦ Possible coupling to metric through gravity (vanishes in TEGR).

⇒ Teleparallel connection becomes just (another) “dark” field:
◦ Scalar fields / dark energy in scalar-tensor theories.
◦ “Dark” vector fields, “dark” photons in generalized Proca theories.
◦ Second metric in bimetric theories.

⇒ The “usual rules” for playing with “dark” fields apply:
◦ Find out which degrees of freedom couple to physical observables.
◦ “Remnant symmetries” may yield gauge degrees of freedom.
◦ Make sure physical degrees of freedom obey healthy evolution.
 Pay attention to possible pathologies:

· Is the evolution of physical degrees of freedom determined?
· Are the physical degrees of freedom stable under perturbations?1

· Does the theory remain healthy under quantization?

1See talk by Jose Beltrán Jiménez on strong coupling!
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Dynamical field variables in teleparallel gravity

• Whet are the dynamical field variables in teleparallel gravity?
1. Only a tetrad.

2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a SO0(1,3)-reduction of the frame bundle.

• Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

• Can we still use any of the other field variables?

4→ 3: If (time) orientation is fixed, metric and connection are sufficient.
3→ 2: Possible to choose tetrad and spin connection as representatives.
2→ 1: Locally possible to transform into Weitzenböck gauge.

⇒ Most fundamental variables found in geometric picture.
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The geometric picture

1. Start with the general linear frame bundle π : GL(M)→ M.

2. Metric reduces bundle to orthonormal frame bundle P̃.
3. Orientation and time orientation select oriented frame bundle P.
4. Connection specifies horizontal directions TP = VP ⊕ HP in P.

M

π

GL(M)

P̃
P

HP
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Conclusion

1. Physical observations single out frames which are:
◦ Orthonormal - by using clocks, measuring rods, simultaneity.
◦ Oriented - by using particles whose interaction violates parity.
◦ Time oriented - by using cosmic evolution as time arrow.

2. Physically observable geometry to be determined by gravity.
⇒ Gravity theory based on SO0(1,3)-reduction of frame bundle.
3. Teleparallel gravity: flat, affine connection as additional variable:

◦ General teleparallel gravity: connection couples to metric.
◦ TEGR: connection ∼ pure divergence in action 9 field equations.

4. Other variables can be chosen for convenience:
◦ Metric and affine connection if orientation is fixed.
◦ Tetrad and spin connection as representatives.
◦ Local Lorentz transformation for local Weitzenböck gauge.

Mantra
In order to understand gravity, one must understand geometry.
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Extra: the associated bundle

π πρ

M
P P ×ρ F

x

p

(p, f ) 7→ p
(p, f ) 7→ [p, f ]

Px × F

Px

(P ×ρ F )x

{p} × F
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Extra: the many faces of connections

TeE

M

E

Tπ(e)M

VeE

HeE

v

η(e, v)

η(e, •)

v ′

σ∗(v ′)

σ∗

w
θ(w) = wV

wH

θ

j1π(e)σ = ω(e)

π(e)

e

0

0

π π∗τ
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