Gauge transformations and Lorentz invariance A geometric view on teleparallel gravity

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

Teleparallel Gravity Workshop-Seminar - 21. 6. 2021

- Every observer can establish local frame of reference at $x \in M$:
 - Four-velocity of observer → direction of time component.
 - Clock showing proper time \rightsquigarrow normalization of time component.
 - Light rays / radar experiment ~> direction of spatial components.
 - Light turnaround time ~ normalization of spatial components.
 - Parity-violating particles ~> orientation of frame.

- Every observer can establish local frame of reference at $x \in M$:
 - Four-velocity of observer → direction of time component.
 - Clock showing proper time ~> normalization of time component.
 - Light rays / radar experiment → direction of spatial components.
 - Light turnaround time ~ normalization of spatial components.
 - Parity-violating particles \rightsquigarrow orientation of frame.
- \Rightarrow Established frames are related by proper Lorentz transformation.

- Every observer can establish local frame of reference at $x \in M$:
 - Four-velocity of observer → direction of time component.
 - Clock showing proper time ~> normalization of time component.
 - Light rays / radar experiment → direction of spatial components.
 - Light turnaround time ~ normalization of spatial components.
 - Parity-violating particles \rightsquigarrow orientation of frame.
- \Rightarrow Established frames are related by proper Lorentz transformation.
 - Frames can be chosen independently at every point $x \in M$.

- Every observer can establish local frame of reference at $x \in M$:
 - Four-velocity of observer → direction of time component.
 - Clock showing proper time ~> normalization of time component.
 - Light rays / radar experiment ~> direction of spatial components.
 - Light turnaround time ~ normalization of spatial components.
 - Parity-violating particles \rightsquigarrow orientation of frame.
- \Rightarrow Established frames are related by proper Lorentz transformation.
 - Frames can be chosen independently at every point $x \in M$.
- \Rightarrow "Fields of frames" related by local Lorentz transformation.

- Every observer can establish local frame of reference at $x \in M$:
 - Four-velocity of observer → direction of time component.
 - Clock showing proper time ~> normalization of time component.
 - Light rays / radar experiment → direction of spatial components.
 - Light turnaround time → normalization of spatial components.
 - Parity-violating particles ~> orientation of frame.
- \Rightarrow Established frames are related by proper Lorentz transformation.
 - Frames can be chosen independently at every point $x \in M$.
- \Rightarrow "Fields of frames" related by local Lorentz transformation.
 - Measurements of frequency, distance, time etc relative to frame.

- Every observer can establish local frame of reference at $x \in M$:
 - Four-velocity of observer → direction of time component.
 - Clock showing proper time ~> normalization of time component.
 - Light rays / radar experiment ~> direction of spatial components.
 - Light turnaround time ~> normalization of spatial components.
 - Parity-violating particles ~> orientation of frame.
- \Rightarrow Established frames are related by proper Lorentz transformation.
 - Frames can be chosen independently at every point $x \in M$.
- \Rightarrow "Fields of frames" related by local Lorentz transformation.
 - Measurements of frequency, distance, time etc relative to frame.
- \Rightarrow Observed quantities, in general, depend on choice of frame.

- Every observer can establish local frame of reference at $x \in M$:
 - Four-velocity of observer ---- direction of time component.
 - Clock showing proper time ~> normalization of time component.
 - Light rays / radar experiment ~> direction of spatial components.
 - Light turnaround time ~> normalization of spatial components.
 - Parity-violating particles ~> orientation of frame.
- \Rightarrow Established frames are related by proper Lorentz transformation.
 - Frames can be chosen independently at every point $x \in M$.
- \Rightarrow "Fields of frames" related by local Lorentz transformation.
 - Measurements of frequency, distance, time etc relative to frame.
- \Rightarrow Observed quantities, in general, depend on choice of frame.
- \Rightarrow Need prescription to translate quantities between different frames.

• Observers follow world lines $\gamma : \mathbb{R} \to M$.

- Observers follow world lines $\gamma : \mathbb{R} \to M$.
- Inertial observers: tangent $\dot{\gamma}^{\mu} = e_0{}^{\mu}$ follows parallel transport:

$$\frac{de_{0}^{\mu}}{d\tau} + \mathring{\Gamma}^{\mu}{}_{\nu\rho} e_{0}{}^{\nu} e_{0}{}^{\rho} = 0.$$
 (1)

- Observers follow world lines $\gamma : \mathbb{R} \to M$.
- Inertial observers: tangent $\dot{\gamma}^{\mu} = e_0{}^{\mu}$ follows parallel transport:

$$\frac{{\rm d}e_0{}^{\mu}}{{\rm d}\tau} + \mathring{\Gamma}^{\mu}{}_{\nu\rho} e_0{}^{\nu} e_0{}^{\rho} = 0. \qquad (1)$$

$$\frac{\mathrm{d}\boldsymbol{e}_{a}^{\mu}}{\mathrm{d}\tau} + \mathring{\Gamma}^{\mu}{}_{\nu\rho}\boldsymbol{e}_{a}{}^{\nu}\boldsymbol{e}_{0}{}^{\rho} = 0. \tag{2}$$

- Observers follow world lines $\gamma : \mathbb{R} \to M$.
- Inertial observers: tangent $\dot{\gamma}^{\mu} = e_0{}^{\mu}$ follows parallel transport:

$$\frac{{\rm d}e_0{}^{\mu}}{{\rm d}\tau} + \mathring{\Gamma}^{\mu}{}_{\nu\rho} e_0{}^{\nu} e_0{}^{\rho} = 0. \qquad (1)$$

• Inertial frame: frame e_a^{μ} follows parallel transport:

$$\frac{\mathrm{d}\boldsymbol{e}_{a}^{\mu}}{\mathrm{d}\tau}+\overset{\circ}{\Gamma}^{\mu}{}_{\nu\rho}\boldsymbol{e}_{a}{}^{\nu}\boldsymbol{e}_{0}{}^{\rho}=0\,. \tag{2}$$

 \Rightarrow Inertial frame defined along world line.

- Observers follow world lines $\gamma : \mathbb{R} \to M$.
- Inertial observers: tangent $\dot{\gamma}^{\mu} = e_0{}^{\mu}$ follows parallel transport:

$$\frac{{\rm d}e_0{}^{\mu}}{{\rm d}\tau} + \mathring{\Gamma}^{\mu}{}_{\nu\rho} e_0{}^{\nu} e_0{}^{\rho} = 0. \qquad (1)$$

$$\frac{\mathrm{d}\boldsymbol{e}_{\boldsymbol{a}}^{\mu}}{\mathrm{d}\tau} + \mathring{\Gamma}^{\mu}{}_{\nu\rho}\boldsymbol{e}_{\boldsymbol{a}}{}^{\nu}\boldsymbol{e}_{\boldsymbol{0}}{}^{\rho} = \boldsymbol{0}\,. \tag{2}$$

- \Rightarrow Inertial frame defined along world line.
 - World lines of initially separated inertial observers may cross.

- Observers follow world lines $\gamma : \mathbb{R} \to M$.
- Inertial observers: tangent $\dot{\gamma}^{\mu} = e_0{}^{\mu}$ follows parallel transport:

$$\frac{{\rm d}e_0{}^{\mu}}{{\rm d}\tau} + \mathring{\Gamma}^{\mu}{}_{\nu\rho} e_0{}^{\nu} e_0{}^{\rho} = 0. \qquad (1)$$

$$\frac{\mathrm{d}\boldsymbol{e}_{\boldsymbol{a}}^{\mu}}{\mathrm{d}\tau} + \mathring{\Gamma}^{\mu}{}_{\nu\rho}\boldsymbol{e}_{\boldsymbol{a}}{}^{\nu}\boldsymbol{e}_{\boldsymbol{0}}{}^{\rho} = \boldsymbol{0}\,. \tag{2}$$

- \Rightarrow Inertial frame defined along world line.
 - World lines of initially separated inertial observers may cross.
- \Rightarrow Inertial observer world lines may not form congruences.

- Observers follow world lines $\gamma : \mathbb{R} \to M$.
- Inertial observers: tangent $\dot{\gamma}^{\mu} = e_0^{\mu}$ follows parallel transport:

$$\frac{{\rm d}e_0{}^{\mu}}{{\rm d}\tau} + \mathring{\Gamma}^{\mu}{}_{\nu\rho} e_0{}^{\nu} e_0{}^{\rho} = 0. \qquad (1)$$

$$\frac{\mathrm{d}\boldsymbol{e}_{a}^{\mu}}{\mathrm{d}\tau}+\overset{\circ}{\Gamma}^{\mu}{}_{\nu\rho}\boldsymbol{e}_{a}{}^{\nu}\boldsymbol{e}_{0}{}^{\rho}=0\,. \tag{2}$$

- \Rightarrow Inertial frame defined along world line.
 - World lines of initially separated inertial observers may cross.
- \Rightarrow Inertial observer world lines may not form congruences.
- Inertial frames in general not extendable beyond world line.

Statement of local Lorentz covariance

Observable, physical quantities are Lorentz covariant, i.e., at every point $x \in M$ of spacetime M the physical quantities Q, Q' measured at x with respect to orthonormal frames θ, θ' , which are related to each other by a (proper) Lorentz transformation $\Lambda \in SO_0(1,3), \theta = \Lambda \theta'$, are related to each other by some representation $\rho : SO_0(1,3) \rightarrow GL(n)$ of the Lorentz group, $Q = \rho(\Lambda)Q'$.

Statement of local Lorentz covariance

Observable, physical quantities are Lorentz covariant, i.e., at every point $x \in M$ of spacetime M the physical quantities Q, Q' measured at x with respect to orthonormal frames θ, θ' , which are related to each other by a (proper) Lorentz transformation $\Lambda \in SO_0(1,3), \theta = \Lambda \theta'$, are related to each other by some representation $\rho : SO_0(1,3) \rightarrow GL(n)$ of the Lorentz group, $Q = \rho(\Lambda)Q'$.

Consequence of local Lorentz covariance

Observable, physical fields are described by sections of bundles associated to the orthonormal frame bundle via their corresponding representation ρ , i.e., they are tensor fields.

Common lore: One can always use the Weitzenböck gauge.
 The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0.$$
(3)

 \Rightarrow The spin connection can always be written in the form

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(4)

⇒ One can achieve the Weitzenböck gauge by $\theta^a_{\ \mu} = \Lambda^a_b \ddot{\theta}^b_{\ \mu}$.

Common lore: One can always use the Weitzenböck gauge.
 The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0.$$
(3)

 \Rightarrow The spin connection can always be written in the form

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(4)

⇒ One can achieve the Weitzenböck gauge by $\theta^a{}_{\mu} = \Lambda^a{}_b \ddot{\theta}^b{}_{\mu}$. • $\Lambda^a{}_b$ and $\ddot{\theta}^a{}_{\mu}$ defined only up to global transform

$$\Lambda^{a}{}_{b} \mapsto \Lambda^{\prime a}{}_{b} = \Lambda^{a}{}_{c}\Omega^{c}{}_{b}, \quad \overset{\text{wa}}{\theta}{}^{a}{}_{\mu} \mapsto \overset{\text{w}}{\theta}{}^{\prime a}{}_{\mu} = (\Omega^{-1})^{a}{}_{b}\overset{\text{wb}}{\theta}{}^{b}{}_{\mu}.$$
(5)

Common lore: One can always use the Weitzenböck gauge.
 The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0.$$
(3)

 \Rightarrow The spin connection can always be written in the form

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(4)

⇒ One can achieve the Weitzenböck gauge by $\theta^{a}_{\mu} = \Lambda^{a}{}_{b}\overset{\breve{\theta}b}{\theta}^{\mu}_{\mu}$. • $\Lambda^{a}{}_{b}$ and $\overset{\breve{w}a}{\theta}{}_{\mu}^{a}$ defined only up to global transform

$$\Lambda^{a}{}_{b} \mapsto \Lambda^{\prime a}{}_{b} = \Lambda^{a}{}_{c}\Omega^{c}{}_{b}, \quad \overset{\text{wa}}{\theta}{}^{a}{}_{\mu} \mapsto \overset{\text{w}}{\theta}{}^{\prime a}{}_{\mu} = (\Omega^{-1})^{a}{}_{b}\overset{\text{wb}}{\theta}{}^{\mu}{}_{\mu}.$$
(5)

- Questions posed by the adept of geometry:
 - 1. How can we determine the transformation $\Lambda^a{}_b$?

Common lore: One can always use the Weitzenböck gauge.
 The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0.$$
(3)

⇒ The spin connection can always be written in the form

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(4)

⇒ One can achieve the Weitzenböck gauge by $\theta^a{}_\mu = \Lambda^a{}_b \ddot{\theta}^b{}_\mu$. • $\Lambda^a{}_b$ and $\ddot{\theta}^a{}_\mu$ defined only up to global transform

$$\Lambda^{a}{}_{b} \mapsto \Lambda^{\prime a}{}_{b} = \Lambda^{a}{}_{c}\Omega^{c}{}_{b}, \quad \overset{\text{wa}}{\theta}{}^{a}{}_{\mu} \mapsto \overset{\text{w}}{\theta}{}^{\prime a}{}_{\mu} = (\Omega^{-1})^{a}{}_{b}\overset{\text{wb}}{\theta}{}^{\mu}{}_{\mu}.$$
(5)

- Questions posed by the adept of geometry:
 - 1. How can we determine the transformation $\Lambda^a{}_b$?
 - 2. Is this even true?

Common lore: One can always use the Weitzenböck gauge.
 The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0.$$
(3)

 \Rightarrow The spin connection can always be written in the form

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(4)

⇒ One can achieve the Weitzenböck gauge by $\theta^{a}_{\mu} = \Lambda^{a}_{b} \ddot{\theta}^{b}_{\mu}$. • Λ^{a}_{b} and $\ddot{\theta}^{a}_{\mu}$ defined only up to global transform

$$\Lambda^{a}{}_{b} \mapsto \Lambda^{\prime a}{}_{b} = \Lambda^{a}{}_{c}\Omega^{c}{}_{b}, \quad \overset{\text{wa}}{\theta}{}^{a}{}_{\mu} \mapsto \overset{\text{w}}{\theta}{}^{\prime a}{}_{\mu} = (\Omega^{-1})^{a}{}_{b}\overset{\text{wb}}{\theta}{}^{b}{}_{\mu}.$$
(5)

- Questions posed by the adept of geometry:
 - 1. How can we determine the transformation $\Lambda^a{}_b$?
 - 2. Is this even true?
- Remark: this holds also in symmetric and general teleparallelism.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu}\theta^{a}{}_{\nu} + \omega^{a}{}_{b\mu}\theta^{b}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu}\theta^{a}{}_{\rho} = 0.$$
(6)

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_a{}^{\mu} \left(\partial_{\rho} \theta^a{}_{\nu} + \omega^a{}_{b\rho} \theta^b{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\rho} = \mathbf{0} \,. \tag{6}$$

• The tetrad postulate also holds in the Weitzenböck gauge.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\rho} = \mathbf{0} \,. \tag{6}$$

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\ddot{\theta}^{a}_{\mu}dx^{\mu}$ is a covariantly constant covector field.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\rho} = \mathbf{0} \,. \tag{6}$$

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\ddot{\theta}^{a}_{\mu}dx^{\mu}$ is a covariantly constant covector field.
- \Rightarrow Recipe for integrating the connection:
 - 1. Choose $\overset{\scriptscriptstyle{W}}{\theta}{}^a{}_\mu(x)$ at some $x \in M$ to fit with the metric.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_a{}^{\mu} \left(\partial_{\rho} \theta^a{}_{\nu} + \omega^a{}_{b\rho} \theta^b{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\rho} = \mathbf{0} \,. \tag{6}$$

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\overset{\text{w}}{\theta}{}^{a}{}_{\mu}dx^{\mu}$ is a covariantly constant covector field.
- \Rightarrow Recipe for integrating the connection:
 - 1. Choose $\ddot{\theta}^{a}{}_{\mu}(x)$ at some $x \in M$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\rho} = \mathbf{0} \,. \tag{6}$$

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\overset{\scriptscriptstyle W}{\theta}{}^a{}_\mu dx^\mu$ is a covariantly constant covector field.
- \Rightarrow Recipe for integrating the connection:
 - 1. Choose $\ddot{\theta}^{a}{}_{\mu}(x)$ at some $x \in M$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.
 - Obtained tetrad satisfies required properties:

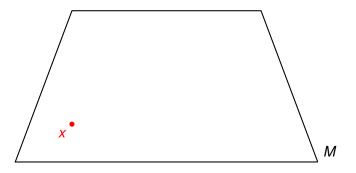
 $\checkmark \tilde{\theta}^{a}{}_{\mu}$ gives correct metric, since connection is metric-compatible.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\rho} = \mathbf{0} \,. \tag{6}$$

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\overset{w}{\theta}{}^{a}_{\mu}dx^{\mu}$ is a covariantly constant covector field.
- \Rightarrow Recipe for integrating the connection:
 - 1. Choose $\ddot{\theta}^{a}{}_{\mu}(x)$ at some $x \in M$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.
 - Obtained tetrad satisfies required properties:
 - $\checkmark \tilde{\theta}^{a}{}_{\mu}$ gives correct metric, since connection is metric-compatible.
 - ✓ Global Lorentz invariance encoded in freedom of choice for $\check{\theta}^{a}{}_{\mu}(x)$.

- Recipe for integrating the connection:
 - 1. At some $x \in M$,



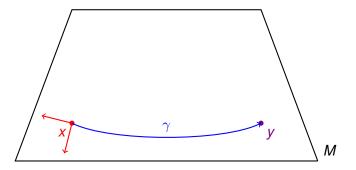
- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\tilde{\theta}^a{}_{\mu}(x)$ to fit with the metric.

• Recipe for integrating the connection:

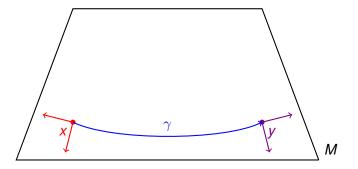
- 1. At some $x \in M$, choose $\tilde{\theta}^{a}{}_{\mu}(x)$ to fit with the metric.
- 2. For any other $y \in M$,

• Recipe for integrating the connection:

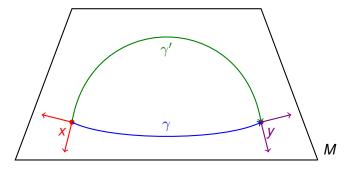
- 1. At some $x \in M$, choose $\ddot{\theta}^a{}_{\mu}(x)$ to fit with the metric.
- 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\leadsto} y$,



- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\tilde{\theta}^a{}_{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\rightarrow} y$, and parallel transport.

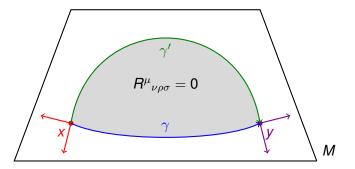


- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\tilde{\theta}^a{}_{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\rightarrow} y$, and parallel transport.
- What happens if we choose another path $x \stackrel{\gamma'}{\leadsto} y$?



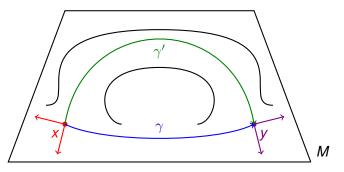
Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\tilde{\theta}^a{}_{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\rightarrow} y$, and parallel transport.
- What happens if we choose another path $x \stackrel{\gamma'}{\leadsto} y$?
 - ✓ Vanishing curvature: parallel transport along both path agrees.



Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\tilde{\theta}^a{}_{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\rightarrow} y$, and parallel transport.
- What happens if we choose another path $x \stackrel{\gamma'}{\leadsto} y$?
 - ✓ Vanishing curvature: parallel transport along both path agrees.
 - \oint But only if γ and γ' are homotopic paths!



Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
 - We want to be able to describe spinor fields on spacetime.

- Starting from an arbitrary tetrad and flat spin connection:
 - · One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
 - We want to be able to describe spinor fields on spacetime.
 - \Rightarrow Physical spacetime manifold must admit a spin structure.

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
 - We want to be able to describe spinor fields on spacetime.
 - ⇒ Physical spacetime manifold must admit a spin structure.
 - Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: ✓
 - We want to be able to describe spinor fields on spacetime.
 - ⇒ Physical spacetime manifold must admit a spin structure.
 - Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]
 - ⇒ Physical spacetime possesses global frame bundle sections.

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: ✓
 - We want to be able to describe spinor fields on spacetime.
 - ⇒ Physical spacetime manifold must admit a spin structure.
 - Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch '68]
 - ⇒ Physical spacetime possesses global frame bundle sections.
- The case of the spin connection:
 - Parallelizable manifold always admits flat affine connection Γ.

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: ✓
 - We want to be able to describe spinor fields on spacetime.
 - ⇒ Physical spacetime manifold must admit a spin structure.
 - Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch '68]
 - ⇒ Physical spacetime possesses global frame bundle sections.
- The case of the spin connection: \checkmark
 - Parallelizable manifold always admits flat affine connection Γ.
 - \Rightarrow A spin connection can be constructed from the "tetrad postulate".

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: ✓
 - We want to be able to describe spinor fields on spacetime.
 - ⇒ Physical spacetime manifold must admit a spin structure.
 - Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch '68]
 - ⇒ Physical spacetime possesses global frame bundle sections.
- The case of the spin connection: \checkmark
 - Parallelizable manifold always admits flat affine connection Γ.
 - ⇒ A spin connection can be constructed from the "tetrad postulate".

 \Rightarrow Physical spacetime always has global tetrad and spin connection.

- Consider local Lorentz transformations ∧ : M → SO(1,3):
 - Simultaneous action on tetrad and spin connection:

$$(\theta, \omega) \mapsto (\Lambda \theta, \Lambda \omega \Lambda^{-1} + \Lambda d \Lambda^{-1}).$$
 (7)

- $(\theta, \omega) \stackrel{\wedge}{\sim} (\theta', \omega')$ if and only if $(g, \Gamma) = (g', \Gamma')$.
- \Rightarrow Orbits parametrized by metric and teleparallel affine connection.

- Consider local Lorentz transformations ∧ : M → SO(1,3):
 - Simultaneous action on tetrad and spin connection:

$$(\theta, \omega) \mapsto (\Lambda \theta, \Lambda \omega \Lambda^{-1} + \Lambda d\Lambda^{-1}).$$
(7)

- $(\theta, \omega) \stackrel{\wedge}{\sim} (\theta', \omega')$ if and only if $(g, \Gamma) = (g', \Gamma')$.
- ⇒ Orbits parametrized by metric and teleparallel affine connection.
- Consider locally SO(1,3)-invariant teleparallel gravity theory:
 - $\Lambda: M \to SO(1,3)$ maps solutions to solutions.
 - \Rightarrow Only metric and affine connection become dynamical variables.

- Consider local Lorentz transformations Λ : M → SO(1,3):
 - Simultaneous action on tetrad and spin connection:

$$(\theta, \omega) \mapsto (\Lambda \theta, \Lambda \omega \Lambda^{-1} + \Lambda d\Lambda^{-1}).$$
(7)

- $(\theta, \omega) \stackrel{\wedge}{\sim} (\theta', \omega')$ if and only if $(g, \Gamma) = (g', \Gamma')$.
- ⇒ Orbits parametrized by metric and teleparallel affine connection.
- Consider locally SO(1,3)-invariant teleparallel gravity theory:
 - $\Lambda: M \to SO(1,3)$ maps solutions to solutions.
 - ⇒ Only metric and affine connection become dynamical variables.
- Decomposition of the Lorentz group:
 - Proper Lorentz group $SO_0(1,3) \subset SO(1,3), \mathfrak{T}, \mathfrak{P} \in SO(1,3).$
 - Standard model of particle physics only invariant under SO₀(1,3).
 - \Rightarrow Need orientation and time orientation in addition to g and Γ .
 - \Rightarrow Physical geometries parametrized by orbits of SO₀(1,3).

- Consider local Lorentz transformations ∧ : M → SO(1,3):
 - Simultaneous action on tetrad and spin connection:

$$(\theta, \omega) \mapsto (\Lambda \theta, \Lambda \omega \Lambda^{-1} + \Lambda d\Lambda^{-1}).$$
(7)

- $(\theta, \omega) \stackrel{\wedge}{\sim} (\theta', \omega')$ if and only if $(g, \Gamma) = (g', \Gamma')$.
- ⇒ Orbits parametrized by metric and teleparallel affine connection.
- Consider locally SO(1,3)-invariant teleparallel gravity theory:
 - $\Lambda: M \to SO(1,3)$ maps solutions to solutions.
 - ⇒ Only metric and affine connection become dynamical variables.
- Decomposition of the Lorentz group:

 - Standard model of particle physics only invariant under SO₀(1,3).
 - \Rightarrow Need orientation and time orientation in addition to g and Γ .
 - \Rightarrow Physical geometries parametrized by orbits of SO₀(1,3).
- Physical geometry: $SO_0(1,3)$ reduction of the frame bundle & Γ .

What about the teleparallel affine connection?

- Coupling of the teleparallel affine connection Γ:
 - No direct coupling with matter (commonly considered consistent).
 - Possible coupling to metric through gravity (vanishes in TEGR).

¹See talk by Jose Beltrán Jiménez on strong coupling!

Manuel Hohmann (University of Tartu)

Lorentz invariance and geometry

What about the teleparallel affine connection?

- Coupling of the teleparallel affine connection Γ:
 - No direct coupling with matter (commonly considered consistent).
 - Possible coupling to metric through gravity (vanishes in TEGR).
- \Rightarrow Teleparallel connection becomes just (another) "dark" field:
 - Scalar fields / dark energy in scalar-tensor theories.
 - "Dark" vector fields, "dark" photons in generalized Proca theories.
 - Second metric in bimetric theories.

¹See talk by Jose Beltrán Jiménez on strong coupling!

What about the teleparallel affine connection?

- Coupling of the teleparallel affine connection Γ:
 - No direct coupling with matter (commonly considered consistent).
 - Possible coupling to metric through gravity (vanishes in TEGR).
- \Rightarrow Teleparallel connection becomes just (another) "dark" field:
 - Scalar fields / dark energy in scalar-tensor theories.
 - "Dark" vector fields, "dark" photons in generalized Proca theories.
 - Second metric in bimetric theories.
- \Rightarrow The "usual rules" for playing with "dark" fields apply:
 - Find out which degrees of freedom couple to physical observables.
 - "Remnant symmetries" may yield gauge degrees of freedom.
 - Make sure physical degrees of freedom obey healthy evolution.
 - Fay attention to possible pathologies:
 - · Is the evolution of physical degrees of freedom determined?
 - Are the physical degrees of freedom stable under perturbations?¹
 - Does the theory remain healthy under quantization?

¹See talk by Jose Beltrán Jiménez on strong coupling!

Whet are the dynamical field variables in teleparallel gravity?
 1. Only a tetrad.

- Whet are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.

- Whet are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.

- Whet are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.

- Whet are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- $4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.

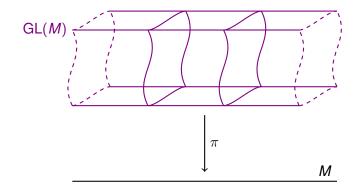
- Whet are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- $4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
- $3 \rightarrow 2$: Possible to choose tetrad and spin connection as representatives.

- Whet are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- $4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
- $3 \rightarrow 2$: Possible to choose tetrad and spin connection as representatives.
- $2 \rightarrow 1$: Locally possible to transform into Weitzenböck gauge.

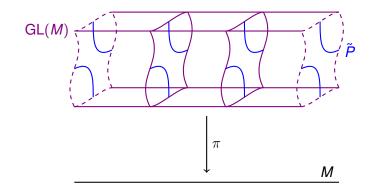
- Whet are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- $4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
- $3 \rightarrow 2$: Possible to choose tetrad and spin connection as representatives.
- $2 \rightarrow 1$: Locally possible to transform into Weitzenböck gauge.

\Rightarrow Most fundamental variables found in geometric picture.

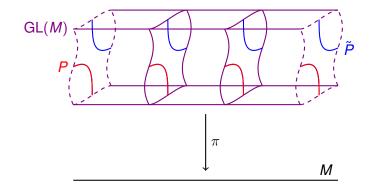
1. Start with the general linear frame bundle π : GL(M) \rightarrow M.



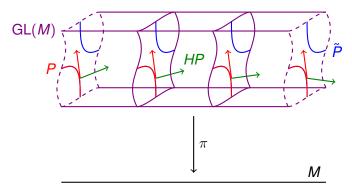
- 1. Start with the general linear frame bundle $\pi : GL(M) \rightarrow M$.
- 2. Metric reduces bundle to orthonormal frame bundle \tilde{P} .



- 1. Start with the general linear frame bundle $\pi : GL(M) \rightarrow M$.
- 2. Metric reduces bundle to orthonormal frame bundle \tilde{P} .
- 3. Orientation and time orientation select oriented frame bundle P.



- 1. Start with the general linear frame bundle $\pi : GL(M) \rightarrow M$.
- 2. Metric reduces bundle to orthonormal frame bundle \tilde{P} .
- 3. Orientation and time orientation select oriented frame bundle P.
- 4. Connection specifies horizontal directions $TP = VP \oplus HP$ in P.



- 1. Physical observations single out frames which are:
 - Orthonormal by using clocks, measuring rods, simultaneity.
 - Oriented by using particles whose interaction violates parity.
 - Time oriented by using cosmic evolution as time arrow.

- 1. Physical observations single out frames which are:
 - Orthonormal by using clocks, measuring rods, simultaneity.
 - Oriented by using particles whose interaction violates parity.
 - Time oriented by using cosmic evolution as time arrow.
- 2. Physically observable geometry to be determined by gravity.

- 1. Physical observations single out frames which are:
 - Orthonormal by using clocks, measuring rods, simultaneity.
 - Oriented by using particles whose interaction violates parity.
 - Time oriented by using cosmic evolution as time arrow.
- 2. Physically observable geometry to be determined by gravity.
- \Rightarrow Gravity theory based on SO₀(1,3)-reduction of frame bundle.

- 1. Physical observations single out frames which are:
 - Orthonormal by using clocks, measuring rods, simultaneity.
 - Oriented by using particles whose interaction violates parity.
 - Time oriented by using cosmic evolution as time arrow.
- 2. Physically observable geometry to be determined by gravity.
- \Rightarrow Gravity theory based on SO₀(1,3)-reduction of frame bundle.
- 3. Teleparallel gravity: flat, affine connection as additional variable:
 - General teleparallel gravity: connection couples to metric.
 - $\,\circ\,$ TEGR: connection \sim pure divergence in action \nrightarrow field equations.

- 1. Physical observations single out frames which are:
 - Orthonormal by using clocks, measuring rods, simultaneity.
 - Oriented by using particles whose interaction violates parity.
 - Time oriented by using cosmic evolution as time arrow.
- 2. Physically observable geometry to be determined by gravity.
- \Rightarrow Gravity theory based on SO₀(1,3)-reduction of frame bundle.
- 3. Teleparallel gravity: flat, affine connection as additional variable:
 - General teleparallel gravity: connection couples to metric.
 - TEGR: connection \sim pure divergence in action \nrightarrow field equations.
- 4. Other variables can be chosen for convenience:
 - Metric and affine connection if orientation is fixed.
 - Tetrad and spin connection as representatives.
 - Local Lorentz transformation for local Weitzenböck gauge.

- 1. Physical observations single out frames which are:
 - Orthonormal by using clocks, measuring rods, simultaneity.
 - Oriented by using particles whose interaction violates parity.
 - Time oriented by using cosmic evolution as time arrow.
- 2. Physically observable geometry to be determined by gravity.
- \Rightarrow Gravity theory based on SO₀(1,3)-reduction of frame bundle.
- 3. Teleparallel gravity: flat, affine connection as additional variable:
 - General teleparallel gravity: connection couples to metric.
 - TEGR: connection \sim pure divergence in action \nrightarrow field equations.
- 4. Other variables can be chosen for convenience:
 - Metric and affine connection if orientation is fixed.
 - Tetrad and spin connection as representatives.
 - Local Lorentz transformation for local Weitzenböck gauge.

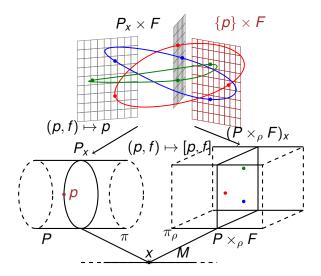
Mantra

In order to understand gravity, one must understand geometry.

Manuel Hohmann (University of Tartu)

Lorentz invariance and geometry

Extra: the associated bundle



Extra: the many faces of connections

