Gravitational waves in teleparallel gravity

Manuel Hohmann
(with M. Krššák, C. Pfeifer, J. L. Said, U. Ualikhanova)

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu
Center of Excellence “The Dark Side of the Universe”

Athens - 25. January 2019
1. Introduction
2. Principal symbol: speed of gravitational waves
3. Newman-Penrose formalism: polarization of gravitational waves
4. Waves in non-metricity teleparallel gravity
5. Waves in torsion teleparallel gravity
6. Conclusion
Outline

1 Introduction

2 Principal symbol: speed of gravitational waves

3 Newman-Penrose formalism: polarization of gravitational waves

4 Waves in non-metricity teleparallel gravity

5 Waves in torsion teleparallel gravity

6 Conclusion
Open questions in cosmology and gravity:

- Accelerating phases in the history of the Universe?
- Relation between gravity and gauge theories?
- How to quantize gravity?

Teleparallel gravity

- Based on tetrad and flat spin connection.
- Describes gravity as gauge theory of the translation group.
- First order action, second order field equations.
- Spin connection as Lorentz gauge degree of freedom.

Symmetric teleparallel gravity

- Based on metric and flat, symmetric connection.
- Describes gravity as non-metricity of the connection.
- First order action, second order field equations.
- Contains diffeomorphisms as gauge group.
Motivation

- Open questions in cosmology and gravity:
 - Accelerating phases in the history of the Universe?
 - Relation between gravity and gauge theories?
 - How to quantize gravity?
- Teleparallel gravity [Møller '61]:
 - Based on tetrad and flat spin connection.
 - Describes gravity as gauge theory of the translation group.
 - First order action, second order field equations.
 - Spin connection as Lorentz gauge degree of freedom.
Open questions in cosmology and gravity:
- Accelerating phases in the history of the Universe?
- Relation between gravity and gauge theories?
- How to quantize gravity?

Teleparallel gravity [Møller ’61]:
- Based on tetrad and flat spin connection.
- Describes gravity as gauge theory of the translation group.
- First order action, second order field equations.
- Spin connection as Lorentz gauge degree of freedom.

Symmetric teleparallel gravity [Nester, Yo ’99]
- Based on metric and flat, symmetric connection.
- Describes gravity as non-metricity of the connection.
- First order action, second order field equations.
- Contains diffeomorphisms as gauge group.
Open questions in cosmology and gravity:
-Accelerating phases in the history of the Universe?
-Relation between gravity and gauge theories?
-How to quantize gravity?

Teleparallel gravity [Møller '61]:
- Based on tetrad and flat spin connection.
- Describes gravity as gauge theory of the translation group.
- First order action, second order field equations.
- Spin connection as Lorentz gauge degree of freedom.

Symmetric teleparallel gravity [Nester, Yo '99]
- Based on metric and flat, symmetric connection.
- Describes gravity as non-metricity of the connection.
- First order action, second order field equations.
- Contains diffeomorphisms as gauge group.

Gravity formulated as gauge theories.
Overview of geometries

- **Riemann-Cartan**: $Q_{\rho \mu \nu} = 0$
- **Riemann**: $T^\lambda_{\mu \nu} = 0$, $Q_{\rho \mu \nu} = 0$
- **Minkowski**: $Q_{\rho \mu \nu} = 0$
- **Weitzenböck**: $Q_{\rho \mu \nu} = 0$, $R^\sigma_{\rho \mu \nu} = 0$
- **Teleparallel**: $R^\sigma_{\rho \mu \nu} = 0$
- **Torsion free**: $T^\lambda_{\mu \nu} = 0$
Outline

1. Introduction
2. Principal symbol: speed of gravitational waves
3. Newman-Penrose formalism: polarization of gravitational waves
4. Waves in non-metricity teleparallel gravity
5. Waves in torsion teleparallel gravity
6. Conclusion
Consider linear partial differential equation (PDE) system:

\[D^A_B \psi^B(x) = 0. \]
Consider linear partial differential equation (PDE) system:

\[D^A_B \Psi^B(x) = 0. \]

- \(N \) equations labeled by \(A = 1, \ldots, N \).
Consider linear partial differential equation (PDE) system:

$$D^A_B \psi^B(x) = 0.$$

- N equations labeled by $A = 1, \ldots, N$.
- N fields ψ^B labeled by $B = 1, \ldots, N$.

Principal symbol of a linear PDE
Consider linear partial differential equation (PDE) system:

\[D^A_B \psi^B(x) = 0. \]

- \(N \) equations labeled by \(A = 1, \ldots, N \).
- \(N \) fields \(\psi^B \) labeled by \(B = 1, \ldots, N \).
- Fields depend on spacetime point \(x \).
Principal symbol of a linear PDE

Consider linear partial differential equation (PDE) system:

\[D^A_B \psi^B(x) = 0. \]

- \(N \) equations labeled by \(A = 1, \ldots, N \).
- \(N \) fields \(\psi^B \) labeled by \(B = 1, \ldots, N \).
- Fields depend on spacetime point \(x \).
- \(m \)-th order partial differential operator with respect to \(x \).

Partial derivatives \(\partial_\mu \) with respect to spacetime coordinates.
Consider linear partial differential equation (PDE) system:

\[D^A_B \psi^B(x) = 0. \]

- \(N \) equations labeled by \(A = 1, \ldots, N \).
- \(N \) fields \(\psi^B \) labeled by \(B = 1, \ldots, N \).
- Fields depend on spacetime point \(x \).
- \(m \)-th order partial differential operator with respect to \(x \).

Structure of the linear partial differential operator:

\[D^A_B = M^A_B(x) + M^A_B{}^{\mu_1}(x) \partial_{\mu_1} + \ldots + M^A_B{}^{\mu_1\cdots\mu_m}(x) \partial_{\mu_1} \cdots \partial_{\mu_m}. \]
Consider linear partial differential equation (PDE) system:

\[D^A_B \psi^B(x) = 0 . \]

- \(N \) equations labeled by \(A = 1, \ldots, N \).
- \(N \) fields \(\psi^B \) labeled by \(B = 1, \ldots, N \).
- Fields depend on spacetime point \(x \).
- \(m \)-th order partial differential operator with respect to \(x \).

Structure of the linear partial differential operator:

\[D^A_B = M^A_B(x) + M^A_B \mu_1(x) \partial_{\mu_1} + \cdots + M^A_B \mu_1 \cdots \mu_m(x) \partial_{\mu_1} \cdots \partial_{\mu_m} . \]

- Coefficients in general depend on spacetime point.
Consider linear partial differential equation (PDE) system:

\[D^A_B \psi^B(x) = 0. \]

- \(N \) equations labeled by \(A = 1, \ldots, N \).
- \(N \) fields \(\psi^B \) labeled by \(B = 1, \ldots, N \).
- Fields depend on spacetime point \(x \).
- \(m \)-th order partial differential operator with respect to \(x \).

Structure of the linear partial differential operator:

\[D^A_B = M^A_B(x) + M^A_B\mu_1(x) \partial_{\mu_1} + \ldots + M^A_B\mu_1\ldots\mu_m(x) \partial_{\mu_1} \ldots \partial_{\mu_m}. \]

- Coefficients in general depend on spacetime point.
- Partial derivatives \(\partial_{\mu} \) with respect to spacetime coordinates.
Consider linear partial differential equation (PDE) system:
\[
D^A_B \Psi^B(x) = 0 .
\]
- \(N \) equations labeled by \(A = 1, \ldots, N \).
- \(N \) fields \(\Psi^B \) labeled by \(B = 1, \ldots, N \).
- Fields depend on spacetime point \(x \).
- \(m \)-th order partial differential operator with respect to \(x \).

Structure of the linear partial differential operator:
\[
D^A_B = M^A_B(x) + M^A_B{}^{\mu_1}(x) \partial_{\mu_1} + \ldots + M^A_B{}^{\mu_1 \cdots \mu_m}(x) \partial_{\mu_1} \cdots \partial_{\mu_m} .
\]
- Coefficients in general depend on spacetime point.
- Partial derivatives \(\partial_{\mu} \) with respect to spacetime coordinates.

Consider plane wave ansatz \(\Psi^A(x) = \hat{\Psi}^A e^{ik_\mu x^\mu} \) for the field:
\[
D^A_B \Psi^B(x) = \left(M^A_B(x) + \ldots + i^p M^A_B{}^{\mu_1 \cdots \mu_m}(x) k_{\mu_1} \cdots k_{\mu_m} \right) \hat{\Psi}^A e^{ik_\mu x^\mu} .
\]
Consider linear partial differential equation (PDE) system:

\[D^A_B \psi^B(x) = 0. \]

- \(N \) equations labeled by \(A = 1, \ldots, N \).
- \(N \) fields \(\psi^B \) labeled by \(B = 1, \ldots, N \).
- Fields depend on spacetime point \(x \).
- \(m \)-th order partial differential operator with respect to \(x \).

Structure of the linear partial differential operator:

\[D^A_B = M^A_B(x) + M^A_B{}^{\mu_1}(x) \partial_{\mu_1} + \ldots + M^A_B{}^{\mu_1\ldots\mu_m}(x) \partial_{\mu_1} \ldots \partial_{\mu_m}. \]

- Coefficients in general depend on spacetime point.
- Partial derivatives \(\partial_{\mu} \) with respect to spacetime coordinates.

Consider plane wave ansatz \(\psi^A(x) = \hat{\psi}^A e^{i k_\mu x^\mu} \) for the field:

\[D^A_B \psi^B(x) = \left(M^A_B(x) + \ldots + i^p M^A_B{}^{\mu_1\ldots\mu_m}(x) k_{\mu_1} \ldots k_{\mu_m} \right) \hat{\psi}^A e^{i k_\mu x^\mu}. \]

Principal symbol is the highest order term in wave covector \(k_\mu \):

\[P^A_B(x, k) = M^A_B{}^{\mu_1\ldots\mu_m}(x) k_{\mu_1} \ldots k_{\mu_m}. \]
Principal polynomial and propagation speed

- Principal polynomial:
 \[p(x, k) = \det P^A_B(x, k). \]
Principal polynomial:

\[p(x, k) = \det P^A_B(x, k). \]

PDE of order \(p \) is called strictly hyperbolic if there exists a covector \(\tilde{k}_\mu \) such that for all non-zero covectors \(k_\mu \) the polynomial \(p(x, k + tk) \) in \(t \) has \(m \) distinct real roots.
Principal polynomial and propagation speed

- Principal polynomial:
 \[p(x, k) = \det P^A_B(x, k). \]

- PDE of order \(p \) is called strictly hyperbolic if there exists a covector \(\tilde{k}_\mu \) such that for all non-zero covectors \(k_\mu \) the polynomial \(p(x, k + tk) \) in \(t \) has \(m \) distinct real roots.

- Hyperbolic PDE has well-defined initial value problem:
 - Foliation of spacetime by spacelike hypersurfaces with covector \(\tilde{k}_\mu \).
 - Initial data on chosen hypersurface \(t = 0 \).
 - Non-vanishing initial data only on compact subset.
 - PDE determines propagation of initial data over time.
 - Wave front: outer shell of non-vanishing propagating field.
Principal polynomial and propagation speed

- Principal polynomial:

 $$p(x, k) = \det P^A_B(x, k).$$

- PDE of order p is called strictly hyperbolic if there exists a covector \tilde{k}_μ such that for all non-zero covectors k_μ the polynomial $p(x, k + tk)$ in t has m distinct real roots.

- Hyperbolic PDE has well-defined initial value problem:
 - Foliation of spacetime by spacelike hypersurfaces with covector \tilde{k}_μ.
 - Initial data on chosen hypersurface $t = 0$.
 - Non-vanishing initial data only on compact subset.
 - PDE determines propagation of initial data over time.
 - Wave front: outer shell of non-vanishing propagating field.

- PDE theory: covectors k_μ of wave front satisfy $p(x, k) = 0$.
Principal polynomial and propagation speed

- Principal polynomial:
 \[p(x, k) = \det P^A_B(x, k). \]

- PDE of order \(p \) is called strictly hyperbolic if there exists a covector \(\tilde{k}_\mu \) such that for all non-zero covectors \(k_\mu \) the polynomial \(p(x, k + tk) \) in \(t \) has \(m \) distinct real roots.

- Hyperbolic PDE has well-defined initial value problem:
 - Foliation of spacetime by spacelike hypersurfaces with covector \(\tilde{k}_\mu \).
 - Initial data on chosen hypersurface \(t = 0 \).
 - Non-vanishing initial data only on compact subset.
 - PDE determines propagation of initial data over time.
 - Wave front: outer shell of non-vanishing propagating field.

- PDE theory: covectors \(k_\mu \) of wave front satisfy \(p(x, k) = 0 \).

\[\Rightarrow \] Propagation speed determined by zeros of principal polynomial.
Gauge theories lead to $p(x, k) \equiv 0$ for all k_μ!
Gauge theories lead to $p(x, k) \equiv 0$ for all k_μ!

\iff There exist directions $\hat{\psi}^A$ with $P^A_B(x, k) \hat{\psi}^B \equiv 0$ for all k.

Gauge degrees of freedom.

No propagation - not physical modes.

\iff Endomorphism $P^A_B(x, k)$ has non-trivial kernel.

Block decomposition of principal symbol:

\[
P^A_B(x, k) = \begin{pmatrix}
\bar{P}^A_B(x, k) & 0 \\
0 & 0
\end{pmatrix}
\]

Gauge degrees of freedom.

Physical degrees of freedom.

Non-trivial restricted principal polynomial:

\[
\bar{p}(x, k) = \det \bar{P}^A_B(x, k).
\]

Covectors k_μ of physical wave front satisfy $\bar{p}(x, k) = 0$.

Manuel Hohmann (University of Tartu)
Waves in teleparallel gravity
Gauge theories lead to $p(x, k) \equiv 0$ for all k_μ.

\iff There exist directions $\hat{\Psi}^A$ with $P^A_B(x, k)\hat{\Psi}^B \equiv 0$ for all k.

- Gauge degrees of freedom.
- No propagation - not physical modes.
Gauge theories lead to \(p(x, k) \equiv 0 \) for all \(k_\mu \)!
\[\iff \]
There exist directions \(\hat{\Psi}^A \) with \(P^A_B(x, k) \hat{\Psi}^B \equiv 0 \) for all \(k \).
- Gauge degrees of freedom.
- No propagation - not physical modes.
\[\iff \]
Endomorphism \(P^A_B(x, k) \) has non-trivial kernel.
Principal symbol for theories with gauge freedom

- Gauge theories lead to $p(x, k) \equiv 0$ for all k_μ!
- There exist directions $\hat{\Psi}^A$ with $P^A_B(x, k)\hat{\Psi}^B \equiv 0$ for all k.
 - Gauge degrees of freedom.
 - No propagation - not physical modes.
- Endomorphism $P^A_B(x, k)$ has non-trivial kernel.
- Block decomposition of principal symbol:
 \[
P^A_B(x, k) = \begin{pmatrix} \bar{P}^A_B(x, k) & 0 \\ 0 & 0 \end{pmatrix}
 \]
Principal symbol for theories with gauge freedom

- Gauge theories lead to $p(x, k) \equiv 0$ for all k.

\iff There exist directions $\hat{\Psi}^A$ with $P^A_B(x, k) \hat{\Psi}^B \equiv 0$ for all k.
 - Gauge degrees of freedom.
 - No propagation - not physical modes.

\iff Endomorphism $P^A_B(x, k)$ has non-trivial kernel.

- Block decomposition of principal symbol:

$$P^A_B(x, k) = \begin{pmatrix} \bar{P}^A_B(x, k) & 0 \\ 0 & 0 \end{pmatrix}$$

 - Gauge degrees of freedom.
Principal symbol for theories with gauge freedom

- Gauge theories lead to \(p(x, k) \equiv 0 \) for all \(k_\mu \).
 \iff
- There exist directions \(\hat{\Psi}^A \) with \(P^A_B(x, k) \hat{\Psi}^B \equiv 0 \) for all \(k \).
 - Gauge degrees of freedom.
 - No propagation - not physical modes.
 \iff
- Endomorphism \(P^A_B(x, k) \) has non-trivial kernel.

- Block decomposition of principal symbol:
 \[
P^A_B(x, k) = \begin{pmatrix} \bar{P}^A_B(x, k) & 0 \\ 0 & 0 \end{pmatrix}
\]

 - Gauge degrees of freedom.
 - Physical degrees of freedom.
Gauge theories lead to $p(x, k) \equiv 0$ for all k_μ!

\iff There exist directions $\hat{\Psi}^A$ with $P^A_B(x, k)\hat{\Psi}^B \equiv 0$ for all k.

- Gauge degrees of freedom.
- No propagation - not physical modes.

\iff Endomorphism $P^A_B(x, k)$ has non-trivial kernel.

- Block decomposition of principal symbol:

$$P^A_B(x, k) = \begin{pmatrix} \bar{P}^A_B(x, k) & 0 \\ 0 & 0 \end{pmatrix}$$

- Gauge degrees of freedom.
- Physical degrees of freedom.

- Non-trivial restricted principal polynomial: $\bar{p}(x, k) = \det \bar{P}^A_B(x, k)$.

Covectors k_μ of physical wave front satisfy $\bar{p}(x, k) = 0$.

Manuel Hohmann (University of Tartu)
Waves in teleparallel gravity
Athens - 25. January 2019
9 / 29
Gauge theories lead to $p(x, k) \equiv 0$ for all k_μ.

\Leftrightarrow There exist directions $\hat{\Psi}^A$ with $P^A_B(x, k)\hat{\Psi}^B \equiv 0$ for all k.

- Gauge degrees of freedom.
- No propagation - not physical modes.

\Leftrightarrow Endomorphism $P^A_B(x, k)$ has non-trivial kernel.

- Block decomposition of principal symbol:

$$P^A_B(x, k) = \begin{pmatrix} \bar{P}^A_B(x, k) & 0 \\ 0 & 0 \end{pmatrix}$$

- Gauge degrees of freedom.
- Physical degrees of freedom.

- Non-trivial restricted principal polynomial: $\bar{p}(x, k) = \det \bar{P}^A_B(x, k)$.
- Covectors k_μ of physical wave front satisfy $\bar{p}(x, k) = 0$.
Outline

1. Introduction
2. Principal symbol: speed of gravitational waves
3. Newman-Penrose formalism: polarization of gravitational waves
4. Waves in non-metricity teleparallel gravity
5. Waves in torsion teleparallel gravity
6. Conclusion
Newman-Penrose formalism

- Complex double null basis of the tangent bundle:

\[l = \partial_t + \partial_z, \quad n = \frac{\partial_t - \partial_z}{2}, \quad m = \frac{\partial_x + i\partial_y}{\sqrt{2}}, \quad \bar{m} = \frac{\partial_x - i\partial_y}{\sqrt{2}}. \]
Newman-Penrose formalism

- Complex double null basis of the tangent bundle:
 \[l = \partial_t + \partial_z, \quad n = \frac{\partial_t - \partial_z}{2}, \quad m = \frac{\partial_x + i\partial_y}{\sqrt{2}}, \quad \bar{m} = \frac{\partial_x - i\partial_y}{\sqrt{2}}. \]

- Consider plane null wave with \(k_\mu = -\omega l_\mu \) and \(u = t - z \):
 \[h_{\mu\nu} = \hat{h}_{\mu\nu} e^{ik_\mu x^\mu} = \hat{h}_{\mu\nu} e^{i\omega u}. \]
Newman-Penrose formalism

- Complex double null basis of the tangent bundle:
 \[l = \partial_t + \partial_z, \quad n = \frac{\partial_t - \partial_z}{2}, \quad m = \frac{\partial_x + i\partial_y}{\sqrt{2}}, \quad \bar{m} = \frac{\partial_x - i\partial_y}{\sqrt{2}}. \]

- Consider plane null wave with \(k_\mu = -\omega l_\mu \) and \(u = t - z \):
 \[h_{\mu\nu} = \hat{h}_{\mu\nu} e^{ik_\mu x^\mu} = \hat{h}_{\mu\nu} e^{i\omega u}. \]

- Effect of the wave on test particles - geodesic deviation:
 \[v^\rho \nabla_\rho (v^\sigma \nabla_\sigma s^\mu) = -R^{\mu}_{\rho\nu\sigma} v^\rho v^\sigma s^\nu. \]
Newman-Penrose formalism

- Complex double null basis of the tangent bundle:
 \[l = \partial_t + \partial_z , \quad n = \frac{\partial_t - \partial_z}{2} , \quad m = \frac{\partial_x + i \partial_y}{\sqrt{2}} , \quad \bar{m} = \frac{\partial_x - i \partial_y}{\sqrt{2}} . \]

- Consider plane null wave with \(k_\mu = -\omega l_\mu \) and \(u = t - z \):
 \[h_{\mu\nu} = \hat{h}_{\mu\nu} e^{ik_\mu x^\mu} = \hat{h}_{\mu\nu} e^{i\omega u} . \]

- Effect of the wave on test particles - geodesic deviation:
 \[v^\rho \nabla_\rho (v^\sigma \nabla_\sigma s^\mu) = -R^\mu_{\rho\nu\sigma} v^\rho v^\sigma s^\nu . \]

- Riemann tensor determined by “electric” components:
 \[\psi_2 = -\frac{1}{6} R_{nnlnl} = \frac{1}{12} \hat{h}_{ll} , \quad \psi_3 = -\frac{1}{2} R_{nnln\bar{m}} = \frac{1}{4} \hat{h}_{l\bar{m}} , \]
 \[\psi_4 = -R_{n\bar{m}n\bar{m}} = \frac{1}{2} \hat{h}_{\bar{m}\bar{m}} , \quad \phi_{22} = -R_{nmn\bar{m}} = \frac{1}{2} \hat{h}_{m\bar{m}} . \]
Polarisations of gravitational waves

Effect of the different polarizations on spherical shell of test masses:

\[\psi_4, \bar{\psi}_4 \]
- tensors

\[\phi_{22} \]
- breathing

\[\psi_3, \bar{\psi}_3 \]
- vectors

\[\psi_2 \]
- longitudinal
E(2) classification of gravitational waves

- Consider Lorentz transformation which fixes wave covector k_μ:
 - Rotations around wave covector & null rotations (= boost + rotation).
 - Set of transformations isomorphic to Euclidean group E(2).
E(2) classification of gravitational waves

- Consider Lorentz transformation which fixes wave covector k_μ:
 - Rotations around wave covector & null rotations (= boost + rotation).
 - Set of transformations isomorphic to Euclidean group E(2).
- Transformation of NP components under basis transformation:

\[
\begin{align*}
\Psi_2 &\rightarrow \Phi_{22} \\
\Psi_3 &\rightarrow \Psi_4 \\
\Psi_4 &\rightarrow \Psi_3
\end{align*}
\]
E(2) classification of gravitational waves

- Consider Lorentz transformation which fixes wave covector k_μ:
 - Rotations around wave covector & null rotations (= boost + rotation).
 - Set of transformations isomorphic to Euclidean group E(2).
- Transformation of NP components under basis transformation:

```
\Psi_2 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \Psi_3 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \Phi_{22}
```

- Possible sets of non-vanishing NP components:
 - Π_6: 6 polarizations, all modes are allowed.
 - Π_5: 5 polarizations, $\Psi_2 = 0$, no longitudinal mode.
 - Π_3: 3 polarizations, $\Psi_2 = \Psi_3 = 0$, only tensor and breathing modes.
 - Π_2: 2 polarizations, $\Psi_2 = \Psi_3 = \Phi_{22} = 0$, only tensor modes.
 - Π_1: 1 polarization, $\Psi_2 = \Psi_3 = \Psi_4 = 0$, only breathing mode.
 - Π_0: no gravitational waves.
E(2) classification of gravitational waves

- Consider Lorentz transformation which fixes wave covector k_μ:
 - Rotations around wave covector & null rotations (= boost + rotation).
 - Set of transformations isomorphic to Euclidean group E(2).
- Transformation of NP components under basis transformation:

\[
\begin{align*}
\Psi_2 & \quad \Psi_4 \\
\Psi_3 & \quad \Phi_{22}
\end{align*}
\]

- Possible sets of non-vanishing NP components:
 - Π_6: 6 polarizations, all modes are allowed.
 - Π_5: 5 polarizations, $\Psi_2 = 0$, no longitudinal mode.
Consider Lorentz transformation which fixes wave covector k_μ:
- Rotations around wave covector & null rotations (= boost + rotation).
- Set of transformations isomorphic to Euclidean group E(2).

Transformation of NP components under basis transformation:

Possible sets of non-vanishing NP components:
- II$_6$: 6 polarizations, all modes are allowed.
- III$_5$: 5 polarizations, $\Psi_2 = 0$, no longitudinal mode.
- N$_3$: 3 polarizations, $\Psi_2 = \Psi_3 = 0$, only tensor and breathing modes.
E(2) classification of gravitational waves

- Consider Lorentz transformation which fixes wave covector k_{μ}:
 - Rotations around wave covector & null rotations (= boost + rotation).
 - Set of transformations isomorphic to Euclidean group E(2).
- Transformation of NP components under basis transformation:

 $\Psi_2 \downarrow \downarrow \downarrow \rightarrow \Psi_3 \rightarrow \Phi_{22}$

- Possible sets of non-vanishing NP components:
 - Π_6: 6 polarizations, all modes are allowed.
 - Π_5: 5 polarizations, $\Psi_2 = 0$, no longitudinal mode.
 - N_3: 3 polarizations, $\Psi_2 = \Psi_3 = 0$, only tensor and breathing modes.
 - N_2: 2 polarizations, $\Psi_2 = \Psi_3 = \Phi_{22} = 0$, only tensor modes.
E(2) classification of gravitational waves

- Consider Lorentz transformation which fixes wave covector k_μ:
 - Rotations around wave covector & null rotations (= boost + rotation).
 - Set of transformations isomorphic to Euclidean group E(2).
- Transformation of NP components under basis transformation:

$$\begin{align*}
\Psi_2 & \quad \Psi_4 & \quad \Psi_3 & \quad \Phi_{22} \\
\downarrow & \quad \downarrow & \quad \downarrow \\
\downarrow & \quad & \quad \\
\Psi_2 & \quad & \Psi_3 & \quad \Phi_{22}
\end{align*}$$

- Possible sets of non-vanishing NP components:
 - II$_6$: 6 polarizations, all modes are allowed.
 - III$_5$: 5 polarizations, $\Psi_2 = 0$, no longitudinal mode.
 - N$_3$: 3 polarizations, $\Psi_2 = \Psi_3 = 0$, only tensor and breathing modes.
 - N$_2$: 2 polarizations, $\Psi_2 = \Psi_3 = \Phi_{22} = 0$, only tensor modes.
 - O$_1$: 1 polarization, $\Psi_2 = \Psi_3 = \Psi_4 = 0$, only breathing mode.
E(2) classification of gravitational waves

- Consider Lorentz transformation which fixes wave covector k_μ:
 - Rotations around wave covector & null rotations (= boost + rotation).
 - Set of transformations isomorphic to Euclidean group E(2).
- Transformation of NP components under basis transformation:

 \[
 \Psi_2 \quad \Psi_3 \quad \Phi_{22}
 \]

- Possible sets of non-vanishing NP components:
 - II$_6$: 6 polarizations, all modes are allowed.
 - III$_5$: 5 polarizations, $\Psi_2 = 0$, no longitudinal mode.
 - N$_3$: 3 polarizations, $\Psi_2 = \Psi_3 = 0$, only tensor and breathing modes.
 - N$_2$: 2 polarizations, $\Psi_2 = \Psi_3 = \Phi_{22} = 0$, only tensor modes.
 - O$_1$: 1 polarization, $\Psi_2 = \Psi_3 = \Psi_4 = 0$, only breathing mode.
 - O$_0$: no gravitational waves.
Outline

1. Introduction
2. Principal symbol: speed of gravitational waves
3. Newman-Penrose formalism: polarization of gravitational waves
4. Waves in non-metricity teleparallel gravity
5. Waves in torsion teleparallel gravity
6. Conclusion
Field content and geometry

- Fundamental fields in the gravity sector:
 - Metric $g_{\mu\nu}$.
 - Flat, symmetric affine connection $\Gamma^\mu_{\nu\rho}$.

- Derived quantities:
 - Volume form $\sqrt{-\det g} d^4x$.
 - Levi-Civita connection $\nabla^\rho \Gamma_{\mu\nu} = \frac{1}{2} g^{\rho\sigma} \left(\partial_\mu g_{\sigma\nu} + \partial_\nu g_{\mu\sigma} - \partial_\sigma g_{\mu\nu} \right)$.
 - Non-metricity $Q_{\rho\mu\nu} = \nabla_\rho g_{\mu\nu}$.

- Gauge fixing
 - Perform local coordinate transformation:
 $g'_{\mu\nu} = \partial_\alpha x^\mu \partial_\beta x^\nu g_{\alpha\beta}$,
 $\Gamma'_{\rho\mu\nu} = \partial_\alpha x^\mu \partial_\beta x^\nu \partial_\gamma x^\rho \Gamma_{\gamma\alpha\beta} + \partial^2_\alpha x^\mu \partial_\beta x^\nu \partial_\gamma x^\rho$.
 - Coincident gauge: set $\times \Gamma_{\rho\mu\nu} \equiv 0 \Rightarrow Q_{\rho\mu\nu} = \partial_\rho g_{\mu\nu}$.
Field content and geometry

- **Fundamental fields in the gravity sector:**
 - Metric $g_{\mu\nu}$.
 - Flat, symmetric affine connection $\Gamma^\mu_{\nu\rho}$.

- **Derived quantities:**
 - Volume form $\sqrt{-\det g} d^4x$.
 - Levi-Civita connection
 \[
 \Gamma^\rho_{\mu\nu} = \frac{1}{2} g^{\rho\sigma} \left(\partial_\mu g_{\sigma\nu} + \partial_\nu g_{\mu\sigma} - \partial_\sigma g_{\mu\nu} \right).
 \]
 - Non-metricity $Q_{\rho\mu\nu} = \nabla_\rho g_{\mu\nu}$.
Field content and geometry

- Fundamental fields in the gravity sector:
 - Metric $g_{\mu\nu}$.
 - Flat, symmetric affine connection $\Gamma^\mu_{\nu\rho}$.

- Derived quantities:
 - Volume form $\sqrt{-\det g} d^4x$.
 - Levi-Civita connection
 \[
 \Gamma^\rho_{\mu\nu} = \frac{1}{2} g^{\rho\sigma} \left(\partial_\mu g_{\sigma\nu} + \partial_\nu g_{\mu\sigma} - \partial_\sigma g_{\mu\nu} \right).
 \]
 - Non-metricity $Q_{\rho\mu\nu} = \nabla_\rho g_{\mu\nu}$.

- Gauge fixing
 - Perform local coordinate transformation:
 \[
 g'_{\mu\nu} = \frac{\partial x^\alpha}{\partial x'\mu} \frac{\partial x^\beta}{\partial x'\nu} g_{\alpha\beta}, \quad \Gamma'_{\rho\mu\nu} = \frac{\partial x^\alpha}{\partial x'\mu} \frac{\partial x^\beta}{\partial x'\nu} \frac{\partial x'^\rho}{\partial x^\gamma} \Gamma_{\alpha\beta}^\gamma + \frac{\partial^2 x^\alpha}{\partial x'\mu \partial x'\nu} \frac{\partial x'^\rho}{\partial x^\alpha}.
 \]

 \Rightarrow \text{Coincident gauge: set } \Gamma_{\rho\mu\nu} \equiv 0 \Rightarrow Q_{\rho\mu\nu} = \partial_\rho g_{\mu\nu}.$
Most general action and corresponding field equations

- Most general action:

\[
S = - \int d^4 x \frac{\sqrt{-g}}{2} \left[c_1 Q^\alpha_{\mu \nu} + c_2 Q_{(\mu}^\alpha_{\nu)}
+ c_3 Q^\alpha g_{\mu \nu} + c_4 \delta_{(\mu}^\alpha Q_{\nu)} + \frac{c_5}{2} \left(\tilde{Q}^\alpha g_{\mu \nu} + \delta_{(\mu}^\alpha Q_{\nu)} \right) \right] Q^{\alpha \mu \nu}.
\]
Most general action and corresponding field equations

- Most general action:

\[
S = - \int d^4x \sqrt{-g} \left[c_1 Q^\alpha_{\mu\nu} + c_2 Q_{(\mu}^{\alpha \nu)}
+ c_3 Q^\alpha g_{\mu\nu} + c_4 \delta_{(\mu}^\alpha Q_{\nu)} + \frac{c_5}{2} \left(\tilde{Q}^\alpha g_{\mu\nu} + \delta_{(\mu}^\alpha Q_{\nu)} \right) \right] Q^{\mu\nu}_\alpha.
\]

- Consider linear perturbation of the metric:

\[
g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}.
\]
Most general action:

$$S = - \int d^4x \sqrt{-g} \left[c_1 Q^\alpha_{\mu\nu} + c_2 Q_{(\mu}^{\alpha \nu)} + c_3 Q^\alpha g_{\mu\nu} + c_4 \delta^\alpha_{(\mu} \tilde{Q}^{\nu)} + \frac{c_5}{2} \left(\tilde{Q}^\alpha g_{\mu\nu} + \delta^\alpha_{(\mu} Q^{\nu)} \right) \right] Q_{\alpha \mu\nu}.$$

Consider linear perturbation of the metric:

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}.$$

Linearized vacuum field equations:

$$0 = 2c_1 \eta^{\alpha\sigma} \partial_\alpha \partial_\sigma h_{\mu\nu} + c_2 \eta^{\alpha\sigma} \left(\partial_\alpha \partial_\mu h_{\sigma\nu} + \partial_\alpha \partial_\nu h_{\sigma\mu} \right)$$

$$+ 2c_3 \eta_{\mu\nu} \eta^{\tau\omega} \eta^{\alpha\sigma} \partial_\alpha \partial_\sigma h_{\tau\omega} + c_4 \eta^{\omega\sigma} \left(\partial_\mu \partial_\omega h_{\nu\sigma} + \partial_\nu \partial_\omega h_{\mu\sigma} \right)$$

$$+ c_5 \eta_{\mu\nu} \eta^{\omega\gamma} \eta^{\alpha\sigma} \partial_\alpha \partial_\omega h_{\sigma\gamma} + c_5 \eta^{\omega\sigma} \partial_\mu \partial_\nu h_{\omega\sigma}.$$
Principal polynomial and speed of propagation

- Decomposition of amplitude $\hat{h}_{\lambda\rho}$ in irreducible components:

$$\hat{h}_{\lambda\rho} = S_{\lambda\rho} + 2 k_\lambda V_\rho + \frac{1}{3} \left(\eta_{\lambda\rho} - \frac{k_\lambda k_\rho}{\eta_{\mu\nu} k_{\mu\nu}} \right) T + \left(k_\lambda k_\rho - \frac{1}{4} \eta_{\lambda\rho} \eta^{\alpha\beta} k_\alpha k_\beta \right) U.$$
Decomposition of amplitude $\hat{h}_{\lambda\rho}$ in irreducible components:

$$\hat{h}_{\lambda\rho} = S_{\lambda\rho} + 2k(\lambda V_{\rho}) + \frac{1}{3} \left(\eta_{\lambda\rho} - \frac{k_\lambda k_\rho}{\eta_{\mu\nu} k_{\mu\nu}} \right) T + \left(k_\lambda k_\rho - \frac{1}{4} \eta_{\lambda\rho} \eta^{\alpha\beta} k_\alpha k_\beta \right) U. $$

Conditions imposed on irreducible components:

$$\eta^{\lambda\rho} S_{\lambda\rho} = 0, \quad k^\lambda S_{\lambda\rho} = 0, \quad k^\rho V_{\rho} = 0.$$
Principals polynomial and speed of propagation

- Decomposition of amplitude $\hat{h}_{\lambda \rho}$ in irreducible components:

\[
\hat{h}_{\lambda \rho} = S_{\lambda \rho} + 2k_\lambda V_\rho + \frac{1}{3} \left(\eta_{\lambda \rho} - \frac{k_\lambda k_\rho}{\eta_{\mu \nu} k_{\mu \nu}} \right) T + \left(k_\lambda k_\rho - \frac{1}{4} \eta_{\lambda \rho} \eta^{\alpha \beta} k_\alpha k_\beta \right) U.
\]

- Conditions imposed on irreducible components:

\[
\eta^{\lambda \rho} S_{\lambda \rho} = 0, \quad k^{\lambda} S_{\lambda \rho} = 0, \quad k^\rho V_\rho = 0.
\]

- Decomposed field equations:

\[
0 = (2c_3 + c_5)(\eta^{\alpha \beta} k_\alpha k_\beta)^2 T + \frac{3}{4} [c_5 + 2(c_1 + c_2 + c_4)](\eta^{\alpha \beta} k_\alpha k_\beta)^3 U,
\]

\[
0 = (2c_1 + 8c_3 + c_5)(\eta^{\alpha \beta} k_\alpha k_\beta) T + \frac{3}{2} (2c_5 + c_2 + c_4)(\eta^{\alpha \beta} k_\alpha k_\beta)^2 U,
\]

\[
0 = (2c_1 + c_2 + c_4)(\eta^{\alpha \beta} k_\alpha k_\beta)^2 V_\nu,
\]

\[
0 = 2c_1 \eta^{\alpha \beta} k_\alpha k_\beta S_{\mu \nu}.
\]
Principal polynomial and speed of propagation

- Decomposition of amplitude \(\hat{h}_{\lambda \rho} \) in irreducible components:

\[
\hat{h}_{\lambda \rho} = S_{\lambda \rho} + 2k_{(\lambda} V_{\rho)} + \frac{1}{3} \left(\eta_{\lambda \rho} - \frac{k_{\lambda} k_{\rho}}{\eta_{\mu \nu} k_{\mu \nu}} \right) T + \left(k_{\lambda} k_{\rho} - \frac{1}{4} \eta_{\lambda \rho} \eta^{\alpha \beta} k_{\alpha} k_{\beta} \right) U.
\]

- Conditions imposed on irreducible components:

\[
\eta^{\lambda \rho} S_{\lambda \rho} = 0, \quad k^{\lambda} S_{\lambda \rho} = 0, \quad k^\rho V_\rho = 0.
\]

- Decomposed field equations:

\[
0 = (2c_3 + c_5) (\eta^{\alpha \beta} k_\alpha k_\beta)^2 T + \frac{3}{4} [c_5 + 2(c_1 + c_2 + c_4)] (\eta^{\alpha \beta} k_\alpha k_\beta)^3 U,
\]
\[
0 = (2c_1 + 8c_3 + c_5) (\eta^{\alpha \beta} k_\alpha k_\beta) T + \frac{3}{2} (2c_5 + c_2 + c_4) (\eta^{\alpha \beta} k_\alpha k_\beta)^2 U,
\]
\[
0 = (2c_1 + c_2 + c_4) (\eta^{\alpha \beta} k_\alpha k_\beta)^2 V_\nu,
\]
\[
0 = 2c_1 \eta^{\alpha \beta} k_\alpha k_\beta S_{\mu \nu}.
\]

- Principal polynomial \(p(x, k) = \text{const.} \cdot (\eta^{\alpha \beta} k_\alpha k_\beta)^{15} \).
Principal polynomial and speed of propagation

- Decomposition of amplitude $\hat{h}_{\lambda\rho}$ in irreducible components:

$$\hat{h}_{\lambda\rho} = S_{\lambda\rho} + 2k_{(\lambda} V_{\rho)} + \frac{1}{3} \left(\eta_{\lambda\rho} - \frac{k_{\lambda} k_{\rho}}{\eta_{\mu\nu} k_{\mu\nu}} \right) T + \left(k_{\lambda} k_{\rho} - \frac{1}{4} \eta_{\lambda\rho} \eta^{\alpha\beta} k_{\alpha} k_{\beta} \right) U .$$

- Conditions imposed on irreducible components:

$$\eta^{\lambda\rho} S_{\lambda\rho} = 0 , \quad k^{\lambda} S_{\lambda\rho} = 0 , \quad k^{\rho} V_{\rho} = 0 .$$

- Decomposed field equations:

$$0 = (2c_3 + c_5)(\eta^{\alpha\beta} k_{\alpha} k_{\beta})^2 T + \frac{3}{4} [c_5 + 2(c_1 + c_2 + c_4)](\eta^{\alpha\beta} k_{\alpha} k_{\beta})^3 U ,$$

$$0 = (2c_1 + 8c_3 + c_5)(\eta^{\alpha\beta} k_{\alpha} k_{\beta}) T + \frac{3}{2} (2c_5 + c_2 + c_4)(\eta^{\alpha\beta} k_{\alpha} k_{\beta})^2 U ,$$

$$0 = (2c_1 + c_2 + c_4)(\eta^{\alpha\beta} k_{\alpha} k_{\beta})^2 V_{\nu} ,$$

$$0 = 2c_1 \eta^{\alpha\beta} k_{\alpha} k_{\beta} S_{\mu\nu} .$$

- Principal polynomial $p(x, k) = \text{const.} \cdot (\eta^{\alpha\beta} k_{\alpha} k_{\beta})^{15} .$

$$\eta^{\alpha\beta} k_{\alpha} k_{\beta} = 0 \iff \text{propagation at the speed of light.}$$
Newman-Penrose formalism

- Assume plane null wave $h_{\mu\nu} = \hat{h}_{\mu\nu}e^{ik_\mu x^\mu}$ with $\eta^{\alpha\beta}k_\alpha k_\beta = 0$.

Possible E^2 classes:

- $c_2 + c_4 = c_5 = 0$: all six modes are allowed \Rightarrow II$_6$.
- $c_2 + c_4 = 0$, $c_5 \neq 0$: only scalar $\Psi^2 \sim \ddot{h}_{ll}$ prohibited \Rightarrow III$_5$.
- $c_2 + c_4 \neq 0$, $c_2 + c_4 + c_5 \neq 0$: also vector $\Psi^3 \sim \ddot{h}_{lm}$ prohibited \Rightarrow N$_3$.
- $c_2 + c_4 + c_5 = 0$, $c_5 \neq 0$: also scalar $\Phi^22 \sim \ddot{h}_{\bar{m}m}$ prohibited \Rightarrow N$_2$.

Manuel Hohmann (University of Tartu)
Waves in teleparallel gravity
Athens - 25. January 2019 18/29
Newman-Penrose formalism

- Assume plane null wave $h_{\mu\nu} = \hat{h}_{\mu\nu} e^{ik_{\mu}x^{\mu}}$ with $\eta^{\alpha\beta}k_{\alpha}k_{\beta} = 0$.

\Rightarrow Terms involving c_1 and c_3 do not contribute for $\Box h_{\mu\nu} = 0$.

Possible $E(2)$ classes:

- $c_2 + c_4 = c_5 = 0$: all six modes are allowed $\Rightarrow II_6$.
- $c_2 + c_4 = 0$, $c_5 \neq 0$: only scalar $\Psi_2 \sim \ddot{h}_{ll}$ prohibited $\Rightarrow III_5$.
- $c_2 + c_4 \neq 0$, $c_2 + c_4 + c_5 \neq 0$: also vector $\Psi_3 \sim \ddot{h}_{lm}$ prohibited $\Rightarrow N_3$.
- $c_2 + c_4 + c_5 = 0$, $c_5 \neq 0$: also scalar $\Phi_{22} \sim \ddot{h}_{m\bar{m}}$ prohibited $\Rightarrow N_2$.

Manuel Hohmann (University of Tartu)
Newman-Penrose formalism

- Assume plane null wave \(h_{\mu\nu} = \hat{h}_{\mu\nu} e^{ik_{\mu} x^\mu} \) with \(\eta^{\alpha\beta} k_\alpha k_\beta = 0 \).

\Rightarrow\quad \text{Terms involving } c_1 \text{ and } c_3 \text{ do not contribute for } \Box h_{\mu\nu} = 0.

\Rightarrow\quad \text{Field equations expressed in Newman-Penrose basis:}

\begin{align*}
0 &= E_{nn} = -(c_2 + c_4 + c_5) \ddot{h}_{ln} + c_5 \ddot{h}_{m\bar{m}}, \\
0 &= E_{mn} = E_{nm} = -(c_2 + c_4) \ddot{h}_{lm}, \\
0 &= E_{m\bar{m}} = E_{\bar{m}m} = c_5 \ddot{h}_{l\bar{l}}, \\
0 &= E_{nl} = E_{ln} = -(c_2 + c_4) \ddot{h}_{l\bar{l}}.
\end{align*}
Assume plane null wave \(h_{\mu\nu} = \hat{h}_{\mu\nu} e^{ik_\mu x^\mu} \) with \(\eta^{\alpha\beta} k_\alpha k_\beta = 0 \).

\(\Rightarrow \) Terms involving \(c_1 \) and \(c_3 \) do not contribute for \(\Box h_{\mu\nu} = 0 \).

\(\Rightarrow \) Field equations expressed in Newman-Penrose basis:

\[
0 = E_{nn} = -(c_2 + c_4 + c_5) \ddot{h}_{ln} + c_5 \ddot{h}_{m\bar{m}},
\]

\[
0 = E_{mn} = E_{nm} = -(c_2 + c_4) \ddot{h}_{lm},
\]

\[
0 = E_{m\bar{m}} = E_{\bar{m}m} = c_5 \ddot{h}_{ll},
\]

\[
0 = E_{nl} = E_{ln} = -(c_2 + c_4) \ddot{h}_{ll}.
\]

Possible \(E(2) \) classes:

- \(c_2 + c_4 = c_5 = 0 \): all six modes are allowed \(\Rightarrow \text{II}_6 \).
Assume plane null wave $h_{\mu\nu} = \hat{h}_{\mu\nu} e^{ik_{\mu}x^{\mu}}$ with $\eta^{\alpha\beta} k_{\alpha} k_{\beta} = 0$.

Terms involving c_1 and c_3 do not contribute for $\Box h_{\mu\nu} = 0$.

Field equations expressed in Newman-Penrose basis:

$$0 = E_{nn} = -(c_2 + c_4 + c_5)\ddot{h}_{ln} + c_5\ddot{h}_{m\bar{m}},$$
$$0 = E_{mn} = E_{nm} = -(c_2 + c_4)\ddot{h}_{lm},$$
$$0 = E_{m\bar{m}} = E_{\bar{m}m} = c_5\ddot{h}_{ll},$$
$$0 = E_{nl} = E_{ln} = -(c_2 + c_4)\ddot{h}_{ll}.$$

Possible $E(2)$ classes:

- $c_2 + c_4 = c_5 = 0$: all six modes are allowed $\Rightarrow \text{II}_6$.
- $c_2 + c_4 = 0$, $c_5 \neq 0$: only scalar $\Psi_2 \sim \ddot{h}_{ll}$ prohibited $\Rightarrow \text{III}_5$.
Assume plane null wave $h_{\mu\nu} = \hat{h}_{\mu\nu} e^{ik_{\mu}x^{\mu}}$ with $\eta^{\alpha\beta} k_{\alpha} k_{\beta} = 0$.

⇒ Terms involving c_1 and c_3 do not contribute for $\Box h_{\mu\nu} = 0$.

⇒ Field equations expressed in Newman-Penrose basis:

\[0 = E_{nn} = -(c_2 + c_4 + c_5) \ddot{h}_{ln} + c_5 \ddot{h}_{m\bar{m}}, \]
\[0 = E_{mn} = E_{nm} = -(c_2 + c_4) \ddot{h}_{lm}, \]
\[0 = E_{m\bar{m}} = E_{\bar{m}m} = c_5 \ddot{h}_{ll}, \]
\[0 = E_{nl} = E_{ln} = -(c_2 + c_4) \ddot{h}_{ll}. \]

Possible E(2) classes:

- $c_2 + c_4 = c_5 = 0$: all six modes are allowed ⇒ II_6.
- $c_2 + c_4 = 0$, $c_5 \neq 0$: only scalar $\Psi_2 \sim \ddot{h}_{ll}$ prohibited ⇒ III_5.
- $c_2 + c_4 \neq 0$, $c_2 + c_4 + c_5 \neq 0$: also vector $\Psi_3 \sim \ddot{h}_{lm}$ prohibited ⇒ N_3.
Newman-Penrose formalism

- Assume plane null wave \(h_{\mu\nu} = \hat{h}_{\mu\nu} e^{ik_\mu x^\mu} \) with \(\eta^{\alpha\beta} k_\alpha k_\beta = 0 \).
 \[\Rightarrow \] Terms involving \(c_1 \) and \(c_3 \) do not contribute for \(\Box h_{\mu\nu} = 0 \).
 \[\Rightarrow \] Field equations expressed in Newman-Penrose basis:

\[
0 = E_{nn} = -(c_2 + c_4 + c_5) \ddot{h}_{ln} + c_5 \ddot{h}_{m\bar{m}},
\]
\[
0 = E_{mn} = E_{nm} = -(c_2 + c_4) \ddot{h}_{lm},
\]
\[
0 = E_{m\bar{m}} = E_{\bar{m}m} = c_5 \ddot{h}_{ll},
\]
\[
0 = E_{nl} = E_{ln} = -(c_2 + c_4) \ddot{h}_{ll}.
\]

- Possible E(2) classes:
 - \(c_2 + c_4 = c_5 = 0 \): all six modes are allowed \(\Rightarrow \) II_6.
 - \(c_2 + c_4 = 0, c_5 \neq 0 \): only scalar \(\Psi_2 \sim \ddot{h}_{ll} \) prohibited \(\Rightarrow \) III_5.
 - \(c_2 + c_4 \neq 0, c_2 + c_4 + c_5 \neq 0 \): also vector \(\Psi_3 \sim \ddot{h}_{lm} \) prohibited \(\Rightarrow \) N_3.
 - \(c_2 + c_4 + c_5 = 0, c_5 \neq 0 \): also scalar \(\Phi_2 \sim \ddot{h}_{m\bar{m}} \) prohibited \(\Rightarrow \) N_2.
\[c_2 = \sin \theta \cos \phi \]
\[c_4 = \sin \theta \sin \phi \]
\[c_5 = \cos \theta \]
Field content and geometry

- Fundamental fields in the gravity sector:
 - Coframe field $\theta^a = \theta^a_\mu \, dx^\mu$.
 - Flat spin connection $\omega^a_b = \omega^a_{b\mu} \, dx^\mu$.
Field content and geometry

- **Fundamental fields in the gravity sector:**
 - Coframe field \(\theta^a = \theta^a_{\mu} dx^\mu \).
 - Flat spin connection \(\omega^a_b = \omega^a_{b\mu} dx^\mu \).

- **Derived quantities:**
 - Frame field \(e_a = e^a_{\mu} \partial_\mu \) with \(\iota^a \theta^b = \delta^b_a \).
 - Metric \(g_{\mu\nu} = \eta_{ab} \theta^a_{\mu} \theta^b_{\nu} \).
 - Volume form \(\theta dx^4 = \theta^0 \wedge \theta^1 \wedge \theta^2 \wedge \theta^3 \).
 - Levi-Civita connection
 \[
 \omega'_{ab} = -\frac{1}{2}(\iota^b \iota^c d\theta_a + \iota^c \iota^a d\theta_b - \iota^a \iota^b d\theta_c) \theta^c.
 \]
 - Torsion \(T^a = d\theta^a + \omega^a_b \wedge \theta^b \).
Field content and geometry

- **Fundamental fields in the gravity sector:**
 - Coframe field \(\theta^a = \theta^a_\mu dx^\mu \).
 - Flat spin connection \(\dot{\omega}^a_b = \dot{\omega}^a_{b\mu} dx^\mu \).

- **Derived quantities:**
 - Frame field \(e_a = e_a^\mu \partial_\mu \) with \(\iota_{e_a} \theta^b = \delta^b_a \).
 - Metric \(g_{\mu \nu} = \eta_{ab} \theta^a_\mu \theta^b_\nu \).
 - Volume form \(\theta d^4x = \theta^0 \land \theta^1 \land \theta^2 \land \theta^3 \).
 - Levi-Civita connection
 \[
 \ddot{\omega}^{ab} = -\frac{1}{2} (\iota_{e_b} \iota_{e_c} d\theta^a + \iota_{e_c} \iota_{e_a} d\theta^b - \iota_{e_a} \iota_{e_b} d\theta^c) \theta^c .
 \]
 - Torsion \(T^a = d\theta^a + \dot{\omega}^a_b \land \theta^b \).
 - Gauge fixing
 - Perform local Lorentz transformation:
 \[
 \theta'^a = \Lambda^a_b \theta^b , \quad \dot{\omega}'^a_b = \Lambda^a_c \dot{\omega}^c_d \Lambda^d_b + \Lambda^a_c d \Lambda^b_c .
 \]
 - Weitzenböck gauge: set \(\dot{\omega}^a_b \equiv 0 \).
Most general action and corresponding field equations

Most general action:

\[S = \frac{1}{2\kappa^2} \int d^4x \, e \left(c_1 T^{\mu\nu\rho} T_{\mu\nu\rho} + c_2 T^{\mu\nu\rho} T_{\rho\nu\mu} + c_3 T^{\mu}_{\mu\rho} T^\nu_{\nu\rho} \right). \]
Most general action and corresponding field equations

- Most general action:
 \[
 S = \frac{1}{2\kappa^2} \int d^4 x \, e \left(c_1 T^{\mu\nu\rho} T_{\mu\nu\rho} + c_2 T^{\mu\nu\rho} T_{\rho\nu\mu} + c_3 T^{\mu}_{\ \mu\rho} T^{\nu}_{\ \nu\rho} \right).
 \]

- Linear perturbation:
 \[
 \theta^a_{\mu} = \Delta^a_{\mu} + \Delta^a_{\rho} \eta^{\rho\sigma} T_{\sigma\mu}.
 \]
Most general action and corresponding field equations

Most general action:

\[S = \frac{1}{2\kappa^2} \int d^4 x \ e (c_1 T_{\mu\nu\rho} T_{\mu\nu\rho} + c_2 T_{\mu\nu\rho} T_{\rho\nu\mu} + c_3 T_{\mu\rho\nu} T_{\nu\rho\mu}) . \]

Linear perturbation:

\[\theta^a_{\mu} = \Delta^a_{\mu} + \Delta^a_{\rho} \eta^{\rho\sigma} T_{\sigma\mu} . \]

Linearized vacuum field equations:

\[\partial_\sigma (F^{\mu\rho\sigma} + B^{\mu\rho\sigma}) = 0 . \]
Most general action and corresponding field equations

- **Most general action:**
 \[S = \frac{1}{2\kappa^2} \int d^4 x \ e (c_1 T^{\mu\nu\rho} T_{\mu\nu\rho} + c_2 T^{\mu\nu\rho} T_{\rho\nu\mu} + c_3 T^{\mu}_{\mu\rho} T^{\nu\rho}) . \]

- **Linear perturbation:**
 \[\theta^a_\mu = \Delta^a_\mu + \Delta^a_\rho \eta^{\rho\sigma} T_{\sigma\mu} . \]

- **Linearized vacuum field equations:**
 \[\partial_\sigma (F^{\mu\rho\sigma} + B^{\mu\rho\sigma}) = 0 . \]

- **Symmetric perturbation part,** \(\phi_{\mu\nu} = \tau_{(\mu\nu)} = \frac{1}{2} h_{\mu\nu} : \)

 \[F^{\mu\rho\sigma} = (2c_1 + c_2) (\partial^\sigma \phi^{\mu\rho} - \partial^\rho \phi^{\mu\sigma}) \]

 \[+ c_3 \left[(\partial^\sigma \phi^{\alpha}_\alpha - \partial_\alpha \phi^{\alpha\sigma}) \eta^{\mu\rho} - (\partial^\rho \phi^{\alpha}_\alpha - \partial_\alpha \phi^{\alpha\rho}) \eta^{\mu\sigma} \right] . \]
Most general action and corresponding field equations

- **Most general action:**
 \[
 S = \frac{1}{2\kappa^2} \int d^4x \, e (c_1 T^{\mu\nu\rho} T_{\mu\nu\rho} + c_2 T^{\mu\nu\rho} T_{\rho\nu\mu} + c_3 T^\mu_{\mu\rho} T^{\nu\rho}) .
 \]

- **Linear perturbation:**
 \[
 \theta^a_{\mu} = \Delta^a_{\mu} + \Delta^a_{\rho} \eta^{\rho\sigma} T_{\sigma\mu} .
 \]

- **Linearized vacuum field equations:**
 \[
 \partial_\sigma (F^{\mu\rho\sigma} + B^{\mu\rho\sigma}) = 0 .
 \]

- **Symmetric perturbation part,** \(\phi_{\mu\nu} = \tau(\mu\nu) = \frac{1}{2} h_{\mu\nu} : \)
 \[
 F^{\mu\rho\sigma} = (2c_1 + c_2) (\partial^\sigma \phi^{\mu\rho} - \partial^\rho \phi^{\mu\sigma})
 + c_3 \left[(\partial^\sigma \phi^\alpha_{\alpha} - \partial_\alpha \phi^{\alpha\sigma}) \eta^{\mu\rho} - (\partial^\rho \phi^\alpha_{\alpha} - \partial_\alpha \phi^{\alpha\rho}) \eta^{\mu\sigma} \right] .
 \]

- **Antisymmetric perturbation part,** \(a_{\mu\nu} = \tau[\mu\nu] : \)
 \[
 B^{\mu\rho\sigma} = (2c_1 - c_2) (\partial^\sigma a^{\mu\rho} - \partial^\rho a^{\mu\sigma}) + (2c_2 + c_3) \partial^\mu a^{\sigma\rho} .
 \]
Decomposition of amplitude $\hat{\tau}_{\lambda\rho}$ relative to wave vector:

$$\hat{\tau}_{\beta\sigma} = k_\beta k_\sigma U + V_\beta k_\sigma + k_\beta W_\sigma + Q_{\beta\sigma}.$$
Decomposition of amplitude $\hat{\tau}_{\lambda\rho}$ relative to wave vector:

$$\hat{\tau}_{\beta\sigma} = k_\beta k_\sigma U + V_\beta k_\sigma + k_\beta W_\sigma + Q_{\beta\sigma}.$$

Conditions imposed on projected components:

$$k_\alpha V^\alpha = 0, \quad k_\alpha W^\alpha = 0, \quad k_\alpha Q^\alpha_\beta = 0, \quad k_\alpha Q_\beta^\alpha = 0.$$
Decomposition of amplitude $\hat{r}_{\lambda\rho}$ relative to wave vector:

$$\hat{r}_{\beta\sigma} = k_\beta k_\sigma U + V_\beta k_\sigma + k_\beta W_\sigma + Q_{\beta\sigma}.$$

Conditions imposed on projected components:

$$k_\alpha V^\alpha = 0, \quad k_\alpha W^\alpha = 0, \quad k_\alpha Q^\alpha_\beta = 0, \quad k_\alpha Q^\alpha_\beta = 0.$$

\Rightarrow U and V_α cancel in field equations - pure gauge fields.
Decomposition of amplitude $\hat{\tau}_{\lambda\rho}$ relative to wave vector:

$$\hat{\tau}_{\beta\sigma} = k_{\beta} k_{\sigma} U + V_{\beta} k_{\sigma} + k_{\beta} W_{\sigma} + Q_{\beta\sigma}.$$

Conditions imposed on projected components:

$$k_\alpha V_\alpha = 0, \quad k_\alpha W_\alpha = 0, \quad k_\alpha Q^\alpha_{\beta} = 0, \quad k_\alpha Q_{\beta}^\alpha = 0.$$

\Rightarrow U and V_α cancel in field equations - pure gauge fields.

Write $Q_{\alpha\beta}$ in trace, symmetric traceless and antisymmetric part:

$$Q^{\tau\kappa} = S^{\tau\kappa} + A^{\tau\kappa} + \frac{1}{3} \left(\eta^{\tau\kappa} - \frac{k^\tau k^\kappa}{\eta^{\mu\nu} k_\mu k_\nu} \right) Q^{\sigma\sigma}.$$
Principal polynomial and speed of propagation

- Decomposition of amplitude $\hat{\tau}_{\lambda\rho}$ relative to wave vector:
 \[\hat{\tau}_{\beta\sigma} = k_\beta k_\sigma U + V_\beta k_\sigma + k_\beta W_\sigma + Q_{\beta\sigma}. \]

- Conditions imposed on projected components:
 \[k_\alpha V^\alpha = 0, \quad k_\alpha W^\alpha = 0, \quad k_\alpha Q^{\alpha\beta} = 0, \quad k_\alpha Q^\alpha_{\beta\alpha} = 0. \]

 \Rightarrow U and V_α cancel in field equations - pure gauge fields.

- Write $Q_{\alpha\beta}$ in trace, symmetric traceless and antisymmetric part:
 \[Q^{\tau\kappa} = S^{\tau\kappa} + A^{\tau\kappa} + \frac{1}{3} \left(\eta^{\tau\kappa} - \frac{k^\tau k^\kappa}{\eta^{\mu\nu} k_\mu k_\nu} \right) Q^\sigma_\sigma. \]

- Decomposed field equations:
 \[0 = (2c_1 + c_2 + c_3)(\eta^{\alpha\beta} k_\alpha k_\beta)^2 W^\kappa, \quad 0 = (2c_1 - c_2)\eta^{\alpha\beta} k_\alpha k_\beta A^{\tau\kappa}, \]
 \[0 = (2c_1 + c_2 + 3c_3)\eta^{\alpha\beta} k_\alpha k_\beta Q^{\tau\tau}, \quad 0 = (2c_1 + c_2)\eta^{\alpha\beta} k_\alpha k_\beta S^{\tau\kappa}. \]
Principal polynomial and speed of propagation

- Decomposition of amplitude $\hat{t}_{\lambda\rho}$ relative to wave vector:
 \[
 \hat{t}_{\beta\sigma} = k_\beta k_\sigma U + V_\beta k_\sigma + k_\beta W_\sigma + Q_{\beta\sigma}.
 \]
- Conditions imposed on projected components:
 \[
 k_\alpha V^\alpha = 0, \quad k_\alpha W^\alpha = 0, \quad k_\alpha Q_{\alpha\beta} = 0, \quad k_\alpha Q_{\beta\alpha} = 0.
 \]
 \[\Rightarrow\]
 U and V_α cancel in field equations - pure gauge fields.

- Write $Q_{\alpha\beta}$ in trace, symmetric traceless and antisymmetric part:
 \[
 Q^{\tau\kappa} = S^{\tau\kappa} + A^{\tau\kappa} + \frac{1}{3} \left(\eta^{\tau\kappa} - \frac{k^\tau k^\kappa}{\eta^{\mu\nu} k_\mu k_\nu} \right) Q^{\sigma\sigma}.
 \]
- Decomposed field equations:
 \[
 0 = \left(2c_1 + c_2 + c_3 \right) \left(\eta^{\alpha\beta} k_\alpha k_\beta \right)^2 W_\kappa, \quad 0 = \left(2c_1 - c_2 \right) \eta^{\alpha\beta} k_\alpha k_\beta A^{\tau\kappa},
 \]
 \[
 0 = \left(2c_1 + c_2 + 3c_3 \right) \eta^{\alpha\beta} k_\alpha k_\beta Q^{\tau\tau}, \quad 0 = \left(2c_1 + c_2 \right) \eta^{\alpha\beta} k_\alpha k_\beta S^{\tau\kappa}.
 \]
- Principal polynomial $\bar{p}(x, k) = \text{const.} \cdot \left(\eta^{\alpha\beta} k_\alpha k_\beta \right)^{15}$.
Principal polynomial and speed of propagation

- Decomposition of amplitude $\hat{\tau}_{\lambda \rho}$ relative to wave vector:
 \[\hat{\tau}_{\beta \sigma} = k_\beta k_\sigma U + V_\beta k_\sigma + k_\beta W_\sigma + Q_{\beta \sigma}. \]

- Conditions imposed on projected components:
 \[k_\alpha V^\alpha = 0, \quad k_\alpha W^\alpha = 0, \quad k_\alpha Q^{\alpha \beta} = 0, \quad k_\alpha Q_{\beta \alpha} = 0. \]

 \Rightarrow U and V_α cancel in field equations - pure gauge fields.

- Write $Q_{\alpha \beta}$ in trace, symmetric traceless and antisymmetric part:
 \[Q^{\tau \kappa} = S^{\tau \kappa} + A^{\tau \kappa} + \frac{1}{3} \left(\eta^{\tau \kappa} - \frac{k^\tau k^\kappa}{\eta^{\mu \nu} k_\mu k_\nu} \right) Q^{\sigma \sigma}. \]

- Decomposed field equations:
 \[0 = (2c_1 + c_2 + c_3)(\eta^{\alpha \beta} k_\alpha k_\beta)^2 W_\kappa, \quad 0 = (2c_1 - c_2)\eta^{\alpha \beta} k_\alpha k_\beta A^{\tau \kappa}, \]
 \[0 = (2c_1 + c_2 + 3c_3)\eta^{\alpha \beta} k_\alpha k_\beta Q^{\tau \tau}, \quad 0 = (2c_1 + c_2)\eta^{\alpha \beta} k_\alpha k_\beta S^{\tau \kappa}. \]

- Principal polynomial $\bar{p}(x, k) = \text{const.} \cdot (\eta^{\alpha \beta} k_\alpha k_\beta)^{15}.$

- $\eta^{\alpha \beta} k_\alpha k_\beta = 0 \iff$ propagation at the speed of light.
Newman-Penrose formalism

- Assume plane null wave $\tau_{\mu\nu} = \hat{\tau}_{\mu\nu} e^{ik_{\mu}x^\mu}$ with $\eta^{\alpha\beta} k_\alpha k_\beta = 0$.
Newman-Penrose formalism

- Assume plane null wave \(\tau_{\mu\nu} = \hat{\tau}_{\mu\nu} e^{ik_{\mu}x^{\mu}} \) with \(\eta^{\alpha\beta} k_{\alpha} k_{\beta} = 0 \).

\[\Rightarrow \text{Field equations expressed in Newman-Penrose basis:} \]

\[0 = E_{nn} = (2c_1 + c_2 + c_3)\ddot{\phi}_{nl} + 2c_3\ddot{\phi}_{m\bar{m}} + (2c_1 + c_2 + c_3)\dddot{a}_{nl}, \]

\[0 = E_{mn} = (2c_1 + c_2)\ddot{\phi}_{ml} + (2c_1 - c_2)\dddot{a}_{ml}, \]

\[0 = E_{nm} = -c_3\dddot{\phi}_{lm} - (2c_2 + c_3)\dddot{a}_{lm}, \]

\[0 = E_{m\bar{m}} = -c_3\dddot{\phi}_{l}, \]

\[0 = E_{ln} = (2c_1 + c_2)\dddot{\phi}_{l}, \]
Newman-Penrose formalism

Assume plane null wave \(\tau_{\mu\nu} = \hat{\tau}_{\mu\nu} e^{ik_{\mu}x^{\mu}} \) with \(\eta^{\alpha\beta} k_{\alpha} k_{\beta} = 0 \).

\[0 = E_{nn} = (2c_1 + c_2 + c_3) \ddot{\phi}_{nl} + 2c_3 \ddot{\phi}_{m\bar{m}} + (2c_1 + c_2 + c_3) \ddot{a}_{nl} , \]
\[0 = E_{mn} = (2c_1 + c_2) \ddot{\phi}_{ml} + (2c_1 - c_2) \ddot{a}_{ml} , \]
\[0 = E_{nm} = -c_3 \ddot{\phi}_{lm} - (2c_2 + c_3) \ddot{a}_{lm} , \]
\[0 = E_{m\bar{m}} = -c_3 \ddot{\phi}_{l\bar{l}} , \]
\[0 = E_{ln} = (2c_1 + c_2) \ddot{\phi}_{l\bar{l}} , \]

Possible \(E(2) \) classes:

- 2\(c_1 + c_2 = c_3 = 0 \): all six modes are allowed \(\Rightarrow \text{II}_6 \).
Newman-Penrose formalism

Assume plane null wave \(\tau_{\mu\nu} = \hat{\tau}_{\mu\nu} e^{ik_{\mu}x^{\mu}} \) with \(\eta^{\alpha\beta} k_{\alpha} k_{\beta} = 0 \).

\(\Rightarrow \) Field equations expressed in Newman-Penrose basis:

\[
\begin{align*}
0 &= E_{nn} = (2c_1 + c_2 + c_3) \ddot{\phi}_{nl} + 2c_3 \ddot{\phi}_{m\bar{m}} + (2c_1 + c_2 + c_3) \ddot{a}_{nl}, \\
0 &= E_{mn} = (2c_1 + c_2) \ddot{\phi}_{ml} + (2c_1 - c_2) \ddot{a}_{ml}, \\
0 &= E_{nm} = -c_3 \ddot{\phi}_{lm} - (2c_2 + c_3) \ddot{a}_{lm}, \\
0 &= E_{m\bar{m}} = -c_3 \ddot{\phi}_{l}, \\
0 &= E_{ln} = (2c_1 + c_2) \ddot{\phi}_{ll}, .
\end{align*}
\]

Possible E(2) classes:

- \(2c_1 + c_2 = c_3 = 0 \): all six modes are allowed \(\Rightarrow \) II\(_6\).
- \(2c_1(c_2 + c_3) + c_2^2 = 0, 2c_1 + c_2 + c_3 \neq 0 \): only scalar \(\Psi_2 \sim \dot{h}_{ll} = 0 \) \(\Rightarrow \) III\(_5\).
Newman-Penrose formalism

- Assume plane null wave $\tau_{\mu\nu} = \hat{\tau}_{\mu\nu} e^{ik_{\mu}x^{\mu}}$ with $\eta^{\alpha\beta} k_{\alpha} k_{\beta} = 0$.

⇒ Field equations expressed in Newman-Penrose basis:

\[
\begin{align*}
0 &= E_{nn} = (2c_1 + c_2 + c_3) \ddot{\phi}_{nl} + 2c_3 \ddot{\phi}_{m\bar{m}} + (2c_1 + c_2 + c_3) \ddot{a}_{nl}, \\
0 &= E_{mn} = (2c_1 + c_2) \ddot{\phi}_{ml} + (2c_1 - c_2) \ddot{a}_{ml}, \\
0 &= E_{nm} = -c_3 \ddot{\phi}_{lm} - (2c_2 + c_3) \ddot{a}_{lm}, \\
0 &= E_{m\bar{m}} = -c_3 \ddot{\phi}_{\|}, \\
0 &= E_{l\bar{n}} = (2c_1 + c_2) \ddot{\phi}_{\|}.
\end{align*}
\]

- Possible $E(2)$ classes:
 - $2c_1 + c_2 = c_3 = 0$: all six modes are allowed $\Rightarrow \text{II}_{6}$.
 - $2c_1(c_2 + c_3) + c_2^2 = 0$, $2c_1 + c_2 + c_3 \neq 0$: only scalar $\Psi_2 \sim \ddot{h}_{\|} = 0$ $\Rightarrow \text{III}_{5}$.
 - $2c_1(c_2 + c_3) + c_2^2 \neq 0$, $2c_1 + c_2 + c_3 \neq 0$: also vector $\Psi_3 \sim \ddot{h}_{lm} = 0$ $\Rightarrow \text{N}_3$.

Manuel Hohmann (University of Tartu) Waves in teleparallel gravity Athens - 25. January 2019 24/29
Newman-Penrose formalism

Assume plane null wave \(\tau_{\mu\nu} = \hat{\tau}_{\mu\nu} e^{ik_{\mu}x^{\mu}} \) with \(\eta^{\alpha\beta} k_\alpha k_\beta = 0 \).

Field equations expressed in Newman-Penrose basis:

\[
0 = E_{nn} = (2c_1 + c_2 + c_3) \ddot{\phi}_{nl} + 2c_3 \ddot{\phi}_{m\bar{m}} + (2c_1 + c_2 + c_3) \ddot{a}_{nl},
\]
\[
0 = E_{mn} = (2c_1 + c_2) \ddot{\phi}_{ml} + (2c_1 - c_2) \ddot{a}_{ml},
\]
\[
0 = E_{nm} = -c_3 \ddot{\phi}_{lm} - (2c_2 + c_3) \ddot{a}_{lm},
\]
\[
0 = E_{m\bar{m}} = -c_3 \ddot{\phi}_{l\bar{l}},
\]
\[
0 = E_{ln} = (2c_1 + c_2) \ddot{\phi}_{l\bar{l}}.
\]

Possible \(E(2) \) classes:

- \(2c_1 + c_2 = c_3 = 0 \): all six modes are allowed \(\Rightarrow \) II_6.
- \(2c_1(2c_2 + c_3) + c_2^2 = 0 \), \(2c_1 + c_2 + c_3 \neq 0 \): only scalar \(\Psi_2 \sim \ddot{h}_{ll} = 0 \) \(\Rightarrow \) III_5.
- \(2c_1(2c_2 + c_3) + c_2^2 \neq 0 \), \(2c_1 + c_2 + c_3 \neq 0 \): also vector \(\Psi_3 \sim \ddot{h}_{lm} = 0 \) \(\Rightarrow \) N_3.
- \(2c_1 + c_2 + c_3 = 0 \), \(c_3 \neq 0 \): also scalar \(\Phi_{22} \sim \ddot{h}_{m\bar{m}} = 0 \) \(\Rightarrow \) N_2.
Gravitational wave polarisations

\[c_1 = \sin \theta \cos \phi \]
\[c_2 = \sin \theta \sin \phi \]
\[c_3 = \cos \theta \]
Teleparallel gravity:
- Fields are tetrad and flat spin connection.
- Only torsion, no curvature or non-metricity.
- Most general theory needs 3 parameters at linearized level.

Results:
- Gravitational waves propagate at the speed of light.
- Polarisation classes N_2, N_3, III_5, II_6: tensor + maybe more.
Summary

Teleparallel gravity:
- Fields are tetrad and flat spin connection.
- Only torsion, no curvature or non-metricity.
- Most general theory needs 3 parameters at linearized level.

Symmetric teleparallel gravity:
- Fields are metric and flat, symmetric affine connection.
- Only non-metricity, no curvature or torsion.
- Most general theory needs 5 parameters at linearized level.

Results:
Gravitational waves propagate at the speed of light.
Polarisation classes N_2, N_3, III$_5$, II$_6$: tensor + maybe more.
Teleparallel gravity:
- Fields are tetrad and flat spin connection.
- Only torsion, no curvature or non-metricity.
- Most general theory needs 3 parameters at linearized level.

Symmetric teleparallel gravity:
- Fields are metric and flat, symmetric affine connection.
- Only non-metricity, no curvature or torsion.
- Most general theory needs 5 parameters at linearized level.

Results:
- Gravitational waves propagate at the speed of light.
- Polarisation classes N_2, N_3, \overline{III}_5, \overline{I}_6: tensor + maybe more.

Acknowledgments

Geometric Foundations of Gravity

June 17-21, 2019 - Tartu, Estonia
http://hexagon.fi.tartu.ee/~geomgrav2019/
Acknowledgments

Geometric Foundations of Gravity

June 17-21, 2019 - Tartu, Estonia
http://hexagon.fi.tartu.ee/~geomgrav2019/

- Estonian Research Council:

- European Regional Development Fund:

- COST Actions CA15117 & CA16104, supported by COST: