
Abstract—A software implemented bio-impedance signal 

simulator (BISS) is proposed, which can imitate real bio-

impedance phenomena for analyzing the performance of 

various signal processing methods and algorithms. The un-

derlying mathematical models are built by means of a curve-

fitting regression method. Three mathematical models were 

compared  polynomial, Fourier series and sum of sine waves 

with four different measured impedance cardiography (ICG) 

datasets and two clean ICG and impedance respirography 

(IRG) datasets were taken as the basis of the signals. Statisti-

cal analysis (sum of squares error, correlation and execution 

time) implies that Fourier series is best suited. The models of the 

ICG and IRG signals are integrated into the proposed simulator. 

 In the simulator the correlation between heart rate and 

respiration rate are taken into account by means of ratio 

between them (5:1 respectively). 

Keywords— Regression based model, Signal Simulation 

and Modeling, Electrical Bio-Impedance, Impedance Cardi-

ography, Respiratory Signal. 

I. .INTRODUCTION  

Impedance cardiography (ICG) measurement has been 

offered as a cost effective and noninvasive method for 

monitoring haemodynemical parameters. The time variant 

part of the bioimpedance (BI) phasor reflects processes in  

patient physiological state since some changes in BI can 

be caused by normal activity or pathological reasons  [1, 2].  

Extracting information from impedance signals for di-

agnosing diseases and assessing heart function is essential 

for exploiting this method. 

Working on real signals can be difficult; it is desirable 

to provide a simulation tool to enable simulation and con-

trol of such signals for analyzing the performance of vari-

ous signal processing methods such as cardiac and respira-

tory separation algorithms, e.g. independent component 

analysis (ICA), adaptive filtering, ensemble averaging, and 

spectral methods [3, 4]. 

Modeling of the ICG signal has captured the interest of 

several researchers in the past few years, using different 

approaches such as described in [4, 5, 6]. 

In [4], Krivoshei proposed a simple bio-impedance sig-

nal synthesizer to generate cardiac and respiratory signals.  

The author used a piece-wise linear triangular function to 

model the cardiac signal and a trapezium to model the 

respiratory signal. The model, however, is too simple to 

fully imitate the cardiac and respiratory signals, and thus 

does not allow testing e.g. separation algorithms. 

Kersulyte et al. [5] proposed a cardio model based on 

the sum of exponential functions. The purpose of their 

work was to find out a model for cardio signals as precise 

as possible and compare complexity parameters of the real 

signals and that of the model for both healthy and sick 

persons. They compared two function types polynomial 

and sum of exponentials.  Their results indicate that both 

methods lead to similar results in terms of fidelity; howev-

er, the authors also indicate that the polynomial equation 

depends on the signal length and number of intervals, 

which could lead to too many coefficients and increased 

computational requirements for complex signals. 

In [6] Matušek et al. proposed a cardiac signal model 

based on a series of real signals. By filtering and averaging 

the series of real signals, they estimated one average ICG 

signal cycle and simply replicated this cycle over time to 

get the final signal model. One limitation of this approach 

is that it lacks a mathematical model and thus the user 

cannot easily change the parameters of the model. 

Given the limitations of the above works, it was decid-

ed to compare the suitability of three mathematical models 

(polynomial, Fourier series, sum of sine waves) by means 

of Matlab’s Curve Fitting Toolbox. 

II. MODELING THE ICG AND IRG SIGNALS 

The impedance cardiography and impedance respirog-

raphy (IRG) signals are nearly periodic signals that can be 

approximated through various mathematical models. In 

this study, first were evaluated ten models, which are 

available in the toolbox and found out that three of these 

gave the better results, namely polynomial, Fourier series, 

and sum of sine waves. Then these three models were 

applied on four measured ICG datasets and two clean ICG 

and IRG datasets for evaluation and comparison purposes. 

What follows briefly describes the electrical bio-

impedance (EBI) measurement procedure and then dis-

cusses each model separately.  

A. EBI Measurement Procedure 

The datasets were obtained using multiple pairs of elec-

trodes with different electrode configurations. The EBI 

measurement electrode setup is shown in Figure 1.  

 

Fig 1. Sixteen electrodes configured belt, which is used for the EBI 

measurement procedure [2]. 
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Such type of electrodes’ setup is presumed to allow 

raising strong enough variations of the EBI in order to 

record the cardiac and respiration signals, which are 

caused by the heart and lungs. Further details about 

the EBI measurement setup can be found in [2]. 

The measured datasets are obtained from a healthy male 

subject aged between 40 and 50 years, in a seated position. 

The total EBI dataset was divided into three different 

segments. Each segment contains 10 seconds of the total 

EBI raw data, about 10,000 samples. Accordingly, the 

structure of the three segments is as follows: 

a) cardiac only (breathing was held),  

b) cardiac + respiration (deep breathing), 

c) cardiac + respiration + motion artefacts (normal      

breathing with added motion artefacts). 

In what follows, the four ICG datasets correspond to b) 

and the clean ICG and IRG datasets correspond to filtered 

versions of a) and b), respectively. 

B. Models and Evaluation Method 

a) Polynomial Model 

Polynomials are well suited for cases where a fairly 

simple empirical model is needed; they can be used for 

interpolation or extrapolation to characterize data by 

means of a global fit. The general polynomial model for-

mula is given in Equation 1: 

   ∑    
        

    (1) 

where n is the degree of the polynomial (highest power of 

the predictor variable),  n+1 is the order of the polynomial 

(number of coefficients), pi are the coefficients and t is time. 

In this work, the polynomial model was evaluated for degrees 

1 to 9 for the different datasets; degree 9, which is the highest 

order available in the toolbox, gave the best suitable results. 

The comparative results are shown in Table 1 and Figures 2 & 3.  

b) Fourier Series Model 

The Fourier series is a sum of sine and cosine functions 

that describes a periodic signal.  The model formula is 

given in Equation 2: 

        ∑              
                (2) 

where a0 is the intercept, which is constant term in the data, ω 

is the fundamental frequency and n is the number of terms in 

the series. The model was evaluated with 1 to 8 terms for the 

different ICG datasets; the best suitable results were obtained 

for the degree of 8, the highest available in the toolbox. The 

comparative results are shown in Table 1 and Figures 2 and 3. 

c) Sum of Sine Waves Model 

This model consists of a sum of sine terms only. The 

model formula is given in Equation 3: 

    ∑    
 
                (3) 

where a is the amplitude,  ω is the frequency, c the phase, which 

is constant for each term and n  is the total terms in series. 

The model was evaluated with 1 to 8 terms for the dif-

ferent datasets; 8 terms (the highest available in the 

toolbox) gave the most suitable results. The comparative 

results are shown in Table 1 and Figures 2 and 3.  

d) IRG Signal with Polynomial, Fourier Series and Sum  

of Sine Waves Models 

Following the same approach as for the ICG signal, the 

IRG clean dataset is also modeled with the polynomial,  

Fourier series and sum of sine waves methods. The compar-

ative results are shown in Table 1 (Clean IRG) and Figure 3(c). 

C. Statistical Parameters 

The performance of the three modeling methods is 

evaluated by means of the following fit measures. 

a) Sum of Squares Error (SSE) 

The SSE statistic assesses the total deviation of the data 

values from the fitted model, as expressed in Equation 4: 

      ∑    
 
        

 
   (4) 

where n is the number of data points, yi is the response data, 

and  i  is predictor data. SSE values close to 0 indicate that 

the model is fitted well and has a very small random error [7]. 

b) R-Square 

R-Square measure is the square of the correlation be-

tween the data and the fitted model values. A value close to 1 

shows a greater correlation between the data and the model 

whereas a value close to 0 shows a poor correlation. It is 

determined as the ratio of the sum of squares of the regression 

(SSR) and the total sum of squares (SST), where SST =SSR + 

SSE. The R-square measure is given in Equation 5 [7]: 

  -        
   

   
    

   

   
 (5) 

c) Execution time 

The execution time is measured through Matlab stop-

watch functions (tic, toc) and reported in Table 1. 

III. EXPERIMENTAL RESULTS 

Table 1 and Figures 2 and 3 show the fit of the three 

models with the various datasets. Generally speaking, the 

three models provide a reasonable fit across the four da-

tasets: the average SSE value is 0.879e-07, the min and 

max values are 0.161e-07 and 1.9417e-07, respectively  

Similarly, the average R-square value across the four 

datasets is 0.9762, the min and max values are 0.9512 and 

0.9936, respectively. 

The Fourier series model minimizes the error (average 

SSE=0.335e-07) and has also a high correlation across the 

four datasets as compared to the other models. However, it 

took 1.275 more seconds to execute as compared to the 

polynomial model; it is nevertheless much faster (by 

44.476 seconds or nearly 10 times) than the sum of sine 

waves model.  

In this study, the most suitable results were obtained 

with eight terms for the Fourier series model, which gives 

18 coefficients. For the polynomial model, we set the 

degree to 9, leading to ten coefficients. It is preferable to 

limit the number of coefficients for relating them to the 

patients’ condition. However, this has to be traded-off for 

a lower fit, as shown in Table 1.  
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Table 1. Evaluation Criterions Results for the Modeled Signal 

 

Regarding the difference between the polynomial and 

the sum of sine waves models, it can be seen that for Da-

tasets 2 and 3, the polynomial model minimizes the error 

(0.3050e-07 and 1.3185e-07, respectively) and is highly 

correlated with the datasets (0.9959 and 0.9506, respec-

tively). On Datasets 1 and 4, the sum of sine waves model 

minimizes the error (1.0424e-07 and 0.8054e-07, respec-

tively) and is highly correlated (0.9917 and 0.9714 respec-

tively) with the datasets. However, 8 terms were used for 

the sum of sine waves model, which gives 24 coefficients 

(versus 10 for the polynomial model) and a much longer 

execution time.  

For the clean ICG and IRG datasets, the Fourier series 

model performed very well among all to minimize the 

error (0.0611 and 2890.6e-07, respectively) and is highly 

correlated (0.9999 and 1, respectively) with the datasets. It 

is followed by the sum of sine waves model, which has the 

second minimum error (0.1996 and 7896.1e-07, re-

spectively) and high correlation (0.9994 and 1, respec-

tively) but also has a larger number of coefficients (24) 

and larger execution time (49.170 seconds) as compared to 

the polynomial model. 

 

 

 

 

 

 

Fig 2. Measured datasets (solid-lines) and fitted models (dotted-lines) for three EBI datasets:  

a) results of fitting of the EBI dataset 1, b) results of fitting of the EBI dataset 2, c) results of fitting of the EBI dataset 3. 
Results for the sum of sine waves model are presented without offset, results for Fourier series model are offset by 0.05×10-3  

and results for Polynomial model are offset by 0.1×10-3. 

 

 

 

 

Fig 3. Measured (a) and cleaned (b, c) datasets (solid-lines) and fitted models (dotted-lines) for other three EBI datasets: 

a) results of fitting of the EBI dataset 4, b) results of fitting of the cleaned ICG dataset 5, c) results of fitting of the cleaned IRG dataset 6. 
Results for the sum of sine waves model are presented without offset, results for Fourier series model are offset by offset a) 0.05×10-3, b) offset 0.5, c) 

offset 1.5) and results for Polynomial model are offset by (a) 0.1×10-3, b) 1, c) 3]. 

IV. THE BIOIMPEDANCE SIGNAL SIMULATOR (BISS)  

This section describes how the Fourier series model was 

included in our Bioimpedance Signal Simulator (BISS). 

As shown in Figure 4, the simulated bio-impedance 

signal is generated by summing the ICG signal (SΔZ ICG), 

artefacts (SArtefacts), a white Gaussian noise (SNoise) and the 

IRG signal (SΔZ IRG) such as:  

 SEBI(t) = SΔZ ICG + SArtefacts + SNoise + SΔZ IRG (6) 

The BISS’ GUI is shown in Figure 5, where  a) is the menu used 

to perform different operations such as loading different datasets 

(ICG/FCG) to simulate the signal, saving the final generated EBI 

signal model for further processing and exiting from the BISS 

environment, b) a recorded clean ICG period, c) a period of the 

ICG signal model, d) a recorded respiration period e) a period of  

the IRG signal model f) the continuously simulated ICG signal. 

Datasets 

Sum of sine Waves (24 

coeff) 
Fourier (18 coeff) Polynomial (10 coeff)  

SSE R-Sq SSE R-Sq SSE R-Sq SSE Avg SSE Min SSE Max R-SqAvg 

Dataset 1 1.0424e-07 0.9917 0.1612e07 0.9987 1.2270e-07 0.9903 0.810e-07 0.161e-07 1.23e-07 0.9935 

Dataset 2 0.9044e-07  0.9875 0.1786e-07  0.9976 0.3050e-07 0.9959 0.463e-07 0.179e-07 0.904e-07 0.9936 

Dataset 3 1.9417e-07  0.9274 0.6476e-07 0.9758 1.3185e-07 0.9506 1.326e-07 0.6476e-07 1.9417e-07 0.9512 

Dataset 4 0.8054e-07 0.9714 0.3506e-07 0.9876 1.6683e-07  0.9409 0.941e-07 0.3506e-07 1.6683e-07 0.9666 

SSE Avg, R-Sq Avg 1.17e-07 0.970   0.335e-07 0.9758 1.13e-07 0.969 0.879e-07     0.9762 

SSE Min, R-Sq Min 8.05e-08 0.161 0.161e-07 0.9758 0.305e-07 0.941   0.161e-07   0.9512 

SSE Max, R-Sq Max 1.94e-07 0.9917 0.648e-07 0.9987 1.67e-07 0.996     1.9417e-07 0.9936 

Clean ICG Signal with different scale  

Clean ICG 0.1996 0.9994 0.0611 0.9999 2.8229 0.9937 1.0279 0.0611 2.8229 0.9959 

Ex. Time (s) ~49.170 ~4.694 ~3.419     

Clean IRG Signal with different scale  

Clean IRG 7896.1e-07 1 2890.6e-07 1 19.5782 0.9983 6.5264 2890.6e-07 19.5782 0.9994 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85
x 10

-3

x

y

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
0.95

1

1.05

1.1

1.15

1.2

1.25
x 10

-3

x

y

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85
x 10

-3

x

y

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
1.4

1.45

1.5

1.55

1.6

1.65

1.7
x 10

-3

x

y

 

 

Dataset 1 

1 

Dataset 3 
Polynomial 
a) b) c) Polynomial 

Fourier Series 

Polynomial 

Fourier Series Sum of Sine Waves 

Dataset 2 

c) b) 

Polynomial 

a) 

Polynomial 

Fourier Series 

Polynomial 

Fourier Series 

Fourier Series Sum of Sine  Waves Sum of Sine Waves 

Dataset 6  

(IRG Clean) 

Dataset 4 Dataset 5 (ICG Clean) 

Sum of Sine Waves 

Fourier Series 

Sum of Sine Waves 
Sum of Sine  Waves 

 

94 Y.M. Mughal et al.
 

IFMBE Proceedings Vol. 48 

Yar
Stamp

Yar
Stamp

Yar
Stamp

Yar
Stamp



 

 

 

 

 

 

           Fig 4. Blockdiagramof the 

          Bioimpedance Signal Simulator  

Fig 5. User Interface of the Bioimpedance Signal Simulator (BISS).  

The heart rate, time scale, respiration  rate,  noise and  atefacts amplitude parameters are user-Controlled 

In order to take the real phenomena of BI signals into 

account, a random modulation is introduced with each 

cycle (amplitude ±25, frequency ±5). Moreover, the user 

should specify the heart rate in beats/min and time win-

dow. g) is the continuously simulated respiration signal 

where a random modulation is introduced with each cycle 

(amplitude ±50, frequency ±10). 

The respiration rate is correlated  to the cardiac heart rate 

by means of the ratio. The default ratio is 5:1 (5 cardiac cy-

cles for 1 respiration cycle). Nevertheless, the user can con-

trol the respiration rate as well. h) is the noise generator, i) the 

recorded artefacts caused by swinging the arm during the 

measurement (randomly moving in the defined time window, 

j) the generated bio-impedance signal model based on the 

user entered parameters, k) the detailed summary of the gen-

erated bio-impedance signal model and l) buttons that let the 

user clear all simulated model signals and start again, save 

the EBI signal model and exit from BISS’ GUI environment. 

Figures 5 f), g), h) and i) illustrate the effect of the user-

controlled parameters such as time scale window, heart rate (b/m), 

respiration rate (b/m), noise amplitude and artefacts amplitude.  

V. CONCLUSIONS 

The polynomial model is relatively simple, but it does 

not provide the best results for our application. The sum of 

sine waves model produces better results than the poly-

nomial one, but is less suitable than the Fourier series one 

because it has a higher number of coefficients, higher SSE 

values, lower R-Square values, and higher execution times.  

Overall, the Fourier series model fits with the measured 

datasets very well, minimizes the error and has high correla-

tion values as compared to the two other models; only its 

execution time is slightly higher than that of the polynomial 

model.  

Furthermore, the correlation between the heart rate and 

the respiration rate is implemented by means of a ratio (de-

fault 5 ICG cycles for 1 IRG cycle).  

Finally, the user can enable the insertion of the recorded 

artifact in the final EBI model. 

Nevertheless, the resulting simulated signal does not 

model all aspects of the real bioimpedance data yet. Thus, 

future work will refine the model by means of piece-wise 

segmentation of the datasets for finer grain curve-fitting 

while maintaining the number of coefficients to the re-

quired minimum for reflecting the pathological conditions 

(i.e. not necessarily 24, 18, and 10 as shown in Table 1).  

The Starling’s and Poiseuille laws will be taken into account 

in the  model to reflect the systolic and diastolic phenomena 

respectively.  
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