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Abstract

We investigate how to model type systems for computationally secure information flow
within the limits of the type system of Jif — an extension of Java with types for tracking the
flow of information. In particular, we consider a type system proposed by Laud and Vene
which can handle encryption keys as first-class data. We show how the typing decisions of
Laud-Vene type system can be captured using the declassification mechanism of Jif, and
present a Jif class for “keys” that encapsulates all necessary information releases. The rules
that a user of the defined class has to follow, in order to be consistent with the Laud-Vene
type system, can be syntactically checked in a straightforward manner.

1 Introduction

The question of secure information flow in a program (or a larger system) arises if the program
has inputs and outputs of different security levels. A common way of specifying secure infor-
mation flow is non-interference [10] stating that inputs of higher security levels must not affect
the outputs of lower security levels at all.

There exists various means to statically check whether a program is non-interferent. Type
systems are one of such means. They are mature enough for being included in software devel-
opment tools, e.g. Jif [16], an extension of the Java programming language with security levels
for values and locations. The Jif compiler statically checks the validity of security annotations,
thus ensuring that a program compiles only if it is non-interferent. However, non-interference is
often a too strong property for realistic programs. Hence Jif also contains means to declassify
information; to assign to it a lower security level than would be mandated by the type system.

For programs containing cryptographic operations, non-interference is obviously not the cor-
rect formalization for secure information flow. Indeed, a ciphertext depends on the plaintext,
and an attacker with an unbounded amount of resources would even be able to find the plaintext
from a ciphertext, but nevertheless one would like to consider a program releasing encrypted
secrets as secure, because a reasonable attacker cannot deduce anything about the secret in-
puts from the ciphertexts it sees. A notion of computational non-interference is suitable here,
demanding only computational, not absolute independence of a program’s secret inputs and
public outputs. There also exist type systems enforcing such a property for programs contain-
ing cryptographic operations; they are more lax than the type systems for non-interference.

The type systems for computational non-interference have not yet found their way to de-
velopment tools. Some of the simpler systems (e.g. the type system of [19]) can be readily
modeled in Jif, using its declassification mechanism to lower the security level of ciphertexts.
But these simple type systems put serious restrictions on the manipulation of cryptographic
material — they do not consider the encryption keys as the first-class data that can be manip-
ulated by programs. In this paper we investigate how a type system enforcing computationally
secure information flow, not putting restrictions on the programs [14], can be modeled in Jif.



Again, we have to use the declassification mechanism during the encryption, but we also have
to track the flow of keys, and consider what happens when information from several sources is
combined. As a result of this paper we show that the type system [14] can be modeled in Jif
with an exception of encryption cycles.

2 Related Work

Static analysis for verifying the programs for secure information flow was started by Denning
[8], a suitable type system for a simple imperative language, together with solid semantical
underpinnings were first proposed by Volpano et al. [21]. The extensions for the Java type
system to track the information flow — the decentralized label model — were proposed by Myers
[16], subsequently implemented in the Jif compiler. Later, similar extension has appeared for
Caml [17]. The enforcement of information flow policies can also be added to a programming
language through a suitable library / sublanguage [15]. Among those extensions, Jif is certainly
the most mature one, having been used for larger projects, e.g. an e-voting application [6] and
a secure e-mail client [11]. A semi-recent overview of language-based information flow security
and the static methods to enforce it is given by Sabelfeld and Myers [18].

Language-based analysis of computations containing cryptographic primitives was started
by Abadi et al. [2, 1] and extended to a full imperative programming language by Laud [12, 13].
In these papers, a data flow analysis was proposed. A type system similar in expressiveness
was proposed by Laud and Vene [14]. Later, several type systems for computationally secure
information flow have been proposed. Smith and Alpizar [19] gave a simple type system that
handled encryption (but also decryption) with a single key that could not be accessed otherwise.
Courant et al. [7] modified this type system to handle deterministic encryption (i.e. pseudoran-
dom permutations). Askarov et al. [3] have proposed an abstraction of the encryption primitive
and devised a type system for it. The type system, similarly to [14], does not constrain the
operations performed with cryptographic data. Fournet and Rezk [9] give a similar type system
to a language containing public-key encryption and signatures and use this language to soundly
implement information flow policies for accessing shared memory. Vaughan and Zdancewic
[20] have introduced an information-packing primitive (which provides confidentiality) and in-
tegrated it into the decentralized label model. We are not aware of any previous attempts to
model these type systems in Jif.

3 Details of the Jif Type System

Jif is a security-typed language that extends Java programming language by adding types to
define different security policies. These policies are expressed by using a decentralized label
model. A principal is an entity that can express security requirements.

A principal can also delegate authority to another principal. If principal p delegates authority
to principal q then the principal q is said to act for principal p, written q � p. Principal ⊤
may act for all other principals whereas principal ⊥ permits all other principals to act for it.
Jif also allows to form principal conjunctions and disjunctions. Principal p&q, a conjunction
of principals p and q, allows p&q to act for both q and p. Principal “p, q”, a disjunction of
principals p and q, permits both q and p to act for it.

The label consists of two policies: the confidentiality and integrity policy. The confidentiality
policy allows the owner to specify which principals may read certain information. It is formed
by conjunctions and disjunctions of reader policies o→ r, where o is the owner of the policy and
r is the specified reader. The policy says that the owner o allows certain information to be read



by principal q only if q is the owner o or if q can act for r. Also, reader policy conjunctions and
disjunctions can be formed. The conjunction c⊔ d enforces both c and d. Thus the information
may be read by principal c⊔ d only if both c and d allow it. The disjunction c⊓ d says that the
information may be read by principal c⊓d if one of the two c and d allow it. The least restrictive
confidentiality policy is ⊥ → ⊥, as all principals know that the information may be read by all
principals. The most restrictive one is ⊤ → ⊤, because only ⊤ can read the information.

The integrity policies are defined dually to confidentiality policies. These policies allow the
owner to specify who may have influenced certain information. The writer policy o ← w says
that according to owner o principal q may have influenced the information only if q is the owner
o, or may act for w. Similarly to reader policies conjunctions and disjunctions of writer policies
can be formed. The most restrictive writer policy is ⊥ ← ⊥, as all principals know that any
principal may have influenced the information. The least restrictive writer policy is ⊤ ← ⊤,
because all principals know that only ⊤ may have influenced the information.

Labels are pairs that consist of a confidentiality policy and integrity policy, written {c; d},
where c is a confidentiality policy and d is an integrity policy. Each variable (whether local, or
instance, or class) has a label associated with it; the label of a variable x is denoted by {x}.
These labels must generally be specified by the programmer (otherwise a default label is used),
but for local variables, the Jif compiler may be able to infer them automatically. The label of
an expression is the join of the labels of its subexpressions; the Jif compiler makes sure that
information with a more restrictive label is never stored in a variable with a less restrictive label.
To allow such stores, the programmer may declassify or endorse some expression, relaxing either
its associated confidentiality or integrity policy. Whenever some principal’s policy is relaxed
this way, the Jif compiler verifies that the code currently executing has the authority of this
principal.

The variables are not the only objects to have labels. Each program point has a label (usually
inferred) characterizing the level of the information that has affected the program’s control flow
whenever it reaches this program point. Only those variables can be assigned to whose label
is at least as restrictive as the label of the program point containing the assignment. Jif also
relies on explicit label annotations while arguing about interprocedural flow of information. The
programmer has to annotate the arguments of methods, as well as their return values. Similarly,
all exceptions that a method can throw have labels characterizing the flow of information that
lead to the throwing of this exception. To prevent implicit flows through assignments made
inside the method, the method also has the begin-label that lower-bounds the label of the
program points where this method is called from.

The methods in the Jif language may be label-polymorphic. For such methods, the pro-
grammer can restrict the polymorphism by declaring that the labels of parameters must satisfy
certain constraints. These constraints are verified by the Jif compiler at each program point
where this method may be called; these constraints can also be relied on inside the method body.
Jif also allows classes to be parameterized by labels or principals; this mechanism is similar to
the generics of Java. Each time an object is created, these label and principal parameters are
instantiated.

The above description of Jif covers only the features our implementation uses. For a complete
overview we refer to [5].

4 Laud-Vene Type System

The type system [14] has been designed to check for the computational security of information
flow (CSIF) in a simple imperative language (the While-language) where the set of operations
has been extended with key generation (nullary) and encryption (binary). In defining CSIF, let



us assume that each variable of the program has either high or low security level. A program has
CSIF if the initial values of its high-security variables are computationally independent of the
final values of its low-security variables. Two random variables X and Y are computationally
independent if no efficient algorithm, given the values of X and Y can tell whether these values
come from the same experiment (a run of the program) or different experiments.

A typing assigns a type to each variable. A type system puts restrictions on possible typings.
These restrictions make sure that the information does not flow from high-typed (or -security)
variables to low-typed variables, unless it is encrypted inbetween. The set of types is quite rich,
because there are various kinds of secrets whose flow has to be kept track of. Besides the secret
inputs we also have to track the various keys. Let G be the set of program points where keys
are generated. Let the set of basic secrets be T0 = {h} ∪ G where h denotes the secret inputs.
The elements of T0 denote the various kinds of data that need protection. The set of encrypted
secrets is T1 = {{t}N | t ∈ T0, N ⊆ G}. The type {t}N denotes the amount of information
contained in a basic secret t that has been protected (through encryption) by at least one key
from each of the key generation statements in N . The encrypted secrets are ordered by the
amount of information still present in them: we have {t}N ≤ {t

′}N ′ if t = t′ and N ⊇ N ′. An
information type of a variable is basically a set of encrypted secrets, meaning that the value of
the variable can depend from only these encrypted secrets (the information type of a variable
depending only on public data is the empty set). Given an information type T ⊆ T1, it may
be possible to simplify it. First, we may drop from T all its non-maximal elements. Second, if
{t}N∪{i} ∈ T and i ∈ T (here i denotes {i}∅) for some i ∈ G then we may replace {t}N∪{i} with
{t}N . This simplification corresponds to the ability to decrypt with known keys.

Besides the information type, each variable also has the usage type. It is either KeyN ,
denoting that the variable can be used as a key and its value was generated in one of the
program points in N ⊆ G, or it is Data, denoting that the variable is not a key.

Let γ be a typing; it assigns a pair 〈T,U〉 of information and usage types to each variable.
For some variable x, let γData(x) be its information type if it is considered to be non-key: if
γ(x) = 〈T,Data〉 then γData(x) = T , and if γ(x) = 〈T,KeyN 〉 then γData(x) = T ∪N (possibly
simplified). Each statement x := o(x1, . . . , xk) in the program imposes certain constraints on
γ. For a “non-special” o we just require that π2(γ(x)) = Data, π1(γ(x)) ≥ γData(xi) and
π1(γ(x)) ≥ Tpc where Tpc is the current program counter label (the least upper bound of all
γData(b), such the execution of this program point is controlled by an if - or while-statement
whose guard is b).

For a key generation statement x := Gen() at the program point i we have the constraints
π2(x) = KeyN for some N ⊇ {i} and π1(x) ≥ Tpc. An assignment x := y can be typed as in the
previous paragraph, but if π2(γ(y)) = KeyN then we may also choose to satisfy the constraints
π2(γ(x)) = KeyN ′ where N ⊆ N ′, π1(γ(x)) ≥ π1(γ(y)) and π1(γ(x)) ≥ Tpc. Finally, for a
statement x := Enc(k, y), where π2(γ(k)) = KeyN we may also choose to satisfy the constraints
π2(γ(x)) = Data, π1(γ(x)) ≥ Tpc and π1(γ(x)) ≥ {{t}M∪{i} | {t}M ∈ π1(γ(k))∪π1(γ(y)), i ∈ N}.

As we mentioned before, the type of a secret input variable must be at least 〈{h},Data〉.
Similarly, the least upper bound of γData(y) for all public outputs y must not be {h} or higher.
If these conditions and all constraints from previous two paragraphs hold, then the program has
computationally secure information flow. Note, however, that the security of the encryption
scheme under key-dependent messages [4] is necessary for this to hold. In [14] the simplification
rules for sets of encrypted secrets were more complex, allowing the type system to detect
encryption cycles and deem them insecure. These rules are probably too complex to be modeled
within the Jif type system. Still, even without considering encryption cycles, the modeling task
remains interesting.



5 The Principles of Modeling

There is a special Key class defined so that only keys generated by that class can be used
for encryption. The class implements the methods for generating new keys (realized in the
constructor) and encryption. As we also want to allow one to access the “actual value” (as a
bit-string) of the key, there will also be a method that returns it.

In [14], a type consisted of an information type and a usage type. We will obviously use
Jif’s labels to track the information types of values. A value has the usage type KeyN only if it
is an object of class Key, otherwise it has the usage type Data. The class Key is parameterized
with something that allows us to track the set N of possible generation points of that key.

The public and private inputs are modeled by having a fixed principal H that is allowed to
read private data (the public data can be read by ⊥). For each key generation point g ∈ G we
also introduce a principal P that is allowed to read the keys generated at this point. Besides
P , we also introduce the principal P that certainly does not know the keys generated at the
point g. On can form conjunctions and disjunctions of these principals. For example, P1&P2 is
a principal that knows the keys generated at g1, but certainly does not know the keys generated
at g2. The principal P&P does not exist — i.e. it is considered to be equivalent to ⊤ and it
may not occur in the program text.

If information in variable x can be read by someone who acts for the principal X and the key
k was generated at g (represented by the principals P and P ), then the ciphertext Enc(k, x)
may be read by someone who acts for the disjunction X,P . The necessary declassification
from X to X,P is performed by the encryption method of the Key-class. Similarly, if a key k1

generated at g1 is encrypted with a key k2 generated at g2 then the result can be read by P1, P2.
A pair consisting of Enc(k2, k1) and Enc(k3, k2) (where k3 is generated at g3) can be read by
the principal ((P1, P2)&(P2, P3)). This means that the result may be read by either a principal
who acts for P1&P2 (the principal who may already read both plaintexts), or principal who
acts for P2&P3 (the principal who surely does not know the keys to decrypt both ciphertexts),
or principal who acts for P1&P3 (the principal who knows the key k1 but is unable to decrypt
Enc(k3, k2). The fourth possibility P2&P2 equals ⊤.

In [14], a program has computationally secure information flow if the least upper bound of
the types of its public variables is not h or greater. While modeling this type system in Jif, the
programmer has to explicitly state that least upper bound. The public variables may be read
by a principal of the form Pi1& . . . &Pik&Pj1& . . . &Pjl

with {i1, . . . , ik} ∩ {j1, . . . , jl} = ∅. The
use of this label is more clearly explained in Sec. 7.

6 The Key-class

The class for encryption keys, given in Fig. 1, contains methods for key generation, encryption
and for returning the value of the key. In the declaration of a variable that is of type Key,
written Key[l1,l2]{l} k, the label l1 must be of the form {p->P1&...&Pn;p<-*} and l2 of
the form {p->NotP1&...&NotPn;p<-*} for some principal p that has the authority to execute
the declaration of k. In the syntax of Jif, * denotes ⊤. Jif does not check that the two labels
are of the correct form (first one containing P1& · · ·&Pn and the second one P1& · · ·&Pn), but
this syntactic check could be easily included somewhere in the development environment. The
variable k may contain keys generated at one of the points g1, . . . , gn. The covariance of the
label parameters is used in the subtyping decisions; this allows the assignments of the form
k1 = k2; where the keys pointed to by k1 may have been created in at least as many program
points as the keys pointed to by k2.



1 import value.Value;

2 import javax.crypto.*;

3 import javax.crypto.spec.*;

4

5 public class Key[covariant label l1, covariant label l2] {

6 final byte[]{this} key;

7

8 Key() {

9 this.key = gen();

10 }

11

12 String{pt meet l2 ; p<-*}

13 encrypt{this}(principal p, String pt)

14 where {pt}<={p->*;p<-*},{this}<={p->*;p<-*},caller(p)

15 {

16 String r = encAES(key,pt);

17 return declassify(r, {pt meet l2 ; p<-*});

18 }

19

20 String{this ; l1} value() {

21 String{this ; l1} keyValue = Value.bytesToString(key);

22 return keyValue;

23 }

24

25 private static byte[] gen() { ... }

26

27 private static String encAES(byte[] raw,String pt) { ... }

28 }

Figure 1: The class Key

The instance method encrypt takes a principal p and plaintext pt as arguments. The prin-
cipal p must have authorized the call to encrypt, as stated by the precondition caller(p).
This is needed because the method uses declassification to properly model the weakening of
the restrictions on information flow according to type system [14] and thus the authority
of the concerned principal is required. The other two restrictions {pt}<={p->*;p<-*} and
{this}<={p->*;p<-*} assure that labels {pt} and {this} for the plaintext and the key only
contain policies of principal p. See Sec. 9 for a discussion of this restriction. As the actual
encryption method encAES uses both key and pt then the label of the result r is a conjunction
of the two labels: {this;pt}. The label of the ciphertext r is then declassified to also allow the
text to be read by the principal who surely does not know the key used for encryption. Thus
the new label of the ciphertext is a disjunction pt meet l2. As the label {r} only contains the
policy of the principal p, there exists sufficient authority to perform the declassification.

The Key-class also contains the method value for returning the actual value of the key. The
method will just convert the array of bytes key to a string and restrict its label. This restriction
is manifested as the label of the return value of the value-method.

If a program makes use of the class Key and does not contain any declassification statements



1 public static final void main{p<-*}(principal{p<-*} p, String args[])

2 throws IllegalArgumentException

3 where caller(p)

4 {

5

6 final label L = new label {p->NotP1; p<-*};

7 PrintStream[{*L}] out = ...

8

9 Key[{p->P1;p<-*}, {p->NotP1;p<-*}] k;

10 k = new Key[{p->P1;p<-*}, {p->NotP1;p<-*}]();

11

12 String{p->H;p<-*} pt = "Plaintext";

13 String x = k.encrypt(p, pt);

14 out.println("x: " + x);

15 }

Figure 2: Example 1

outside of this class, then Jif’s type system puts “the same” restrictions on it as the type system
of Laud and Vene. We believe that this statement could be formalized as a theorem; however
we do not currently intend to do so. It would require a formalization of the Jif type system
to an extent that we are not aware of having been done. Also, our goal has been “similarity”
of the behavior of type systems, not their total coincidence. Indeed, we have already seen a
difference (the encryption cycles) between the two type systems. The next section shows that
there are other differences as well.

7 Examples

Fig. 2 presents the most basic example of using the Key-class. We generate a key (the two
principals associated with this key generation statement are P1 and NotP1), use it to encrypt
a secret (denoted by having the confidentiality policy p->H) plaintext and output a ciphertext.
The program is secure according to the type system of [14] and the Jif compiler also accepts it.

Similarly to Java, Jif starts the execution of the program from a method named main, with
the correct signature. In Jif’s case, this signature also includes the principal p, under whose
authority the program is executed. Jif’s standard library includes the labeled versions of input
and output streams; in our example, out is an output stream that can print values whose labels
are no more restrictive than L. By defining the label L, we are stating the least upper bound of
the labels of the public variables, as required in the end of Sec. 5. Jif does not verify that L is
of the shape required in Sec. 5, but this simple syntactic check could be embedded elsewhere.

But if in addition to ciphertext x the value of the key k is also output (as shown in Fig. 3,
where the method signature is no longer shown), then Jif rejects the program because the label
of k.value() contains the policy {p->P1} which is not less or equal to L. We cannot add this
policy to L (although the Jif compiler would not complain) because that would violate the
conditions put on L in Sec. 5.

In the example in Fig. 4 two keys k1 and k2 are defined. The first is used to encrypt the
plaintext, while the second is used to encrypt the first key. Both ciphertexts are output. The
Jif compiler accepts this program, because the first ciphertext may be read by NotP1 (and also



1 {

2 final label L = new label {p->NotP1; p<-*};

3 PrintStream[{*L}] out = ...

4

5 Key[{p->P1;p<-*}, {p->NotP1;p<-*}] k;

6 k = new Key[{p->P1;p<-*}, {p->NotP1;p<-*}]();

7

8 String{p->H;p<-*} pt = "Plaintext";

9 String x = k.encrypt(p, pt);

10 out.println("x: " + x);

11 out.println("k: " + k.value());

12 }

Figure 3: Example 2

1 {

2 final label L = new label {p->NotP1&NotP2; p<-*};

3 PrintStream[{*L}] out = ...

4

5 Key[{p->P1;p<-*}, {p->NotP1;p<-*}] k1;

6 k1 = new Key[{p->P1;p<-*}, {p->NotP1;p<-*}]();

7

8 Key[{p->P2;p<-*}, {p->NotP2;p<-*}] k2;

9 k2 = new Key[{p->P2;p<-*}, {p->NotP2;p<-*}]();

10

11 String{p->H;p<-*} pt = "Plaintext";

12

13 String x1 = k1.encrypt(p, pt);

14 String x2 = k2.encrypt(p, k1.value());

15

16 out.println("x1: " + x1 + " x2: " + x2);

17 }

Figure 4: Example 3

by H), while the second ciphertext may be read by NotP2 (and also by P1). The label L is of
the correct form.

Fig. 5 demonstrates double encryption: here x2 is a ciphertext that may be read by each of
the principals H, NotP1 and NotP2. Hence we may output x2 and also one of the keys (chosen
statically). Note the value of the label L — it states that the key(s) generated at the program
point g1 are public.

The key that is used for encryption may also depend on other values as shown in figure 6.
The value of the key k3 depends on some other (public) value. The labels l1 and l2 in the
declaration of k3 have to contain both P1/NotP1 and P2/NotP2, otherwise the assignment to k3

is not allowed because of incompatible types. After encrypting the plaintext pt with the key k3

the ciphertext x may be read by principal NotP1&NotP2 (but not just NotP1 or NotP2). Still,



1 {

2 final label L = new label {p->P1&NotP2; p<-*};

3 PrintStream[{*L}] out = ...

4

5 Key[{p->P1;p<-*}, {p->NotP1;p<-*}] k1;

6 k1 = new Key[{p->P1;p<-*}, {p->NotP1;p<-*}]();

7

8 Key[{p->P2;p<-*}, {p->NotP2;p<-*}] k2;

9 k2 = new Key[{p->P2;p<-*}, {p->NotP2;p<-*}]();

10

11 String{p->H;p<-*} pt = "Plaintext";

12

13 String x1 = k1.encrypt(p, pt);

14 String x2 = k2.encrypt(p, x1);

15

16 out.println("x2: " + x2 + " k1: " + k1.value());

17 }

Figure 5: Example 4

1 {

2 final label L = new label {p->NotP1&NotP2; p<-*};

3 PrintStream[{*L}] out = ...

4

5 Key[{p->P1;p<-*}, {p->NotP1;p<-*}] k1;

6 k1 = new Key[{p->P1;p<-*}, {p->NotP1;p<-*}]();

7

8 Key[{p->P2;p<-*}, {p->NotP2;p<-*}] k2;

9 k2 = new Key[{p->P2;p<-*}, {p->NotP2;p<-*}]();

10

11 Key[{p->P1&P2;p<-*}, {p->NotP1&NotP2;p<-*}] k3;

12 k3 = (..) ? k1 : k2;

13

14 String{p->H;p<-*} pt = "Plaintext";

15 String x = k3.encrypt(p, pt);

16 out.println("x: " + x);

17 }

Figure 6: Example 5

the label L allows us to output x.
The example in Fig. 7 differs from the previous one only in the confidentiality policy on the

information from which there is an implicit flow to k3. That policy is now {p->P3}, instead of
{}, and that is also the confidentiality policy of k3 itself. According to the type system of [14],
the ciphertext x can now be read by either of the principals H&P3 and NotP1&NotP2. Hence the
program is still secure and it should suffice to define L as in Fig. 7.



1 {

2 final label L = new label {p->NotP1&NotP2; p<-*};

3 PrintStream[{*L}] out = ...

4

5 Key[{p->P1;p<-*}, {p->NotP1;p<-*}] k1;

6 k1 = new Key[{p->P1;p<-*}, {p->NotP1;p<-*}]();

7

8 Key[{p->P2;p<-*}, {p->NotP2;p<-*}] k2;

9 k2 = new Key[{p->P2;p<-*}, {p->NotP2;p<-*}]();

10

11 Key[{p->P3;p<-*}, {p->NotP3;p<-*}] k;

12 k = new Key[{p->P3;p<-*}, {p->NotP3;p<-*}]();

13

14 Key[{p->P1&P2;p<-*}, {p->NotP1&NotP2;p<-*}] k3;

15 k3 = (k.value()) ? k1 : k2;

16

17 String{p->H;p<-*} pt = "Plaintext";

18 String x = k3.encrypt(p, pt);

19 out.println("x: " + x);

20 }

Figure 7: Example 6

Jif, however, acts differently. It considers there to be information flow from the target of
the method call (k3) to the result of the method call (x). Hence, according to Jif, x can be read
by either of the principals H&P3 or NotP1&NotP2&P3. The program in Fig. 7 does not compile.
We could add P3 to L, thereby making it compile again, but then we could not output any
ciphertexts created with the key k (this is still allowed in [14]).

Such an assumption by Jif cannot probably be overcome, as long as encrypt is an instance
method and the occurrences of declassification are constrained to be inside the class Key. On
the other hand, this assumption is also not a weakness of Jif, because it is necessary each time
the target of the call is nil. The language used in [14] does not allow the possibility of a key
being undefined.

8 Static Method for Encryption

The assumption made by Jif on the information flow from that target of a method call to
the result of that call could be overcome if we implement encryption as a static method, as
shown in Fig. 8. In addition to a principal p and a plaintext pt, the static encryption method
takes a key k as an argument. The method saves k.key in kv, but before dereferencing k it
declassifies it, such that the possible NullPointerException that may be thrown does not have
a too restrictive label. After saving k.key in kv, the static method works the same way as the
instance method.

This static encryption method is typed almost like in the type system [14] with the exception
of handling the NullPointerException. Using this method instead of the instance method
would allow us to compile the example in Fig. 7. But as handling the NullPointerException

might be cumbersome then the instance encryption method is used where implicit information



1 static String{pt meet l2; k meet l2; p<-*}

2 encrypt_s{p<-*}(principal p,Key[l1,l2] k,String pt)

3 :{pt meet l2; k meet l2; p<-*}

4 throws NullPointerException

5 where {pt} <= {p->*;p<-*}, {k} <= {p->*;p<-*},

6 caller(p)

7 {

8 byte [] kv = declassify(k,{k meet l2; p<-*}).key;

9 String r = encAES(kv,pt);

10 return declassify(r, {pt meet l2 ;k meet l2;p<-*});

11 }

Figure 8: Static encryption method

flow does not occur.

9 Conclusions and Discussion

We have shown that existing tools for secure programming (in particular, Jif) are also well-
suited for making sure that programs have computationally secure information flow. The next
logical step would be the extension of Jif to include encryption in its policies. So far we have
not really made use of the decentralized label model; in fact, we have actively tried to work
around it by stating that there is a single principal p whose policies we are concerned with.
Indeed, Laud and Vene [14] also do not consider multiple principals. Hence the extensions of
this work also have to consider important theoretical problems, e.g. the integrity of keys.
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