Dependency-graph-based protocol analysis

Peeter Laud
peeter.laud@ut.ee
http://www.ut.ee/~peeter_l

Tartu University & Cybernetica AS
(joint work with Ilja Tšahhirov)
Dependency graphs

- Directed graph, nodes are labeled with operations.
 - The label of a node determines its in-degree.
 - Incoming edges are (usually) ordered.
- Nodes of a DG compute values, purely functionally.
- Edges describe where the values are used for further computations.
- Special nodes are used to bring inputs to the system.
 - ...and transmit the outputs.
A protocol

- \(A \) wants to send the secret \(M \) to \(B \).
- \(S \) is a trusted server.

\[
\begin{align*}
A \rightarrow B & : \ A, B, \{N_A\} K_{AS} \\
B \rightarrow S & : \ A, B, \{N_A\} K_{AS}, \{N_B\} K_{BS} \\
S \rightarrow A & : \ \{K_{AB}, N_A\} K_{AS} \\
S \rightarrow B & : \ \{K_{AB}, N_B\} K_{BS} \\
A \rightarrow B & : \ \{M\} K_{AB}
\end{align*}
\]
A protocol

Generate keys K_{AS} and K_{BS}
A protocol
A protocol
A protocol
A protocol

Party S
A protocol

Party B
A protocol
Good sides

- The structure of definitions and uses of values is explicit.
 - No copying of values.
 - No variable names at all...
- We immediately see what is used where.
 - ...which greatly simplifies finding out whether some cryptographic reduction is allowed.
 - ...and also helps doing other simplifications.
Some obvious simplifications
Some obvious simplifications

We can do dead code elimination afterwards.
Simplifying encryption

If the symmetric encryption is IND-CCA and INT-CTXT secure then we can replace the encryptions and decryptions as follows:

- **Encryptions** — replace the plaintext with some constant 0.
- **Decryptions** — replace them by
 - comparing the ciphertext with the results of all encryptions (with the same key);
 - if there is a match then take the corresponding (original) plaintext as the result;
 - if there is no match then fail.

... provided that the key is used only for encrypting and decrypting.
Which keys are OK?
Replace K_{BS}
Semantics

- Let $\{0, 1\}^* = \{\bot\} \cup \{0, 1\}^*$ where \bot is the smallest value and everything else is incomparable.
- Let $\mathbb{B} = \{\text{false}, \text{true}\}$ with $\text{false} \leq \text{true}$.
- Let V_D [resp. V_B] be the set of nodes returning bit-strings [booleans].
- The adversary may set the values of input nodes (but only moving upwards).
- The environment sets the randomness sources.
- The values of other nodes are monotonically computed from their inputs.
Semantic functions

- All yellow nodes are strict.
- Green nodes are monotone boolean operations.
- The value of blue nodes is not \bot only if the incoming control dependency edge carries true.
- The MUX works as follows:
 - If the control dependency is false, or all guards are false, then the result is \bot.
 - Otherwise, if exactly one guard is true, then the result is the corresponding incoming value.
 - Otherwise, the result is \top.
Semantics

- The valuation of the entire graph has the type

\[
((V_D \rightarrow \{0, 1\}^*) \times (V_B \rightarrow \mathbb{B}))^\top.
\]

- The semantic functions of nodes define a monotone function on graph valuations.

- Its least fixed point is the semantics of the graph.

- A good thing — the order of the execution of nodes is not fixed.
Computation \leftrightarrow MUX
Application...
Representing infinite graphs

- Nodes in different planes, but in the same position are represented by a single node.
 - Such nodes are one-dimensional.
- There may be replication inside replication.
 - The corresponding nodes in the representation have more than one dimension.
- In the representation, the edges are equipped with coordinate mappings.
- In the representation, the edges generally cannot go from a higher-dimensional node to lower-dimensional node.
 - Exceptions: target node is an infinite or or MUX.
 - Then we record which dimensions are contracted.
In our experience, the hardest part of the analyser has been the simplification of control dependencies. Meaning: to derive that some node is always false.

Some simplifications can be done locally. Constant propagation, copy propagation, flattening, etc.

More interesting ones require the analysis of the whole graph.
When does $v_1 = \text{true}$ imply $v_2 = \text{true}$?

- If $v_1 = \ldots \& v_2 \& \ldots$.
- If $v_2 = \ldots \lor v_1 \lor \ldots$.
- If $v_1 \Rightarrow v_3$ and $v_3 \Rightarrow v_2$.
- If $v_2 = w_1 \& \cdots \& w_t$ and $v_1 \Rightarrow w_i$ for all i.
- If $v_1 = w_1 \lor \cdots \lor w_t$ and $w_i \Rightarrow v_2$ for all i.

On the representation, we have to record coordinate equalities, too.

If $v_1[c_1, \ldots, c_k] = \bigvee_{j \in \mathbb{N}} v_2[c_1, \ldots, c_k, j]$ then also

$$v_1[c_1, \ldots, c_k] \Rightarrow \text{OneOf}(v_2[c_1, \ldots, c_k, \ast]) \; .$$
Using \Rightarrow

- Simplification of control dependencies.
- If the control dependency of some node u computing $X(\ldots, v, \ldots)$ implies that the node “$v \equiv w$” is true then replace u with $X(\ldots, \text{Merge}(v, w), \ldots)$.
- In this way we record the equality of values in the graph.
- If the control dependency of some MUX implies the guard of some of its choices, then replace that MUX by that choice.
Independence and randomness

Consider the ancestors of some node.

- Move backwards in the dependency graph.
- Also move from “receive”-s to “send”-s.
 - But not towards the future. (use \(\Rightarrow \))

If two nodes have non-overlapping sets of ancestors then they are independent.

If at least one of them is random, then they are unequal.

Typical application:

- A nonce is generated but never sent out.
- It is compared with some of the contents of some message received from the network.
- Then the result must be false.
Our dependency graph...
For certain two boolean nodes we can say that at most of them can be \textit{true} at any moment.

This can be propagated downwards:
- If $v_1 \& v_2$ and $v_3 = \ldots \& v_2 \& \ldots$ then $v_1 \& v_3$.
- If $v_2 = w_1 \lor \cdots \lor w_t$ and $v_1 \lor w_i$ for all i then $v_1 \lor v_2$.

Also store coordinate equalities and exceptions to them.

If we derive $v \& v$ then v is \textit{false}.
Integrity (correspondence) properties

- Begin- and End-nodes.
 - Have a control dependency and an incoming data edge.
 - Produce no output.

- Non-injective agreement — Whenever \(\text{End}(x) \) is executed, \(\text{Begin}(x) \) must have been executed as well.
 - … earlier or at the same time.
 - Use “⇒” to show it.

- Injective agreement — each execution of \(\text{End}(x) \) has a different execution of \(\text{Begin}(x) \) not later than it.
 - Often \(\text{End}(x) \) can happen at most once for each \(x \).
 - Use “NAND” to show it.
In closing...

- For tracking data dependencies, our representation seems to be ideal.

- Control dependencies are also handled seemingly reasonably.
 - One can consider more or less stringent control flow structures, but the current choice looks like optimal.

- A persistent representation has to be found for data collected for \Rightarrow and NAND.