
Cryptographically sound
formal verification of security

protocols

Two views of cryptography

2 / 40

Formal (“Dolev-Yao”) view

■ Messages — elements of a term algebra.
■ Possible operations on messages are enumerated.
■ Choices in semantics — non-deterministic.

◆ Protocol and the adversary are easily represented in some
process calculus.

Computational view

■ Messages — bit strings.
■ Possible operations on messages — everything in PPT.
■ Choices in semantics — probabilistic.

◆ Protocol and adversary — a set of probabilistic interactive
Turing machines.

Two views of cryptography

2 / 40

Formal (“Dolev-Yao”) view

■ Messages — elements of a term algebra.
■ Possible operations on messages are enumerated.
■ Choices in semantics — non-deterministic.

◆ Protocol and the adversary are easily represented in some
process calculus.

■ Simpler to analyse.

Computational view

■ Messages — bit strings.
■ Possible operations on messages — everything in PPT.
■ Choices in semantics — probabilistic.

◆ Protocol and adversary — a set of probabilistic interactive
Turing machines.

■ Closer to the real world.

Table of Contents

3 / 40

■ The Abadi-Rogaway result on the indistinguishability of
computational interpretations of formal messages.

■ Translating protocol traces between formal and computational world.

A simple language for messages

4 / 40

The atomic building blocks:

■ Formal keys k, k1, k2, k
′, k′′, . . . ∈ Keys

■ Formal coins r, r1, r2, r
′, r′′, . . . ∈ Coins

■ Bits b ∈ {0, 1}

A simple language for messages

4 / 40

The atomic building blocks:

■ Formal keys k, k1, k2, k
′, k′′, . . . ∈ Keys

■ Formal coins r, r1, r2, r
′, r′′, . . . ∈ Coins

■ Bits b ∈ {0, 1}

A formal expression e ∈ Exp is

e ::= k
| b
| (e1, e2)
| {e′}rk

If {e}rk and {e′}rk′ both occur in an expression then k = k′ and e = e′.

A simple language for messages

4 / 40

The atomic building blocks:

■ Formal keys k, k1, k2, k
′, k′′, . . . ∈ Keys

■ Formal coins r, r1, r2, r
′, r′′, . . . ∈ Coins

■ Bits b ∈ {0, 1}

A formal expression e ∈ Exp is

e ::= k
| b
| (e1, e2)
| {e′}rk

If {e}rk and {e′}rk′ both occur in an expression then k = k′ and e = e′.

■ e is similar to Dolev-Yao messages.

A simple language for messages

4 / 40

The atomic building blocks:

■ Formal keys k, k1, k2, k
′, k′′, . . . ∈ Keys

■ Formal coins r, r1, r2, r
′, r′′, . . . ∈ Coins

■ Bits b ∈ {0, 1}

A formal expression e ∈ Exp is

e ::= k
| b
| (e1, e2)
| {e′}rk

If {e}rk and {e′}rk′ both occur in an expression then k = k′ and e = e′.

■ e is similar to Dolev-Yao messages.
■ We can also interpret it as a program for computing a message.

Semantics — building blocks

5 / 40

■ Let 〈·, ·〉 : ({0, 1}∗)2 → {0, 1}∗ be easily computable and invertible
injective function.

Semantics — building blocks

5 / 40

■ Let 〈·, ·〉 : ({0, 1}∗)2 → {0, 1}∗ be easily computable and invertible
injective function.

■ A symmetric encryption scheme (K,E,D):

◆ K (1η) — generates keys;
◆ E (1η, k, x) — encrypts x with k;
◆ D(1η, k, y) — decrypts y with k.

K and E — probabilistic, D — deterministic.

Semantics — building blocks

5 / 40

■ Let 〈·, ·〉 : ({0, 1}∗)2 → {0, 1}∗ be easily computable and invertible
injective function.

■ A symmetric encryption scheme (K,E,D):

◆ Kr(1η) — generates keys from random coins r;
◆ Er(1η, k, x) — encrypts x with k using the random coins r;
◆ D(1η, k, y) — decrypts y with k.

K and E — probabilistic, D — deterministic.

Semantics — building blocks

5 / 40

■ Let 〈·, ·〉 : ({0, 1}∗)2 → {0, 1}∗ be easily computable and invertible
injective function.

■ A symmetric encryption scheme (K,E,D):

◆ Kr(1η) — generates keys from random coins r;
◆ Er(1η, k, x) — encrypts x with k using the random coins r;
◆ D(1η, k, y) — decrypts y with k.

K and E — probabilistic, D — deterministic.

Correctness:

∀η, x, r, r′ :

k := Kr(η)
y := Er

′

(η, k, x)
x′ := D(η, k, y)
(x = x′)?

Semantics of a formal expression

6 / 40

■ For each k ∈ Keys let sk ← K(1η)
■ For each r ∈ Coins let sr ∈R {0, 1}

ω.

Define

[[k]]η = sk

[[b]]η = b

[[(e1, e2)]]η = 〈[[e1]]η, [[e2]]η〉

[[{e′}rk]]η = E
sr(η, sk, [[e

′]]η)

Semantics of a formal expression

6 / 40

■ For each k ∈ Keys let sk ← K(1η)
■ For each r ∈ Coins let sr ∈R {0, 1}

ω.

Define

[[k]]η = sk

[[b]]η = b

[[(e1, e2)]]η = 〈[[e1]]η, [[e2]]η〉

[[{e′}rk]]η = E
sr(η, sk, [[e

′]]η)

[[·]] assigns to each formal expression a family of probability distributions
over bit-strings

Computational indistinguishability

7 / 40

We are looking for sufficient conditions in terms of e1 and e2 for

[[e1]] ≈ [[e2]] .

Computational indistinguishability

7 / 40

We are looking for sufficient conditions in terms of e1 and e2 for

[[e1]] ≈ [[e2]] .

Two families of probability distributions over bit-strings D0 = {D0
η}η∈N

and D1 = {D1
η}η∈N are computationally indistinguishable if for all PPT

algorithms A:

Pr[b = b∗ | b ∈R {0, 1}, x← Db
η, b

∗ ← A(1η, x)] = 1/2 + ε(η)

for some negligible function ε.

Computational indistinguishability

7 / 40

We are looking for sufficient conditions in terms of e1 and e2 for

[[e1]] ≈ [[e2]] .

Two families of probability distributions over bit-strings D0 = {D0
η}η∈N

and D1 = {D1
η}η∈N are computationally indistinguishable if for all PPT

algorithms A:

Pr[b = b∗ | b ∈R {0, 1}, x← Db
η, b

∗ ← A(1η, x)] = 1/2 + ε(η)

for some negligible function ε.
A function ε is negligible if

lim
η→∞

ε(η) · p(η) = 0

for all polynomials p.

Decomposing a formal expression

8 / 40

e1 ⊢ e2

The value of e1 tells us the value of e2

Decomposing a formal expression

8 / 40

e1 ⊢ e2

The value of e1 tells us the value of e2

⇒ e ⊢ e

e ⊢ (e1, e2)⇒ e ⊢ e1 ∧ e ⊢ e2

e ⊢ {e′}rk ∧ e ⊢ k ⇒ e ⊢ e′

Decomposing a formal expression

8 / 40

e1 ⊢ e2

The value of e1 tells us the value of e2

⇒ e ⊢ e

e ⊢ (e1, e2)⇒ e ⊢ e1 ∧ e ⊢ e2

e ⊢ {e′}rk ∧ e ⊢ k ⇒ e ⊢ e′

Examples:

({1011}rk1
, {k1}

r′

k2
, k2) ⊢ 1011

({1011}rk1
, {k1}

r′

k2
, {k2}

r′′

k3
) 6⊢ 1011

({1011}rk1
, {k1}

r′

k2
, {k2}

r′′

k1
) 6⊢ 1011

Decomposing a formal expression

8 / 40

e1 ⊢ e2

The value of e1 tells us the value of e2

⇒ e ⊢ e

e ⊢ (e1, e2)⇒ e ⊢ e1 ∧ e ⊢ e2

e ⊢ {e′}rk ∧ e ⊢ k ⇒ e ⊢ e′

Examples:

({1011}rk1
, {k1}

r′

k2
, k2) ⊢ 1011

({1011}rk1
, {k1}

r′

k2
, {k2}

r′′

k3
) 6⊢ 1011

({1011}rk1
, {k1}

r′

k2
, {k2}

r′′

k1
) 6⊢ 1011

Let openkeys(e) = {k ∈ Keys | e ⊢ k}.

The pattern of a formal expression

9 / 40

■ Enlarge the set Exp: e ::= . . . |2r.
■ For a set K ⊆ Keys define

pat(k,K) = k

pat(b,K) = b

pat((e1, e2),K) = (pat(e1,K), pat(e2,K))

pat({e}rk,K) =

{

{pat(e,K)}rk, if k ∈ K

2
r, if k 6∈ K

■ Let pattern(e) = pat(e, openkeys(e)).

The pattern of a formal expression

9 / 40

■ Enlarge the set Exp: e ::= . . . |2r.
■ For a set K ⊆ Keys define

pat(k,K) = k

pat(b,K) = b

pat((e1, e2),K) = (pat(e1,K), pat(e2,K))

pat({e}rk,K) =

{

{pat(e,K)}rk, if k ∈ K

2
r, if k 6∈ K

■ Let pattern(e) = pat(e, openkeys(e)).
■ Define e1

∼= e2 if pattern(e1) = pattern(e2)σKσR for some

◆ σK — a permutation of the keys Keys;
◆ σR — a permutation of the random coins Coins.

Examples

10 / 40

pattern(({1011}rk1
, {k1}

r′

k2
, k2)) = ({1011}rk1

, {k1}
r′

k2
, k2)

pattern(({1011}rk1
, {k1}

r′

k2
, {k2}

r′′

k3
)) = (2r,2r′ ,2r′′)

pattern(({1011}rk1
, {k1}

r′

k2
, {k2}

r′′

k1
)) = (2r,2r′ ,2r′′)

pattern(({1}r1

k2
, {k2}

r2

k3
, {{0}r4

k2
}r3

k1
, k1)) = (2r1,2r2, {2r4}r3

k1
, k1)

pattern(({k4, 0}
r1

k3
, {k3}

r2

k2
, {{11}r4

k4
}r3

k1
, k1)) = (2r1,2r2, {2r4}r3

k1
, k1)

IND-CPA-security of an encryption scheme

11 / 40

■ Encrypting oracle O
IND−CPA
1 :

Initialization:
k← K(1η)

method encrypt(x)
y← E(k, x)
return y

■ Constant-encrypting oracle O
IND−CPA
0 :

Initialization:
k← K(1η)

method encrypt(x)
l := length(x)
y← E(k, 0l)
return y

(K,E,D) is IND-CPA-secure if for all PPT algorithms A exists a
negligible ε, such that

Pr[b = b∗ | b ∈R {0, 1}, b
∗ ← A

O
IND−CPA
b (1η)] = 1/2 + ε(η)

IND-CPA-security of an encryption scheme

11 / 40

■ Encrypting oracle O
IND−CPA
1 :

Initialization:
k← K(1η)

method encrypt(x)
y← E(k, x)
return y

■ Constant-encrypting oracle O
IND−CPA
0 :

Initialization:
k← K(1η)

method encrypt(x)
l := length(x)
y← E(k, 0l)
return y

(K,E,D) is IND-CPA-secure if for all PPT algorithms A exists a
negligible ε, such that

Pr[b = b∗ | b ∈R {0, 1}, b
∗ ← A

O
IND−CPA
b (1η)] = 1/2 + ε(η)

In other words: O
IND−CPA
1 ≈ O

IND−CPA
0 .

Hiding the identities of keys

12 / 40

■ Oracle with two keys O
hide−key
1 :

Initialization:
k1 ← K(1η)
k2 ← K(1η)

method encrypt1(x)
y← E(k1, x)
return y

method encrypt2(x)
y← E(k2, x)
return y

■ Oracle with one key O
hide−key
0 :

Initialization:
k← K(1η)

method encrypt1(x)
y← E(k, x)
return y

method encrypt2(x)
y← E(k, x)
return y

(K,E,D) hides the identities of keys / is which-key concealing if
O

hide−key
1 ≈ O

hide−key
0 .

Hiding the identities of keys

12 / 40

■ Oracle with two keys O
hide−key
1 :

Initialization:
k1 ← K(1η)
k2 ← K(1η)

method encrypt1(x)
y← E(k1, x)
return y

method encrypt2(x)
y← E(k2, x)
return y

■ Oracle with one key O
hide−key
0 :

Initialization:
k← K(1η)

method encrypt1(x)
y← E(k, x)
return y

method encrypt2(x)
y← E(k, x)
return y

(K,E,D) hides the identities of keys / is which-key concealing if
O

hide−key
1 ≈ O

hide−key
0 .

IND-CPA-secure which-key concealing encryption schemes are easily
constructed (CCA- or CTR-mode of operation of block ciphers).

Hiding the length of the plaintext

13 / 40

■ An encryption scheme is length-concealing if the length of the
plaintext cannot be determined from the ciphertext.

■ Achievable by padding the plaintexts.

◆ Questionable for nested encryptions. . .

■ For simplicity, we will assume that our encryption scheme is
length-concealing.

◆ And also which-key concealing and IND-CPA-secure.

■ Otherwise we’d need to define lengths of formal expressions.

◆ Not difficult, but currently not so interesting

IND-CPA, which-key and length-concealing:

14 / 40

Let 0 be a fixed bit-string.

■ Oracle O
type−0
1 :

Initialization:
k1 ← K(1η)
k2 ← K(1η)

method encrypt1(x)
y← E(k1, x)
return y

method encrypt2(x)
y← E(k2, x)
return y

■ Oracle O
type−0
0 :

Initialization:
k← K(1η)

method encrypt1(x)
y← E(k,0)
return y

method encrypt2(x)
y← E(k,0)
return y

(K,E,D) has all three listed properties if O
type−0
1 ≈ O

type−0
0 .

Semantics of expressions and patterns

15 / 40

■ For each k ∈ Keys let sk ← K(1η)
■ For each r ∈ Coins let sr ∈R {0, 1}

ω

■ Let k2 ← K(1η).

Define

[[k]]η = sk

[[b]]η = b

[[(e1, e2)]]η = 〈[[e1]]η, [[e2]]η〉

[[{e′}rk]]η = E
sr(η, sk, [[e

′]]η)
[[2r]]η = E

sr(η, k2,0)

Theorem of equivalence

16 / 40

Theorem. Let e1, e2 ∈ Exp. If e1
∼= e2 then∗ [[e1]] ≈ [[e2]].

Replacing one key

17 / 40

■ For a key k ∈ Keys define

replacekey(k, k) = k

replacekey(b, k) = b

replacekey((e1, e2), k) = (replacekey(e1, k), replacekey(e2, k))

replacekey({e}rk, k) =

{

2
r, if k = k

{replacekey(e, k)}rk, if k 6= k

replacekey(2r, k) = 2
r

■ Lemma. Let e ∈ Exp. Let key k occur in e only as encryption key.
Then [[e]] ≈ [[replacekey(e, k)]].

Proof of the lemma

18 / 40

Assume that B distinguishes [[e]] from [[replacekey(e, k)]].
Let AO(η) work as follows:

■ Initialize:

◆ Let sk ← K(η) for all keys k occurring in e, except k.
◆ Let sr ∈R {0, 1}

ω for all r occurring in e, except as {. . .}r
k
.

◆ Let k2 ← K(1η).

■ Let L = {} (empty mapping).
■ Compute the “semantics” v of e as follows by invoking Sem

O(e)

◆ SemO(e) = [[e]] if O = O
type−0
1 .

◆ SemO(e) = [[replacekey(e, k)]] if O = O
type−0
0 .

■ return B(η, v).

A can distinguish O
type−0
1 and O

type−0
0 as well as B can distinguish [[e]]

and [[replacekey(e, k)]].

Computing [[e]] or [[replacekey(e, k)]]

19 / 40

SemO(e) is: case e of

■ k: return sk (note that k 6= k)
■ b: return b
■ (e1, e2): let vi = Sem

O(ei); return 〈v1, v2〉
■ {e}rk: let v = Sem

O(e);

◆ If k 6= k then return Esr(η, sk, v)
◆ If k = k and L(r) is not defined then

■ let L(r) = O.encrypt1(v);
■ return L(r)

◆ If k = k and L(r) is defined then return L(r)

■ 2
r: return O.encrypt2(0)

Proof of the theorem

20 / 40

1. replacekey(replacekey(· · · replacekey(e, k1), k2) · · · , kn) =
pattern(e)
if {k1, . . . , kn} are all keys in e that the adversary cannot obtain.
Denote this set of keys by hidkeys(e).

2. Apply the lemma sequentially to each key in hidkeys(e), thereby
establishing

[[e]] ≈ [[pattern(e)]].

∗ In general, not all orders of keys in hidkeys(e) are suitable.

3. Permuting the formal keys and coins does not change the generated
probability distribution over bit-strings.

If e1
∼= e2 then∗ [[e1]] ≈ [[pattern(e1)]] = [[pattern(e2)]] = [[e2]].

Example 1

21 / 40

[[({k4, 0}
r1

k3
, {k3}

r2

k2
, {{11}r4

k4
}r3

k1
, k1)]]

[[({1}r1

k2
, {k2}

r2

k3
, {{0}r4

k2
}r3

k1
, k1)]]

Example 1

21 / 40

[[({k4, 0}
r1

k3
, {k3}

r2

k2
, {{11}r4

k4
}r3

k1
, k1)]]

[[({1}r1

k2
, {k2}

r2

k3
, {{0}r4

k2
}r3

k1
, k1)]]

Example 1

21 / 40

[[({k4, 0}
r1

k3
, {k3}

r2

k2
, {{11}r4

k4
}r3

k1
, k1)]]

≈

[[({k4, 0}
r1

k3
,2r2 , {{11}r4

k4
}r3

k1
, k1)]]

[[({1}r1

k2
, {k2}

r2

k3
, {{0}r4

k2
}r3

k1
, k1)]]

Example 1

21 / 40

[[({k4, 0}
r1

k3
, {k3}

r2

k2
, {{11}r4

k4
}r3

k1
, k1)]]

≈

[[({k4, 0}
r1

k3
,2r2 , {{11}r4

k4
}r3

k1
, k1)]]

[[({1}r1

k2
, {k2}

r2

k3
, {{0}r4

k2
}r3

k1
, k1)]]

Example 1

21 / 40

[[({k4, 0}
r1

k3
, {k3}

r2

k2
, {{11}r4

k4
}r3

k1
, k1)]]

≈

[[({k4, 0}
r1

k3
,2r2 , {{11}r4

k4
}r3

k1
, k1)]]

≈

[[(2r1,2r2, {{11}r4

k4
}r3

k1
, k1)]]

[[({1}r1

k2
, {k2}

r2

k3
, {{0}r4

k2
}r3

k1
, k1)]]

Example 1

21 / 40

[[({k4, 0}
r1

k3
, {k3}

r2

k2
, {{11}r4

k4
}r3

k1
, k1)]]

≈

[[({k4, 0}
r1

k3
,2r2 , {{11}r4

k4
}r3

k1
, k1)]]

≈

[[(2r1,2r2, {{11}r4

k4
}r3

k1
, k1)]]

≈

[[(2r1 ,2r2, {2r4}r3

k1
, k1)]]

[[({1}r1

k2
, {k2}

r2

k3
, {{0}r4

k2
}r3

k1
, k1)]]

Example 1

21 / 40

[[({k4, 0}
r1

k3
, {k3}

r2

k2
, {{11}r4

k4
}r3

k1
, k1)]]

≈

[[({k4, 0}
r1

k3
,2r2 , {{11}r4

k4
}r3

k1
, k1)]]

≈

[[(2r1,2r2, {{11}r4

k4
}r3

k1
, k1)]]

≈

[[(2r1 ,2r2, {2r4}r3

k1
, k1)]]

[[({1}r1

k2
, {k2}

r2

k3
, {{0}r4

k2
}r3

k1
, k1)]]

Example 1

21 / 40

[[({k4, 0}
r1

k3
, {k3}

r2

k2
, {{11}r4

k4
}r3

k1
, k1)]]

≈

[[({k4, 0}
r1

k3
,2r2 , {{11}r4

k4
}r3

k1
, k1)]]

≈

[[(2r1,2r2, {{11}r4

k4
}r3

k1
, k1)]]

≈

[[(2r1 ,2r2, {2r4}r3

k1
, k1)]]

≈

[[({1}r1

k2
,2r2, {{0}r4

k2
}r3

k1
, k1)]]

≈

[[({1}r1

k2
, {k2}

r2

k3
, {{0}r4

k2
}r3

k1
, k1)]]

Example 2

22 / 40

pattern(({k3}
r1

k2
, {k4}

r2

k3
, {{k2}

r4

k4
}r3

k1
, k1)) = (2r1,2r2 , {2r4}r3

k1
, k1)

Example 2

22 / 40

pattern(({k3}
r1

k2
, {k4}

r2

k3
, {{k2}

r4

k4
}r3

k1
, k1)) = (2r1,2r2 , {2r4}r3

k1
, k1)

[[({k3}
r1

k2
, {k4}

r2

k3
, {{k2}

r4

k4
}r3

k1
, k1)]]

Example 2

22 / 40

pattern(({k3}
r1

k2
, {k4}

r2

k3
, {{k2}

r4

k4
}r3

k1
, k1)) = (2r1,2r2 , {2r4}r3

k1
, k1)

[[({k3}
r1

k2
, {k4}

r2

k3
, {{k2}

r4

k4
}r3

k1
, k1)]]

〈cannot apply the lemma〉

Encryption cycles

23 / 40

■ Let e be a formal expression.
■ Consider the following directed graph G = (V,E):

◆ V = hidkeys(e)
◆ (ki → kj) ∈ E if e has a subexpression of the form

{· · · kj · · ·}
r
ki

(we say that ki encrypts kj)

■ e has no encryption cycles if G does not contain directed cycles.

Encryption cycles

23 / 40

■ Let e be a formal expression.
■ Consider the following directed graph G = (V,E):

◆ V = hidkeys(e)
◆ (ki → kj) ∈ E if e has a subexpression of the form

{· · · kj · · ·}
r
ki

(we say that ki encrypts kj)

■ e has no encryption cycles if G does not contain directed cycles.

Theorem. If e contains no encryption cycles then [[e]] ≈ [[pattern(e)]].

Encryption cycles

23 / 40

■ Let e be a formal expression.
■ Consider the following directed graph G = (V,E):

◆ V = hidkeys(e)
◆ (ki → kj) ∈ E if e has a subexpression of the form

{· · · kj · · ·}
r
ki

(we say that ki encrypts kj)

■ e has no encryption cycles if G does not contain directed cycles.

Theorem. If e contains no encryption cycles then [[e]] ≈ [[pattern(e)]].

“No encryption cycles” is sufficient, but not necessary condition for the
sequential applicability of our lemma.

Example: ({k3}
r1

k2
, {k4}

r2

k3
, {{k2}

r4

k4
}r3

k1
) is OK.

Severity of encryption cycles

24 / 40

Exercise. Take an encryption scheme that is assumed to be
IND-CPA-secure. Modify it so, that it is still IND-CPA-secure, but
defenseless against an adversary that has somehow obtained {k}k.

Dealing with encryption cycles

25 / 40

■ We could increase the relation ⊢

◆ Thereby allowing the adversary to “break encryption cycles”.

■ We could strengthen the security definition of the symmetric
encryption scheme

◆ KDM-IND-CPA-security
◆ key-dependent messages
◆ Is such definition instantiable?

Breaking encryption cycles

26 / 40

Define the relations ⊢K for any set K of formal keys as follows:

blaah⇒ e ⊢K e

e ⊢K (e1, e2)⇒ e ⊢K e1 ∧ e ⊢K e2

e ⊢K e′ ⇒ e ⊢K∪K′ e′

e ⊢K {e
′}rk ⇒ e ⊢K∪{k} e′

e ⊢K∪{k} e′ ∧ e ⊢K k ⇒ e ⊢K e′

e ⊢K∪{k} k ⇒ e ⊢K k

And define ⊢ as the relation ⊢∅.

Exercise. What is the pattern of messages
({k3}

r1

k2
, {k4}

r2

k3
, {{k2}

r4

k4
}r3

k1
, k1) and ({k3}

r1

k2
, {k4}

r2

k3
, {{k2}

r4

k4
}r3

k1
) by the

new definition of ⊢?

KDM-IND-CPA-security

27 / 40

■ Defined as the indistinguishability of certain two encrypting oracles
O0 and O1.

■ Both “initially create” an array k[0..∞] of fresh keys.
■ A query to an oracle is a pair (j, g), where

◆ j ∈ N

◆ g is a program that returns a bit-string

■ g may refer to k.
■ the length of g’s output may not depend on k.

■ O1 returns Ek[j](g(k)) to the query (j, g).
■ O0 returns Ek[j](0

|g(k)|) to the query (j, g).

(this definition allows E to reveal the lengths of plaintexts and identities
of keys)

Achieving KDM-IND-CPA-security

28 / 40

■ Simple in the random oracle model

◆ Let H(x) denote random oracle’s output for the query x
◆ The program g may also contain instructions to call H

■ Let K(η) just output a random element of {0, 1}η.
■ Let Er(η, k, x) = (r,H(k‖r)⊕ x)

◆ Assume that the output of H has the same length as x
◆ Exercise. How do we construct such a H from some random

oracle H0 whose output length is fixed?

Exercise. Show that this scheme is KDM-IND-CPA-secure.

■ It is not known how to achieve KDM-security in the plain model.
■ Possible, if we restrict the shape of g in a certain way.
■ This restricted set can still be large enough to contain the

computation of [[·]].

Table of Contents

29 / 40

■ The Abadi-Rogaway result on the indistinguishability of
computational interpretations of formal messages.

■ Translating protocol traces between formal and
computational world.

Public-key primitives

30 / 40

■ Extend the construction of the set of formal messages by

◆ keypairs kp ∈ EKeys for encryption and kp ∈ SKeys for
signing;

◆ operations kp+ and kp− to take the public and secret
components of keys;

◆ public-key encryptions {[e]}r
kp+ and signatures [{e}]r

kp−.

■ Fix a public-key encryption scheme (Kp,Ep,Dp) and a signature
scheme (Ks, Ss,Vs).

◆ Use Kp, Ep, Ks, Ks to define the semantics of new constructs.

■ Similar results can be obtained with {[·]}· in messages.

◆ If secret keys are not part of messages then encryption cycles are
not an issue.

Specifying the protocols

31 / 40

■ A set P of principals (some of them possibly corrupted). Each one
with fixed keypairs for signing and encryption.

◆ There are keys ek(P), dk(P), sk(P), vk(P) for each principal P .

■ A set of roles.

◆ A list of pairs of incoming and outgoing messages.
◆ May contain nonces.
◆ Also may contain message variables and principal variables.

Example roles

32 / 40

Needham-Schroeder-Lowe public-key protocol:

A−→B : {[NA, A]}ek(B)

B−→A : {[NA, NB, B]}ek(A)

A−→B : {[NB]}ek(B)

■ Initiator role:

(Start , {[NA, XInit]}ek(XResp))

({[NA, XN , XResp]}ek(XInit)
, {[XN]}ek(XResp))

■ Responder role:

({[XN , XInit]}ek(XResp), {[XN , NB, XResp]}ek(XInit)
)

({[NB]}ek(XResp),Ok)

Execution

33 / 40

■ Adversary may start new runs by stating new(sid ;P1, . . . , Pn).

◆ sid is the unique session identifier of the run.
◆ P1, . . . , Pn are names of principals that fulfill the roles

R1, . . . , Rn.

Execution

33 / 40

■ Adversary may start new runs by stating new(sid ;P1, . . . , Pn).

◆ sid is the unique session identifier of the run.
◆ P1, . . . , Pn are names of principals that fulfill the roles

R1, . . . , Rn.

■ Adversary may send messages by stating recv(sid , Ri,m) where m
is a message.

◆ The role Ri in the run sid will receive the message m and
process it.

Execution

33 / 40

■ Adversary may start new runs by stating new(sid ;P1, . . . , Pn).

◆ sid is the unique session identifier of the run.
◆ P1, . . . , Pn are names of principals that fulfill the roles

R1, . . . , Rn.

■ Adversary may send messages by stating recv(sid , Ri,m) where m
is a message.

◆ The role Ri in the run sid will receive the message m and
process it.

■ When a principal Pi running the role Ri = (mi,mo) :: R′
i in the run

sid will receive a message m, then it will

◆ match m with mi;
◆ generate a new message m′ by instantiating the outgoing

message mo and send it: send(sid , Ri,m
′);

◆ Set Ri to R′
i (in sid only).

Execution

33 / 40

■ Adversary may start new runs by stating new(sid ;P1, . . . , Pn).

◆ sid is the unique session identifier of the run.
◆ P1, . . . , Pn are names of principals that fulfill the roles

R1, . . . , Rn.

■ Adversary may send messages by stating recv(sid , Ri,m) where m
is a message.

◆ The role Ri in the run sid will receive the message m and
process it.

■ When a principal Pi running the role Ri = (mi,mo) :: R′
i in the run

sid will receive a message m, then it will

◆ match m with mi;
◆ generate a new message m′ by instantiating the outgoing

message mo and send it: send(sid , Ri,m
′);

◆ Set Ri to R′
i (in sid only).

■ Decompose m according to mi.

◆ Use dk(Pi) to decrypt messages encrypted with ek(Pi).
◆ The keys for symmetric encryption are contained in mi.

■ Verify the equality of instantiated parts of mi to the corre-
sponding parts of m′.

■ Initialize the new variables in mi with the corresponding parts
of m′.

■ Verify the signatures in m′.

Execution

33 / 40

■ Adversary may start new runs by stating new(sid ;P1, . . . , Pn).

◆ sid is the unique session identifier of the run.
◆ P1, . . . , Pn are names of principals that fulfill the roles

R1, . . . , Rn.

■ Adversary may send messages by stating recv(sid , Ri,m) where m
is a message.

◆ The role Ri in the run sid will receive the message m and
process it.

■ When a principal Pi running the role Ri = (mi,mo) :: R′
i in the run

sid will receive a message m, then it will

◆ match m with mi;
◆ generate a new message m′ by instantiating the outgoing

message mo and send it: send(sid , Ri,m
′);

◆ Set Ri to R′
i (in sid only).

Execution

33 / 40

■ Adversary may start new runs by stating new(sid ;P1, . . . , Pn).

◆ sid is the unique session identifier of the run.
◆ P1, . . . , Pn are names of principals that fulfill the roles

R1, . . . , Rn.

■ Adversary may send messages by stating recv(sid , Ri,m) where m
is a message.

◆ The role Ri in the run sid will receive the message m and
process it.

■ When a principal Pi running the role Ri = (mi,mo) :: R′
i in the run

sid will receive a message m, then it will

◆ match m with mi;
◆ generate a new message m′ by instantiating the outgoing

message mo and send it: send(sid , Ri,m
′);

◆ Set Ri to R′
i (in sid only).

■ Use the values of already known keys, nonces, variables, etc.

■ Generate new values for keys and nonces that occur first time
in mo.

Execution traces

34 / 40

■ An execution trace is a sequence of new-, recv- and
send-statements.

■ We have traces in both models — there are

◆ formal traces — sequences of terms over a message algebra with
a countable number of atoms for keys, nonces, random coins;

◆ computational traces — sequences of bit-strings.

■ A formal trace is valid if each message in a recv-statement can be
generated from messages in previous send- and recv-statements.

Translating Formal → Computational

35 / 40

■ A formal trace tf is a sequence consisting of principal names and
formal messages.

■ Formal messages are made up of formal nonces, formal keys, formal
encryptions and decryptions using formal coins.

■ Fix a mapping c from formal constants, nonces, keys and coins to
bit-strings.

■ Extend c to the entire trace, giving the computational trace c(tf).
■ Denote tf ≤ tc if the computational trace tc can be obtained as a

translation of the formal trace tf .

Translating Formal → Computational

35 / 40

■ A formal trace tf is a sequence consisting of principal names and
formal messages.

■ Formal messages are made up of formal nonces, formal keys, formal
encryptions and decryptions using formal coins.

■ Fix a mapping c from formal constants, nonces, keys and coins to
bit-strings.

■ Extend c to the entire trace, giving the computational trace c(tf).
■ Denote tf ≤ tc if the computational trace tc can be obtained as a

translation of the formal trace tf .

Lemma. If the used cryptographic primitives are secure then for any
computational adversary A, if tc is a computational trace of the protocol
running together with A then with overwhelming probability there exists
a valid formal trace tf , such that tf ≤ tc.

Security of primitives

36 / 40

■ The encryption systems must be IND-CCA secure.

◆ Adversary may not be able to distinguish E(k, π1(·, ·)) and
E(k, π2(·, ·)) even with access to D(k, ·).

◆ Results from the encryption oracle may not be submitted to the
decryption oracle.

Security of primitives

36 / 40

■ The encryption systems must be IND-CCA secure.

◆ Adversary may not be able to distinguish E(k, π1(·, ·)) and
E(k, π2(·, ·)) even with access to D(k, ·).

◆ Results from the encryption oracle may not be submitted to the
decryption oracle.

■ The signature system must be EF-CMA secure.

◆ Adversary may not be able to produce a valid
(message,signature)-pair, even when interacting with a signing
oracle.

◆ Messages submitted to the oracle do not count.

Security of primitives

36 / 40

■ The encryption systems must be IND-CCA secure.

◆ Adversary may not be able to distinguish E(k, π1(·, ·)) and
E(k, π2(·, ·)) even with access to D(k, ·).

◆ Results from the encryption oracle may not be submitted to the
decryption oracle.

■ The signature system must be EF-CMA secure.

◆ Adversary may not be able to produce a valid
(message,signature)-pair, even when interacting with a signing
oracle.

◆ Messages submitted to the oracle do not count.

■ The message must be recoverable from the signature (and the
verification key).

Translating Computational → Formal

37 / 40

Consider

■ a computational trace,

◆ Actually, the set M of messages appearing in it.

■ the set K of secret decryption keys of participants.

Iterate:

Translating Computational → Formal

37 / 40

Consider

■ a computational trace,

◆ Actually, the set M of messages appearing in it.

■ the set K of secret decryption keys of participants.

Iterate:
If some M ∈M looks like a pair 〈M1,M2〉 then

■ add M1,M2 to M;
■ for M , record that it is a pair 〈M1,M2〉.

Translating Computational → Formal

37 / 40

Consider

■ a computational trace,

◆ Actually, the set M of messages appearing in it.

■ the set K of secret decryption keys of participants.

Iterate:
If some M ∈M looks like a symmetric key then

■ add M to K;
■ pick a new formal symmetric key K and associate it with M .

Concerning symmetric encryption, attention has to be paid to encryption
cycles.

Translating Computational → Formal

37 / 40

Consider

■ a computational trace,

◆ Actually, the set M of messages appearing in it.

■ the set K of secret decryption keys of participants.

Iterate:
If some M ∈M looks like an encryption then try to decrypt it with all
keys in K. If M0 = D(Mk,M) for some Mk ∈ K, then

■ add M0 to M;
■ for M , record that it is an encryption of M0 with the formal key

corresponding to the encryption key of Mk.

Translating Computational → Formal

37 / 40

Consider

■ a computational trace,

◆ Actually, the set M of messages appearing in it.

■ the set K of secret decryption keys of participants.

Iterate:
If some M ∈M looks like a signature then try to verify it with all
verification keys in M. If V(Mk,M) is successful, then

■ add M0 = get message(M) to M;
■ for M , record that it is the signature of M0 verifiable with the formal

key corresponding to Mk.

Translating Computational → Formal

37 / 40

Consider

■ a computational trace,

◆ Actually, the set M of messages appearing in it.

■ the set K of secret decryption keys of participants.

Iterate:
etc. Try to decompose the messages in M as much as possible.

Translating Computational → Formal

37 / 40

Consider

■ a computational trace,

◆ Actually, the set M of messages appearing in it.

■ the set K of secret decryption keys of participants.

In the end:

■ for each uninterpreted message in M: associate it with a new formal
nonce.

■ Construct the formal trace using the structure of messages that we
recorded.

Invalid formal trace ⇒ broken primitive

38 / 40

If the trace is invalid, then the adversary did one of the following:

■ forged a signature;
■ guessed a nonce, symmetric key, or signature that it had only seen

encrypted.

We run the protocol while using the encryption / signing oracles to
encrypt / sign. We guess at which point the break happens.

■ We use the oracles for this particular key.
■ A forged signature promptly gives us a break of UF-CMA.
■ For guessed nonce, key or signature we generate two copies of it and

use the messages derived from these two copies as the inputs to the
oracle E(k, πb(·, ·)).

◆ After learning the nonce / key / signature, we learn b.

Trace properties

39 / 40

■ A trace property of P is a subset of the set of all formal traces.
■ A protocol formally satisfies a trace property P if all its formal traces

belong to P .
■ A protocol computationally satisfies a trace property P if for almost

all computational traces tc of the protocol there exists a trace
tf ∈ P , such that tf ≤ tc.

Theorem. If a protocol formally satisfies some trace property P , then it
also computationally satisfies P .

Confidentiality of nonces

40 / 40

■ In the formal setting, the confidentiality of a certain nonce N means
that N will not be included in the knowledge set of the adversary.

■ In the computational setting, the confidentiality of a certain nonce N
means that no PPT adversary A can guess b from the following:

◆ Run the protocol normally, with A as the adversary, until. . .
◆ A denotes one of the just started protocol sessions as “under

attack”.
◆ Generate a random bit b and two nonces N0 and N1.
◆ Use Nb in the attacked session in the place of N .
◆ Continue executing the protocol until A stops it.
◆ Give N0 and N1 to A.

Theorem. Formal confidentiality of a nonce implies its computational
confidentiality.

	Two views of cryptography
	Table of Contents
	A simple language for messages
	Semantics --- building blocks
	Semantics of a formal expression
	Computational indistinguishability
	Decomposing a formal expression
	The pattern of a formal expression
	Examples
	IND-CPA-security of an encryption scheme
	Hiding the identities of keys
	Hiding the length of the plaintext
	IND-CPA, which-key and length-concealing:
	Semantics of expressions and patterns
	Theorem of equivalence
	Replacing one key
	Proof of the lemma
	Computing [[e]] or [[replacekey(e,k)]]
	Proof of the theorem
	Example 1
	Example 2
	Encryption cycles
	Severity of encryption cycles
	Dealing with encryption cycles
	Breaking encryption cycles
	KDM-IND-CPA-security
	Achieving KDM-IND-CPA-security
	Table of Contents
	Public-key primitives
	Specifying the protocols
	Example roles
	Execution
	Execution traces
	Translating Formal Computational
	Security of primitives
	Translating Computational Formal
	Invalid formal trace broken primitive
	Trace properties
	Confidentiality of nonces

