Cryptographically sound
formal verification of security
protocols

Two views of cryptography

Formal (“Dolev-Yao”) view

m Messages — elements of a term algebra.
Possible operations on messages are enumerated.
Choices in semantics — non-deterministic.

[Protocol and the adversary are easily represented in some
process calculus.

Computational view

m Messages — bit strings.
m Possible operations on messages — everything in PPT.
m Choices in semantics — probabilistic.

[0 Protocol and adversary — a set of probabilistic interactive
Turing machines.

2 / 40

Two views of cryptography

Formal (“Dolev-Yao”) view

m Messages — elements of a term algebra.
Possible operations on messages are enumerated.
Choices in semantics — non-deterministic.

[Protocol and the adversary are easily represented in some
process calculus.

m Simpler to analyse.
Computational view

m Messages — bit strings.
m Possible operations on messages — everything in PPT.
m Choices in semantics — probabilistic.

[0 Protocol and adversary — a set of probabilistic interactive
Turing machines.

m Closer to the real world.

2 / 40

Table of Contents

m [he Abadi-Rogaway result on the indistinguishability of
computational interpretations of formal messages.
m [ranslating protocol traces between formal and computational world.

3 / 40

A simple language for messages

The atomic building blocks:

m Formal keys k, ki, ko, K/ K", ... € Keys

m Formal coins r,ry,re, 1", 7", ... € Coins
m Bitsbe {0,1}

4 / 40

A simple language for messages

The atomic building blocks:

m Formal keys k, ki, ko, K/ K", ... € Keys
m Formal coins r,ry,re, 7", 7", ... € Coins
m Bitsbe {0,1}

A formal expression e € Exp is

e = k
b
(617 62)

11

If {e}} and {e’}}, both occur in an expression then &k =k’ and e = ¢’

4 / 40

A simple language for messages

The atomic building blocks:

m Formal keys k, ki, ko, K/ K", ... € Keys
m Formal coins r,ry,re, 7", 7", ... € Coins

m Bitsbe {0,1}
A formal expression e € Exp is

e = k
b
(617 62)

11

If {e}} and {e’}}, both occur in an expression then &k =k’ and e = ¢’

m e is similar to Dolev-Yao messages.

4 / 40

A simple language for messages

The atomic building blocks:

m Formal keys k, ki, ko, K/ K", ... € Keys

m Formal coins r,ry,re, 7", 7", ... € Coins
m Bitsbe {0,1}

A formal expression e € Exp is

e = k
b
(617 62)

11

If {e}} and {e’}}, both occur in an expression then &k =k’ and e = ¢’

m e is similar to Dolev-Yao messages.
m We can also interpret it as a program for computing a message.

4 / 40

Semantics — building blocks

m Let (-,-): ({0,1}*)* — {0, 1}* be easily computable and invertible
injective function.

5 / 40

Semantics — building blocks

Let (-,-) : ({0,1}*)* — {0, 1}* be easily computable and invertible
injective function.
A symmetric encryption scheme (X, &, D):

0 X (17) — generates keys;
0 &€ (1", k,x) — encrypts x with k;
0 D(1" k,y) — decrypts y with k.

K and €& — probabilistic, D — deterministic.

5 / 40

Semantics — building blocks

Let (-,-) : ({0,1}*)* — {0, 1}* be easily computable and invertible
injective function.
A symmetric encryption scheme (X, &, D):

0 XK*(1"7) — generates keys from random coins r;
0 E7(1" k,x) — encrypts x with k using the random coins r;

0 D(1" k,y) — decrypts y with k.
K and €& — probabilistic, D — deterministic.

5 / 40

Semantics — building blocks

m Let (-,-): ({0,1}*)* — {0, 1}* be easily computable and invertible
injective function.
m A symmetric encryption scheme (X, &, D):

0 XK*(1"7) — generates keys from random coins r;
0 E7(1" k,x) — encrypts x with k using the random coins r;
0 D(1" k,y) — decrypts y with k.

K and €& — probabilistic, D — deterministic.

Correctness:
k= X (n)
;.Y = cr (Uak,X)
Vn,x,r,r X = D(1. k. y)
(x =x)?

5 / 40

Semantics of a formal expression

m Foreach k € Keys let s, «+— K(17)
m Foreach r € Coins let s, € {0,1}~.

Define

[kly = sk

[[b:n =0

[(e1, e2)]5 = ([ea]y, le2],
[{e'}ely = €% (0, sk, [€])

6 / 40

Semantics of a formal expression

m Foreach k € Keys let s, «+— K(17)
m Foreach r € Coins let s, € {0,1}~.

Define

[kly = sk

[[b:n =0

[(e1, e2)]5 = ([ea]y, le2],
[{e'}ely = €% (0, sk, [€])

|-] assigns to each formal expression a family of probability distributions
over bit-strings

6 / 40

Computational indistinguishability

We are looking for sufficient conditions in terms of e; and ey for

le1] = [e2] -

7 / 40

Computational indistinguishability

We are looking for sufficient conditions in terms of e; and ey for

le1] = [e2] -

Two families of probability distributions over bit-strings D" = {Dg}neN
and D' = {D/},cn are computationally indistinguishable if for all PPT
algorithms A:

Prib =0"|ber {0,1}, 2 — D2, b* — A(1",2)] = 1/2+&(n)

for some negligible function «.

7 / 40

Computational indistinguishability

We are looking for sufficient conditions in terms of e; and ey for

le1] = [e2] -

Two families of probability distributions over bit-strings D" = {Dg}neN
and D' = {D/},cn are computationally indistinguishable if for all PPT
algorithms A:

Prib =0"|ber {0,1}, 2 — D2, b* — A(1",2)] = 1/2+&(n)

for some negligible function «.
A function ¢ is negligible if

lim e(n) - p(n) =0

nN—0o0

for all polynomials p.

7 / 40

Decomposing a formal expression

61"62

The value of e tells us the value of e,

8 / 40

Decomposing a formal expression

€1 - €9
The value of e tells us the value of e,
ek e

el (e1,e9) =ebe N ele
e-{e'}, Nebk=ebe

8 / 40

Decomposing a formal expression

61|_62

The value of e; tells us the value of e,

ekFe
el (e1,e9) =ebe N ele
e-{e'}, Nebk=ebe

Examples:

({1011}, {kn Yo, k2) F 1011
({ro11}y {ki}r, {k2}7,) I/ 1011
({1011}y {ki}y , {k2}5) I 1011

8 / 40

Decomposing a formal expression

61|_62

The value of e; tells us the value of e,

ekFe
el (e1,e9) =ebe N ele
e-{e'}, Nebk=ebe

Examples:

({1011}, {kn Yo, k2) F 1011
({ro11}y {ki}r, {k2}7,) I/ 1011
({1011}y {ki}y , {k2}5) I 1011

Let openkeys(e) = {k € Keys |e F k}.

8 / 40

The pattern of a formal expression

m Enlarge the set Exp: ex=...|O"
m For aset K C Keys define
pat(k, K) =k
pat(b, K) =b
pat((e1,es), K) = (pat(er, K), pat(es, K))

at(e, K)},, fkekK
pat({e}Z’K){{;“ te, K) b ifk;K

m Let pattern(e) = pat(e, openkeys(e)).

9 / 40

The pattern of a formal expression

m Enlarge the set Exp: ex=...|O"
m For aset K C Keys define

pat(k, K) =k
pat(b, K) =b
pat((e1,es), K) = (pat(er, K), pat(es, K))

at(e, K)},, fkekK
pat({e}Z’K){{;“ te, K) b ifk;K

m Let pattern(e) = pat(e, openkeys(e)).
m Define e; & ey if pattern(ey) = pattern(es)oxor for some

[0 ox — a permutation of the keys Keys:;
0 opr — a permutation of the random coins Coins.

9 / 40

Examples

pattern(({1011}} , {k1}},, k2)) = ({1011}, {ki}t,, k2)
pattern(({1011}; {ki}5 . {k2}7.)) = (O, 0", 0")
pattern(({1011}; | {kl}Z;a {kg}};’l’)) = (o",0",0")
pattern(({1};,, {katis, {0} bi- k1)) = (O™, 07, {0}, k1)
pattern(({ks, 0}y, {kstis, {{11}5 b k1)) = (07, 07, {0} k)

10 / 40

IND-CPA-security of an encryption scheme

m Encrypting oracle QIND=CPA.
Initialization: method encrypt(x)
k «— K(17) y «— E(k, x)
return y
m (Constant-encrypting oracle OéND_CPA:
Initialization: method encrypt(x)
k «— (1) | .= length(x)
y «— E(k, Ol)
return y

(K, E,D) is IND-CPA-secure if for all PPT algorithms A exists a
negligible ¢, such that

OIND—CPA

Prib=0"|beg {0,1},0" «— A™» (1M] =1/24¢e(n)

11 / 40

IND-CPA-security of an encryption scheme

m Encrypting oracle QIND=CPA.
Initialization: method encrypt(x)
k «— K(17) y «— E(k, x)
return y
m (Constant-encrypting oracle OéND_CPA:
Initialization: method encrypt(x)
k «— (1) | .= length(x)
y «— E(k, Ol>
return y

(K, E,D) is IND-CPA-secure if for all PPT algorithms A exists a
negligible ¢, such that

OIND—CPA

Prib=0"|beg {0,1},0" «— A™» (1M] =1/24¢e(n)

In other words: O}~ & @FND—CFA,

11 / 40

Hiding the identities of keys

s Oracle with two keys ©}9¢7.
Initialization: method encryptl(x) method encrypt2(x)
ky «— K(17) y «— E(ky, X) y «— E(ky, X)
ky — X(17) return y return y
= Oracle with one key Of4°™*;
Initialization: method encryptl(x) method encrypt2(x)
k «— XK(17) y «— E(k,x) y «— E(k,x)
return y return y

(K, €,D) hides the identities of keys / is which-key concealing if

Olilide—key ~ O lgide—key .

12 / 40

Hiding the identities of keys

s Oracle with two keys ©}9¢7.
Initialization: method encryptl(x) method encrypt2(x)
ky «— K(17) y «— E(ky, X) y «— E(ky, X)
ky — X(17) return y return y
= Oracle with one key Of4°™*;
Initialization: method encryptl(x) method encrypt2(x)
k «— XK(17) y «— E(k,x) y «— E(k,x)
return y return y

(K, €,D) hides the identities of keys / is which-key concealing if

Olilide—key ~ O lgide—key .

IND-CPA-secure which-key concealing encryption schemes are easily
constructed (CCA- or CTR-mode of operation of block ciphers).

12 / 40

Hiding the length of the plaintext

An encryption scheme is length-concealing if the length of the
plaintext cannot be determined from the ciphertext.
Achievable by padding the plaintexts.

[0 Questionable for nested encryptions. . .

For simplicity, we will assume that our encryption scheme is
length-concealing.

0 And also which-key concealing and IND-CPA-secure.
Otherwise we'd need to define lengths of formal expressions.

[0 Not difficult, but currently not so interesting

13 / 40

IND-CPA, which-key and length-concealing:

Let O be a fixed bit-string.

type—0
m Oracle O

Initialization: method encryptl(x) method encrypt2(x)
ky — K(17) y «— E(ky, x) y < E(kg, x)
ko — K(1") return y return y
m Oracle O
Initialization: method encryptl(x) method encrypt2(x)
k «— XK(17) y «— E(k,0) y «— E(k,0)
return y return y

(%, &, D) has all three listed properties if O¥P*™ ~ QP

14 / 40

Semantics of expressions and patterns

m Foreach k € Keys let s, «+— K(17)
m For each r € Coins let s, €5 {0,1}
m Let kg «— K(17).

Define

[kl = sk
[b], =0
[(e1, e2)]n = (le1]y, [e2]n)

(Yl = € (1,50 [€],)
[a"], = €%(n, kg, 0)

15 / 40

Theorem of equivalence

Theorem. Let €1,E9 € EXp |f €1 = €9 then™ [[61]] ~ [[62]].

16 / 40

Replacing one key

For a key k € Keys define
)=k
b

replacekey(k, k
replacekey (b, k) =
), k

replacekey((eq, es), k) = (replacekey(e1, k), replacekey(es, k))

{replacekey(e, k)}r, ik #k

T

r if b — 1.
replacekey({e}}, k) {D Tk ﬁ
[

replacekey(O", k) =

Lemma. Let e € Exp. Let key k occur in e only as encryption key.
Then [e] ~ [replacekey(e, k)].

17 / 40

Proof of the lemma

Assume that B distinguishes [e] from [replacekey(e, k)].
Let A®(n) work as follows:

m |nitialize:

0 Let s, <+ K(n) for all keys k occurring in e, except k.
0 Let s, €g {0,1}* for all r occurring in e, except as {...}7.
0 Let kg « K(17).

Let L = {} (empty mapping).

Compute the “semantics” v of e as follows by invoking SEM®(e)
0 SEMO(e) = [e] if O = Otlypi_o.

0 SEMO®(e) = [replacekey(e, k)] if © = QP

m return B(n,v).

type—0
(c)l}’pe

A can distinguish and 05" as well as B can distinguish [e]

and [replacekey(e, k)].

18 / 40

Computing |e| or |replacekey(e, k)]

SEMY(e) is: case e of

k: return s, (note that k # k)

b: return b

(e1,e2): let v; = SEM®(e;); return (v, vs)
{e}7: let v = SEM(e);

0 If k # k then return 5 (1, s, v)

0 If k =k and L(r) is not defined then

« let L(r) = O.encryptl(v);
« return L(r)

0 If k =k and L(r) is defined then return L(r)
m 0" return O.encrypt2(0)

19 / 40

Proof of the theorem

1. replacekey(replacekey(- - - replacekey(e, ki), ko) -+, kyp) =
pattern(e)
if {k1,...,k,} are all keys in e that the adversary cannot obtain.
Denote this set of keys by hidkeys(e).

2. Apply the lemma sequentially to each key in hidkeys(e), thereby
establishing

le] =~ [pattern(e)].

% In general, not all orders of keys in hidkeys(e) are suitable.

3. Permuting the formal keys and coins does not change the generated
probability distribution over bit-strings.

If e1 = ey then® [eq]| & [pattern(er)] = [pattern(es)] = [es].

20 / 40

Example 1

[(Tka; O3 s sty UL 3 Fiy o R

[((L by Wh2tiss 110 s 3iy s M)

21 / 40

Example 1

[(Tka; OF s ks yis (L3 by R

[({L by Wh2diss 110 s diys M)

21 / 40

Example 1

[(Tka; O3 s sty UL 3 Fiy o R

Y
(a4

[({Fa, 0}y O {11345 Fiy» R)]

[({L by Wh2tiss 110 s 3iy s M)

21 / 40

Example 1

[(Tka; O3 s sty UL 3 Fiy o R

Y
(a4

[({Fa, 0}, O L1340 by R)

[((L by Wh2tiss 110 s diy s M)

21 / 40

Example 1

[(Tka; O3 s sty UL 3 Fiy o R

Y
(a4

[({Fa, 0}y O {11345 Fiy» R)]

(a4
(a4

[[(Drla Dmv {{11}71;1}2?7 kl)]]

[({L by Wh2tiss 110 s 3iys M)

21 / 40

Example 1

[(Tka; O3 s sty UL 3 Fiy o R

Y
(a4

[({Fa, 0}y O {11345 Fiy» R)]

(a4
(a4

[[(Drla Dmv {{11}71;1}2?7 kl)]]

(a4
Y

[(O7, 0%, 8™ b k)]

[({L by Wh2tiss 110 e, 3iy s M)

21 / 40

Example 1

[(Tka; O3 s sty UL 3 Fiy o R

Y
(a4

[({Fa, 0}y O {11345 Fiy» R)]

(a4
(a4

[[(Drla Dmv {{11}71;1}2?7 kl)]]

(a4
Y

[(O7, 0%, 8™ b k)]

[({L by Wh23i3, 110, diys M)

21 / 40

Example 1

[(Tka; O3 s sty UL 3 Fiy o R

Y
(a4

[({Fa, 0}y O {11345 Fiy» R)]

(a4
(a4

[[(Drla Dmv {{11}71;1}2?7 kl)]]

(a4
Y

[(O7, 0%, 8™ b k)]

Y

[({13y, 05 410} iy Ty s B

Y

[({L by Wh2tiss 110 e, diys M)

21 / 40

Example 2

pattern(({ks}yy {katig, Ukt bl k1)) = (B, 07, {0 1, k)

22 / 40

Example 2

pattern(({ks}y, (ka}2 ({ka}p)0 b)) = (@7, 07 {D7)2)

[(Tka Ty ARty Wik by bry s F)l

22 / 40

Example 2

pattern(({ks}yy {katig, Ukt bl k1)) = (B, 07, {0 1, k)

[(Uk3 3y VRadiss 11R2 Tk tay s F)]

(cannot apply the lemma)

22 / 40

Encryption cycles

m |et e be a formal expression.
m Consider the following directed graph G = (V, F):

0V = hidkeys(e)
0 (ki — k;) € E if e has a subexpression of the form

(kYo

(we say that k; encrypts k)

m e has no encryption cycles if G does not contain directed cycles.

23 / 40

Encryption cycles

m |et e be a formal expression.
m Consider the following directed graph G = (V, F):

0V = hidkeys(e)
0 (ki — k;) € E if e has a subexpression of the form

s
(we say that k; encrypts k)

m e has no encryption cycles if G does not contain directed cycles.

Theorem. If e contains no encryption cycles then [e] ~ [pattern(e)].

23 / 40

Encryption cycles

m |et e be a formal expression.
m Consider the following directed graph G = (V, F):

0V = hidkeys(e)
0 (ki — k;) € E if e has a subexpression of the form

(kYo
(we say that k; encrypts k;)
m e has no encryption cycles if G does not contain directed cycles.

Theorem. If e contains no encryption cycles then [e] ~ [pattern(e)].

“No encryption cycles” is sufficient, but not necessary condition for the
sequential applicability of our lemma.

Example: ({ks}t, {ke}2, {{ka}fi }i2) is OK.

23 / 40

Severity of encryption cycles

Exercise. Take an encryption scheme that is assumed to be
IND-CPA-secure. Modify it so, that it is still IND-CPA-secure, but
defenseless against an adversary that has somehow obtained {k},.

24 / 40

Dealing with encryption cycles

We could increase the relation

[0 Thereby allowing the adversary to “break encryption cycles".

We could strengthen the security definition of the symmetric
encryption scheme

0 KDM-IND-CPA-security
[0 key-dependent messages
0 s such definition instantiable?

25 / 40

Breaking encryption cycles

Define the relations Fx for any set K of formal keys as follows:

ekFxe
ek (e1,e3) = ebx e; Nelgk es
ek e =elFguk €
etk {e'}, = eFkup €
ebxupy € NelFk k=ebgk €
eFgup k= etk k

And define |- as the relation .

Exercise. What is the pattern of messages

(1F3} s 1Rat i, k2t b B1) and ({ks}ps, 1katis, A1k} Ji) by the

new definition of 7

26 / 40

KDM-IND-CPA-security

m Defined as the indistinguishability of certain two encrypting oracles
OO and Ol.
Both “initially create” an array k[0..00] of fresh keys.
A query to an oracle is a pair (7, g), where

0 7N
[0 g is a program that returns a bit-string

= g may refer to k.
= the length of g's output may not depend on k.

m O returns Exp1(g(k)) to the query (4, 9).
m Op returns Ey(;1(09X)) to the query (4, g).

(this definition allows € to reveal the lengths of plaintexts and identities
of keys)

27 / 40

Achieving KDM-IND-CPA-security

m Simple in the random oracle model

0 Let H(z) denote random oracle’s output for the query x
[0 The program g may also contain instructions to call H

Let K(n) just output a random element of {0, 1}".
Let £"(n), k,x) = (r, H(k|r) © x)

[0 Assume that the output of H has the same length as x
[0 Exercise. How do we construct such a H from some random
oracle Hy whose output length is fixed?

Exercise. Show that this scheme is KDM-IND-CPA-secure.

It is not known how to achieve KDM-security in the plain model.
Possible, if we restrict the shape of ¢ in a certain way.

This restricted set can still be large enough to contain the
computation of [-].

28 / 40

Table of Contents

The Abadi-Rogaway result on the indistinguishability of
computational interpretations of formal messages.
Translating protocol traces between formal and
computational world.

29 / 40

Public-key primitives

Extend the construction of the set of formal messages by

0 keypairs kp € EKeys for encryption and kp € SKeys for
signing;

[operations kp™ and kp~ to take the public and secret
components of keys;

0 public-key encryptions {[e}}zp+ and signatures [{e}]’l;p_.

Fix a public-key encryption scheme (X, €,,D,) and a signature
scheme (K, S, Vs).

0 Use X, &, XK, K to define the semantics of new constructs.
Similar results can be obtained with {|-]}. in messages.

[0 If secret keys are not part of messages then encryption cycles are
not an Issue.

30 / 40

Specifying the protocols

A set P of principals (some of them possibly corrupted). Each one
with fixed keypairs for signing and encryption.

0 There are keys ek(P), dk(P), sk(F), vk(P) for each principal P.

A set of roles.

O A list of pairs of incoming and outgoing messages.
[0 May contain nonces.

[0 Also may contain message variables and principal variables.

31/ 40

Example roles

Needham-Schroeder-Lowe public-

A—B :{
B—A : {
A—B :{

m [nitiator role:

key protocol:

Na, Al} o)
_NA7 NB? B]}ek(A)

:NB]}ek(B)

(Start, {{Na; Xinit]}ex(xpee))
(VA XN, XRespltek(xime)r XN ek(Xpnee))

m Responder role:

(XN Xt]} ek(xpanp) s UXN V55 XResplFek(x10)
(VB ek(xpeap)s OF)

32 / 40

Execution

m Adversary may start new runs by stating new(sid; Py, ..., P,).
[0 sid is the unique session identifier of the run.
O Py, ..., P, are names of principals that fulfill the roles
Ri,....R,.

33 /40

Execution

Adversary may start new runs by stating new(sid; P, ..., F,).

[0 sid is the unique session identifier of the run.

O Py, ..., P, are names of principals that fulfill the roles
Ri,....R,.

Adversary may send messages by stating recv(sid, R;, m) where m
IS @ message.

[0 The role R; in the run sid will receive the message m and
process It.

33 /40

Execution

Adversary may start new runs by stating new(sid; P, ..., F,).

[0 sid is the unique session identifier of the run.

O Py, ..., P, are names of principals that fulfill the roles
Ri,....R,.

Adversary may send messages by stating recv(sid, R;, m) where m
IS @ message.

[0 The role R; in the run sid will receive the message m and
process It.

When a principal P; running the role R; = (mj, m,) :: R; in the run
sid will receive a message m, then it will

O match m with m;;

[0 generate a new message m’ by instantiating the outgoing
message m,, and send it: send(sid, R;, m’);

0 Set R; to R. (in sid only).

33 /40

Execution

m Decompose m according to m;.

0 Use dk(P;) to decrypt messages encrypted with ek(F;).
[0 The keys for symmetric encryption are contained in m;.

m Verify the equality of instantiated parts of m; to the corre-
sponding parts of m/.

m [nitialize the new variables in m; with the corresponding parts
of m’.

m Verify the signatures in m/'.

m When a principél P; running the role R; = (m;, m,) :: R} in the run
sid will recefve a message m, then it will

O match m with m;;

[0 generate a new message m’ by instantiating the outgoing
message m,, and send it: send(sid, R;, m’);

0 Set R; to R. (in sid only).

33 /40

Execution

Adversary may start new runs by stating new(sid; P, ..., F,).

[0 sid is the unique session identifier of the run.

O Py, ..., P, are names of principals that fulfill the roles
Ri,....R,.

Adversary may send messages by stating recv(sid, R;, m) where m
IS @ message.

[0 The role R; in the run sid will receive the message m and
process It.

When a principal P; running the role R; = (mj, m,) :: R; in the run
sid will receive a message m, then it will

O match m with m;;

[0 generate a new message m’ by instantiating the outgoing
message m,, and send it: send(sid, R;, m’);

0 Set R; to R. (in sid only).

33 /40

Execution

m Adversary may start new runs by stating new(sid; Py, ..., P,).
[0 sid is the unique session identifier of the run.
O Py, ..., P, are names of principals that fulfill the roles
Ri,....R,.

g ® Use the values of already known keys, nonces, variables, etc.

m (Generate new values for keys and nonces that occur first time
In 1m,.

m When a principal P; running the rol R; = (m;, m,) :: R} in the run
sid will receive a message m, then it\yill

O match m with m;;

[0 generate a new message m’ by instantiating the outgoing
message m,, and send it: send(sid, R;, m’);
0 Set R; to R. (in sid only).

33 /40

Execution traces

An execution trace is a sequence of new-, recv- and
send-statements.
We have traces in both models — there are

[0 formal traces — sequences of terms over a message algebra with
a countable number of atoms for keys, nonces, random coins;
[0 computational traces — sequences of bit-strings.

A formal trace is valid if each message in a recv-statement can be
generated from messages in previous send- and recv-statements.

34 / 40

Translating Formal — Computational

A formal trace ¢/ is a sequence consisting of principal names and
formal messages.

Formal messages are made up of formal nonces, formal keys, formal
encryptions and decryptions using formal coins.

Fix a mapping c from formal constants, nonces, keys and coins to
bit-strings.

Extend c to the entire trace, giving the computational trace c(t/).
Denote ¢/ < t¢ if the computational trace t¢ can be obtained as a
translation of the formal trace ¢/

35 / 40

Translating Formal — Computational

m A formal trace t/ is a sequence consisting of principal names and
formal messages.

m Formal messages are made up of formal nonces, formal keys, formal
encryptions and decryptions using formal coins.

m Fix a mapping c from formal constants, nonces, keys and coins to
bit-strings.
Extend c to the entire trace, giving the computational trace c(t/).
Denote ¢/ < t¢ if the computational trace t¢ can be obtained as a
translation of the formal trace ¢/

Lemma. If the used cryptographic primitives are secure then for any
computational adversary A, if t¢ is a computational trace of the protocol
running together with A then with overwhelming probability there exists
a valid formal trace t/, such that t/ < t¢.

35 / 40

Security of primitives

m [he encryption systems must be IND-CCA secure.

0 Adversary may not be able to distinguish E(k, m1(-,)) and
E(k,mo(+,+)) even with access to D(k,).

[0 Results from the encryption oracle may not be submitted to the
decryption oracle.

36 / 40

Security of primitives

m [he encryption systems must be IND-CCA secure.

0 Adversary may not be able to distinguish E(k, m1(-,)) and
E(k,mo(+,+)) even with access to D(k,).

[0 Results from the encryption oracle may not be submitted to the
decryption oracle.

m [he signature system must be EF-CMA secure.

[0 Adversary may not be able to produce a valid
(message,signature)-pair, even when interacting with a signing
oracle.

[0 Messages submitted to the oracle do not count.

36 / 40

Security of primitives

The encryption systems must be IND-CCA secure.

0 Adversary may not be able to distinguish E(k, m1(-,)) and
E(k,mo(+,+)) even with access to D(k,).

[0 Results from the encryption oracle may not be submitted to the
decryption oracle.

The signature system must be EF-CMA secure.

[0 Adversary may not be able to produce a valid
(message,signature)-pair, even when interacting with a signing
oracle.

[0 Messages submitted to the oracle do not count.

The message must be recoverable from the signature (and the
verification key).

36 / 40

Translating Computational — Formal

Consider
m 2 computational trace,

0 Actually, the set M of messages appearing in it.
m the set X of secret decryption keys of participants.

Iterate:

37 / 40

Translating Computational — Formal

Consider
m 2 computational trace,

0 Actually, the set M of messages appearing in it.
m the set X of secret decryption keys of participants.

Iterate:
If some M € M looks like a pair (M, M3) then

m add Ml, M2 to M;
m for M, record that it is a pair (M, Ms).

37 / 40

Translating Computational — Formal

Consider
m 2 computational trace,

0 Actually, the set M of messages appearing in it.
m the set X of secret decryption keys of participants.

Iterate:
If some M € M looks like a symmetric key then

m add M to X,
m pick a new formal symmetric key K and associate it with M.

Concerning symmetric encryption, attention has to be paid to encryption
cycles.

37 / 40

Translating Computational — Formal

Consider
m 2 computational trace,

0 Actually, the set M of messages appearing in it.
m the set X of secret decryption keys of participants.

Iterate:
If some M € M looks like an encryption then try to decrypt it with all
keys in K. If My = D(My, M) for some M € K, then

m add M, to M;
m for M, record that it is an encryption of M, with the formal key
corresponding to the encryption key of M.

37 / 40

Translating Computational — Formal

Consider
m 2 computational trace,

0 Actually, the set M of messages appearing in it.
m the set X of secret decryption keys of participants.

Iterate:
If some M € M looks like a signature then try to verify it with all
verification keys in M. If V(My, M) is successful, then

m add My = get_message(M) to M;
m for M, record that it is the signature of M, verifiable with the formal
key corresponding to M.

37 / 40

Translating Computational — Formal

Consider
m 2 computational trace,

0 Actually, the set M of messages appearing in it.
m the set X of secret decryption keys of participants.

Iterate:
etc. Try to decompose the messages in M as much as possible.

37 / 40

Translating Computational — Formal

Consider
m 2 computational trace,

0 Actually, the set M of messages appearing in it.
m the set X of secret decryption keys of participants.
In the end:

m for each uninterpreted message in M: associate it with a new formal
nonce.

m Construct the formal trace using the structure of messages that we
recorded.

37 / 40

Invalid formal trace = broken primitive

If the trace is invalid, then the adversary did one of the following:

m forged a signature;
m guessed a nonce, symmetric key, or signature that it had only seen
encrypted.

We run the protocol while using the encryption / signing oracles to
encrypt / sign. We guess at which point the break happens.

We use the oracles for this particular key.

A forged signature promptly gives us a break of UF-CMA.

For guessed nonce, key or signature we generate two copies of it and
use the messages derived from these two copies as the inputs to the

oracle E(k, my(-,-)).

[0 After learning the nonce / key / signature, we learn b.

38 / 40

Trace properties

m A trace property of P is a subset of the set of all formal traces.

m A protocol formally satisfies a trace property P if all its formal traces
belong to P.

m A protocol computationally satisfies a trace property P if for almost
all computational traces t¢ of the protocol there exists a trace
t! € P, such that t/ < t¢.

Theorem. If a protocol formally satisfies some trace property P, then it
also computationally satisfies P.

39 / 40

Confidentiality of nonces

m In the formal setting, the confidentiality of a certain nonce N means
that NV will not be included in the knowledge set of the adversary.

m |n the computational setting, the confidentiality of a certain nonce N
means that no PPT adversary A can guess b from the following:

[0 Run the protocol normally, with A as the adversary, until. ..
0 A denotes one of the just started protocol sessions as “under
attack” .

Generate a random bit b and two nonces Ny and V.

Use IV, in the attacked session in the place of V.

Continue executing the protocol until A stops it.
Give Ny and N; to A.

N N O

Theorem. Formal confidentiality of a nonce implies its computational
confidentiality.

40 / 40

	Two views of cryptography
	Table of Contents
	A simple language for messages
	Semantics --- building blocks
	Semantics of a formal expression
	Computational indistinguishability
	Decomposing a formal expression
	The pattern of a formal expression
	Examples
	IND-CPA-security of an encryption scheme
	Hiding the identities of keys
	Hiding the length of the plaintext
	IND-CPA, which-key and length-concealing:
	Semantics of expressions and patterns
	Theorem of equivalence
	Replacing one key
	Proof of the lemma
	Computing [[e]] or [[replacekey(e,k)]]
	Proof of the theorem
	Example 1
	Example 2
	Encryption cycles
	Severity of encryption cycles
	Dealing with encryption cycles
	Breaking encryption cycles
	KDM-IND-CPA-security
	Achieving KDM-IND-CPA-security
	Table of Contents
	Public-key primitives
	Specifying the protocols
	Example roles
	Execution
	Execution traces
	Translating Formal Computational
	Security of primitives
	Translating Computational Formal
	Invalid formal trace broken primitive
	Trace properties
	Confidentiality of nonces

