Defining security of
cryptographic primitives
The hybrid argument

Formally defining security of cryptoprimitives

m Let us move back to “computational” world:

[0 Messages are bit-strings;

[0 Encryption, decryption, key generation, signing, etc. are PPT
algorithms on bit-strings.

0 Adversary is an(y) interactive PPT algorithm.

m Primitive is secure if adversary’s succeeds in breaking it with a low
probability.

0 A function f : N — R is negligible if for all polynomials,

limy . f(n) - p(n) = 0.
[0 l.e. the inverse of f is superpolynomial.

[0 nis the security parameter

= Where does it come from?

2 /23

Security parameter

We need an integer parameter for speaking about asymptotic
security.
n is something that

[0 the work of honest participants is polynomial in 7;
[0 the work of the adversary is hopefully superpolynomial in 7.

It could be

[0 the key / plaintext length in asymmetric encryption and signing;
[0 the length of the challenge in identification protocols.

But also

0 key / block length in block ciphers / symmetric encryption;
0 key / tag length in MACs;
[0 output length in hash functions

although the common definitions for those are usually not
parameterized.

3 /23

Security of symmetric encryption

m \We want the ciphertext to hide all partial information.
[0 At least information that can be found in polynomial time.

Let H: {0,1}* — {0,1}" be a polynomial-time algorithm.

We pick a plaintext .

We give n and y = E.(n, x) to the adversary.

The adversary answers with z € {0, 1}*.

The adversary wins if z = H(x).

We want the adversary’'s winning probability to be negligible in 7.

Exercise. What is wrong with this definition?

423

Semantic security

For all polynomial-time algorithms H : {0,1}* — {0,1}*
for all polynomial-time constructible families of probability

distributions { M, },en over bit-strings
for all PPT adversaries A
the probability

Prip* = h|x — My, h = H(z),y < E(n,x), " — An,y)]
Is at most negligibly larger than the probability

Pr[h* = h|z,5" — M,,h = H(z'),y « Ex(n,x), k" — A(n,y)]

Then (X, €, D) has semantic security against chosen-plaintext
attacks.

5 /23

Simplifying semantic security

H, M and A are all polynomial-time algorithms.
Put them all into A:

O A first outputs H and M;
[0 then x is picked according to M and y = Ex(n, x) is given to A,;
0 then A tries to find H(x).

Restrict A:

[0 Let H be identity function.
O Let M, be a distribution that assigns 50% to some mg, 50% to
some m; and nothing to any other bit-string.

= To specify M, A outputs mg and m;.
= Mg and my; must have equal length.

6/ 23

Find-then-guess security

(X, E,D) — a symmetric encryption scheme.
Let k& be generated by X(n).

Let b € {0,1} be uniformly generated.

The adversary A = (A4, Asy) works as follows:

0 Ai(n) returns two messages myg, m; of equal length and some
internal state s.

0 Invoke Ex(n, my). Let y be the result.

0 As(s,y) outputs a bit b*.

m Encryption scheme has find-then-guess security against
chosen-plaintext attacks if the probability of b = b* is not larger than

1/2 + f(n) for some negligible f.

Exercise. Show that find-then-guess security implies semantic security.

7 /23

Indistinguishability of probability distributions

m ForeachncNlet D) and D, be probability distributions over
bit-strings.

m The families of probability distributions D" = { D)}, cx and
D" = {D, },en are indistinguishable if

[0 for any adversary A
» The running time of A(#,-) must be polynomial in 7
[0 the difference of probabilities

PrlA(n,z) =1|z « Dg] — PrlA(n,x) =1|x « D%]

Is a negligible function of 7.
m Denote D' =~ D!

8 /23

Transitivity

Theorem. If D' ~ D' and D' =~ D?, then D' ~ D?.
Proof.

Suppose that D" % D?.

Let A be a polynomial-time adversary such that A can distinguish
D" and D? with non-negligible advantage.
m Forie{0,1,2}, let

p, = PrlA(n.z) = 1|z « D]]

m Thereis a polynomial g, such that for infinitely many n,
p"y = %l = a(n).
For any such n, either [p°, —p',[> q(n)/2 or [p*; — p*y| > q(n)/2.
Either |p”, — p",| > q(n)/2 holds for infinitely many 7, or
Ip', — p*,| > q(n)/2 holds for infinitely many 7.
m A distinguishes either D" and D', or D' and D?. O

9 /23

Independent components

Let DV, D!, I/ be families of probability distributions.
Define the probability distribution F} by

1. Letx « Df?.
2. lLety <« E,.
3. Output (z,y).

Eis polynomial-time constructible if there is a polynomial-time

algorithm &, such that the output of £(n) is distributed identically to

E,.

Theorem. If D' =~ D! and F is polynomial-time constructible, then
~ I

10 / 23

Proof

Suppose that /" % [

Let A be a polynomial-time adversary such that A can distinguish
and /' with non-negligible advantage.

Construct B as follows: on input (1, z), it will

O call £(n), giving v;
O call A(n, (z,y)), giving b;
(1 return 0.

We see that

0 if « is distributed according to D",, then the argument to A is
distributed according to [;

0 if = is distributed according to D*,, then the argument to A is
distributed according to F',;

hence the advantage of B is equal to the advantage of A. O

11 / 23

Multiple sampling

Let D" = {D)},cn and D' = {D, },en be two families of probability
distributions.

Let p be a positive polynomial.

Let 52 be a probability distribution over tuples

(1,22, ..., Zpm)) € ({0, 1}*)19(?7)

such that

0 each z; is distributed according to D?:
[0 each z; is is independent of all other x-s.

12 / 23

Multiple sampling

Let D" = {D)},cn and D' = {D, },en be two families of probability
distributions.

Let p be a positive polynomial.

Let 52 be a probability distribution over tuples

(1,22, ..., Zpm)) € ({0, 1}*)19(?7)

such that

0 each z; is distributed according to D?:
[0 each z; is is independent of all other x-s.

To sample 52 sample D) p(n) times and construct the tuple of
sampled values.

12 / 23

D-s indistinguishable = D-s indistinguishable

Theorem. If D ~ D! then D° ~ D!,

13 / 23

D-s indistinguishable = D-s indistinguishable

Theorem. If D ~ D! then D° ~ D!,

|f e0® ~ eo@ then o =~ eo.

Contrapositive: if ® % @ then eee X eoe

13 / 23

D-s indistinguishable = D-s indistinguishable

Theorem. If D ~ D! then D° ~ D!,

|f e0® ~ eo@ then o =~ eo.

Contrapositive: if ® % @ then eee X eoe
If @ % e then there exists a PPT distinguisher A:

PrlA(n,z) = 0|z «— D)] = Pr[A(n,z) = 0|z «— D,] > 1/q(n)

for some polynomial ¢ and infinitely many 7.

13 / 23

D-s indistinguishable = D-s indistinguishable

Theorem. If D ~ D! then D° ~ D!,

|f e0® ~ eo@ then o =~ eo.

Contrapositive: if ® % @ then eee X eoe
If @ % e then there exists a PPT distinguisher A:

PrlA(n,z) = 0|z «— D)] = Pr[A(n,z) = 0|z «— D,] > 1/q(n)

for some polynomial ¢ and infinitely many 7.

Let 3(777 (:Cla R 733}9(77))) — ‘A(na :Cl)'
Then B distinguishes eee and eee.

13 / 23

D-s indistinguishable = D-s indistinguishable

Theorem. If D ~ D! then D° ~ D!,

|f e0® ~ eo@ then o =~ eo.

Contrapositive: if ® % @ then eee X eoe
If @ % e then there exists a PPT distinguisher A:

PrlA(n,z) = 0|z «— D)] = Pr[A(n,z) = 0|z «— D,] > 1/q(n)

for some polynomial ¢ and infinitely many 7.

Let 3(777 (:Ela R 733}9(77))) — ‘A(na :Cl)'
Then B distinguishes eee and eee.

|.e. we can distinguish eee from eee by just considering the first
elements of the tuples.

13 / 23

D-s indistinguishable = D-s indistinguishable

(Interesting) theorem. If D ~ D' and there exist polynomial-time
algorithms D° and D1, such that the output distribution of D(n) is

equal to Dz, then D° ~ D!

14 / 23

D-s indistinguishable = D-s indistinguishable

(Interesting) theorem. If D' =~ D' and there exist polynomial-time
algorithms D° and D1, such that the output distribution of D(n) is

equal to D?, then D° ~ D!,

Assume for now that the polynomial p is a constant. l.e. the length of
the vector ¥ does not depend on the security parameter 7.
Let p be the common value of p(n) for all 7.

Theorem statement: if @ ~ o then eee ~ eee. (let p = 3)

14 / 23

D-s indistinguishable = D-s indistinguishable

(Interesting) theorem. If D' =~ D' and there exist polynomial-time
algorithms D° and D1, such that the output distribution of D(n) is

equal to D?, then D° ~ D!,

Assume for now that the polynomial p is a constant. l.e. the length of
the vector ¥ does not depend on the security parameter 7.
Let p be the common value of p(n) for all 7.

Theorem statement: if @ ~ o then eee ~ eee. (let p = 3)

Our lemmas said (e e Ao~ o) =0~ 0and e~ e = oo~ oo

14 / 23

D-s indistinguishable = D-s indistinguishable

(Interesting) theorem. If D' =~ D' and there exist polynomial-time
algorithms D° and D1, such that the output distribution of D(n) is

equal to D?, then D° ~ D!,

Assume for now that the polynomial p is a constant. l.e. the length of
the vector ¥ does not depend on the security parameter 7.
Let p be the common value of p(n) for all 7.

Theorem statement: if @ ~ o then eee ~ eee. (let p = 3)
Our lemmas said (e e Ao~ o) =0~ 0and e~ e = oo~ oo

14 / 23

D-s indistinguishable = D-s indistinguishable

(Interesting) theorem. If D' =~ D' and there exist polynomial-time
algorithms D° and D1, such that the output distribution of D(n) is

equal to D?, then D° ~ D!,

Assume for now that the polynomial p is a constant. l.e. the length of
the vector ¥ does not depend on the security parameter 7.
Let p be the common value of p(n) for all 7.

Theorem statement: if @ ~ o then eee ~ eee. (let p = 3)
Our lemmas said (e e Ao~ o) =0~ 0and e~ e = oo~ oo

000 = 000

14 / 23

D-s indistinguishable = D-s indistinguishable

(Interesting) theorem. If D' =~ D' and there exist polynomial-time
algorithms D° and D1, such that the output distribution of D(n) is

equal to D?, then D° ~ D!,

Assume for now that the polynomial p is a constant. l.e. the length of
the vector ¥ does not depend on the security parameter 7.
Let p be the common value of p(n) for all 7.

Theorem statement: if @ ~ o then eee ~ eee. (let p = 3)
Our lemmas said (e e Ao~ o) =0~ 0and e~ e = oo~ oo

000 = 000 = 000

14 / 23

D-s indistinguishable = D-s indistinguishable

(Interesting) theorem. If D' =~ D' and there exist polynomial-time
algorithms D° and D1, such that the output distribution of D(n) is

equal to D?, then D° ~ D!,

Assume for now that the polynomial p is a constant. l.e. the length of
the vector ¥ does not depend on the security parameter 7.
Let p be the common value of p(n) for all 7.

Theorem statement: if @ ~ o then eee ~ eee. (let p = 3)
Our lemmas said (e e Ao~ o) =0~ 0and e~ e = oo~ oo

000 U 000 - 000 - 000,

14 / 23

D-s indistinguishable = D-s indistinguishable

(Interesting) theorem. If D' =~ D' and there exist polynomial-time
algorithms D° and D1, such that the output distribution of D(n) is

equal to D?, then D° ~ D!,

Assume for now that the polynomial p is a constant. l.e. the length of
the vector ¥ does not depend on the security parameter 7.
Let p be the common value of p(n) for all 7.

Theorem statement: if @ ~ e then eee ~ eee. (let p = 3)
Our lemmas said (e e Ao~ o) =0~ 0and e~ e = oo~ oo
e0e X 000 - 000 < eee. By transitivity, eee x eee.

(Actually, we're done with this case)

14 / 23

Constructing the distinguisher

Contrapositive: if eee % eee then o £ o.

15 / 23

Constructing the distinguisher

Contrapositive: if eee % eee then o £ o.
If eee £ eee then there exists a PPT distinguisher A:

PrlA(n, 7) = 0| & — D;] = Pr[A(n,¥) = 0| — D] > 1/q(n)

for some polynomial ¢ and infinitely many 7.

15 / 23

Hybrid distributions

If eee £ @00 then

(000 £ 000) \/ (000 £ e0e)\/ (000 7 ooo)

16 / 23

Hybrid distributions

If eee 5 eee then
(000 £ 000) \/ (000 £ e0e)\/ (000 7 ooo)

et E];’ where 0 < k < p, be a probability distribution over tuples
(1,...,2,), where

m each z; is independent of all other x-s;
m 2),...,7; are distributed according to D));
" Tpy1,...,T, are distributed according to D}T

0 _ Pl p)0 - k N 0|7 ik
Thus £y = D, and E? = D,. Define P’ = Pr[A(n,Z) = 0|7 « ET].

Then for infinitely many n: ,

a(n) < PL— P =3 (PL— 7).

1=1

And for some j,, P — P > 1/(p-qn)).

16 / 23

A distinguishes hybrids

There exists j, such that j = j, for infinitely many 1. Thus
PrlA(n, &) = 0| & — EJ] — Pr[A(n, @) = 0| — EJ '] > 1/(p- q(n))

for infinitely many 1. We have EV—1 s EJ.

17 / 23

A distinguishes hybrids

There exists j, such that j = j, for infinitely many 1. Thus
PrlA(n, &) = 0| & — EJ] — Pr[A(n, @) = 0| — EJ '] > 1/(p- q(n))

for infinitely many 1. We have EV—1 s EJ.

If we can distinguish

F/ —e0---0000---0
A\ ~ 4 A\ V.J
J—1 pP—J
from
Fi'7l —ge---0000---0
N ~ 4 N ~ 4
Jj—1 p—J

using A, then how do we distinguish e and e?

17 / 23

Distinguisher for D" and D'

On input (n, x):

1. Letxzy:=D%n),...,z;—1 :=D%n).
2. Letz;, ==

3. Letxjiq:=D(n),...,x,:=D(n)
4. Let ¥ = (x1,...,xp).

5. Call b* := A(n,) and return b*.

The advantage of this distinguisher is at least 1/(p - q(n)).

18 / 23

Distinguisher for D" and D'

On input (n, x):

1. Letxzy:=D%n),...,z;—1 :=D%n).
2. Letz;, ==

3. Letxjiq:=D(n),...,x,:=D(n)
4. Let ¥ = (x1,...,xp).

5. Call b* := A(n,) and return b*.

The advantage of this distinguisher is at least 1/(p - q(n)).

Unfortunately, the above construction was not constructive.

18 / 23

Being constructive

For infinitely many 1 we had

p

q() < PL— P =3 (Py— Pi7Y)

1=1

Hence the average value of P} — P)~'is > 1/(p- q(n)).

19 / 23

Being constructive

For infinitely many 1 we had

p

q() < PL— P =3 (Py— Pi7Y)

1=1

Hence the average value of P} — P)~'is > 1/(p- q(n)).

Consider the following distinguisher B(n, x):

1. Letjeg{l,....p}

2. Letxy:=D%n),...,x;_1 :=Dn).
3. Letz;, ==

4. Let x;11 : =D (n),...,x, :=D(n)
5. Let ¥ = (z1,...,2,).

6.

Call b* := A(n, Z) and return b*.

19 / 23

What B does

If (for example) p = 5, then B tries to distinguish

eeeee and eeeee with probability 1/5
eeeee and eeeee with probability 1/5
eeeee and eeeee with probability 1/5
eeeee and eeeee with probability 1/5
eeeee and eeeee with probability 1/5

The advantage of B is 1/p times the sum of A’s advantages of
distinguishing these pairs of distributions.

The advantage of B is

20 / 23

If » depends on 7

B(n,x) is:

1. Letjer{l,...,p(n)}.

2. Let X1 = Do(n), ey Lj—1 = 'Do(n)
3. Letz;:=ux

4. Let zjiq :=D'(n), ..., xpu := D' (n)
5. Letz = (5131,...,51329(77)>.

6. Call b* := A(n,Z) and return b*.

The advantage of B is at least 1/(p(n) - q¢(n)).

21 / 23

Left-or-right security

Consider again symmetric encryption (X, &, D).
Let k& be generated by X(n).
Let O be the following oracle:

0 On input (mg, my1) where |mg| = |my
of m; with the key .

, It returns an encryption

Let b € {0, 1} be uniformly generated.
Let A have access to the oracle Q.

[0 A can make as many oracle queries as it wants to.

m Encryption system has left-or-right security against chosen-plaintext
attacks if no PPT A can guess b with probability more that
1/2 + f(n), where f is negligible.

Exercise. Show that an encryption system has left-or-right security
against CPA iff it has find-then-guess security against CPA.

22 / 23

Real-or-constant security

m Let Oy be the following oracle:

0 On input m, it returns an encryption of m with the key &.
m Let O be the following oracle:

O On input m, it returns an encryption of 0™ with the key k.

Let b € {0,1} be uniformly generated.

Let A have access to the oracle Oy.

Encryption system has real-or-constant security against
chosen-plaintext attacks if no PPT A can guess b with probability
more that 1/2 + f(n), where f is negligible.

Exercise. Show that an encryption system has left-or-right security
against CPA iff it has real-or-constant security against CPA.

23 / 23

	Formally defining security of cryptoprimitives
	Security parameter
	Security of symmetric encryption
	Semantic security
	Simplifying semantic security
	Find-then-guess security
	Indistinguishability of probability distributions
	Transitivity
	Independent components
	Proof
	Multiple sampling
	-s indistinguishable D-s indistinguishable
	D-s indistinguishable -s indistinguishable
	Constructing the distinguisher
	Hybrid distributions
	A distinguishes hybrids
	Distinguisher for D0 and D1
	Being constructive
	What B does
	If p depends on
	Left-or-right security
	Real-or-constant security

