
Defining security of
cryptographic primitives
The hybrid argument



Formally defining security of cryptoprimitives
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■ Let us move back to “computational” world:

◆ Messages are bit-strings;
◆ Encryption, decryption, key generation, signing, etc. are PPT

algorithms on bit-strings.
◆ Adversary is an(y) interactive PPT algorithm.

■ Primitive is secure if adversary’s succeeds in breaking it with a low
probability.

◆ A function f : N→ R is negligible if for all polynomials,
limη→∞ f(η) · p(η) = 0.

◆ I.e. the inverse of f is superpolynomial.
◆ η is the security parameter

■ Where does it come from?



Security parameter
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■ We need an integer parameter for speaking about asymptotic
security.

■ η is something that

◆ the work of honest participants is polynomial in η;
◆ the work of the adversary is hopefully superpolynomial in η.

■ It could be

◆ the key / plaintext length in asymmetric encryption and signing;
◆ the length of the challenge in identification protocols.

■ But also

◆ key / block length in block ciphers / symmetric encryption;
◆ key / tag length in MACs;
◆ output length in hash functions

although the common definitions for those are usually not
parameterized.



Security of symmetric encryption
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■ We want the ciphertext to hide all partial information.

◆ At least information that can be found in polynomial time.

■ Let H : {0, 1}∗ → {0, 1}∗ be a polynomial-time algorithm.
■ We pick a plaintext x.
■ We give η and y = Ek(η, x) to the adversary.
■ The adversary answers with z ∈ {0, 1}∗.
■ The adversary wins if z = H(x).
■ We want the adversary’s winning probability to be negligible in η.

Exercise. What is wrong with this definition?



Semantic security
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■ For all polynomial-time algorithms H : {0, 1}∗ → {0, 1}∗

■ for all polynomial-time constructible families of probability
distributions {Mη}η∈N over bit-strings

■ for all PPT adversaries A

■ the probability

Pr[h∗ = h |x←Mη, h = H(x), y ← Ek(η, x), h∗ ← A(η, y)]

is at most negligibly larger than the probability

Pr[h∗ = h |x, x′ ←Mη, h = H(x′), y ← Ek(η, x), h∗ ← A(η, y)]

■ Then (K,E,D) has semantic security against chosen-plaintext
attacks.



Simplifying semantic security
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■ H, M and A are all polynomial-time algorithms.
■ Put them all into A:

◆ A first outputs H and M ;
◆ then x is picked according to M and y = Ek(η, x) is given to A;
◆ then A tries to find H(x).

■ Restrict A:

◆ Let H be identity function.
◆ Let Mη be a distribution that assigns 50% to some m0, 50% to

some m1 and nothing to any other bit-string.

■ To specify Mη, A outputs m0 and m1.
■ m0 and m1 must have equal length.



Find-then-guess security
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■ (K,E,D) — a symmetric encryption scheme.
■ Let k be generated by K(η).
■ Let b ∈R {0, 1} be uniformly generated.
■ The adversary A = (A1,A2) works as follows:

◆ A1(η) returns two messages m0,m1 of equal length and some
internal state s.

◆ Invoke Ek(η,mb). Let y be the result.
◆ A2(s, y) outputs a bit b∗.

■ Encryption scheme has find-then-guess security against
chosen-plaintext attacks if the probability of b = b∗ is not larger than
1/2 + f(η) for some negligible f .

Exercise. Show that find-then-guess security implies semantic security.



Indistinguishability of probability distributions
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■ For each η ∈ N let D0
η and D1

η be probability distributions over
bit-strings.

■ The families of probability distributions D0 = {D0
η}η∈N and

D1 = {D1
η}η∈N are indistinguishable if

◆ for any adversary A

■ The running time of A(η, ·) must be polynomial in η

◆ the difference of probabilities

Pr[A(η, x) = 1 |x← D0
η]− Pr[A(η, x) = 1 |x← D1

η]

is a negligible function of η.

■ Denote D0 ≈ D1.



Transitivity
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Theorem. If D0 ≈ D1 and D1 ≈ D2, then D0 ≈ D2.
Proof.

■ Suppose that D0 6≈ D2.
■ Let A be a polynomial-time adversary such that A can distinguish

D0 and D2 with non-negligible advantage.
■ For i ∈ {0, 1, 2}, let

pi
η = Pr[A(η, x) = 1 |x← Di

η]

■ There is a polynomial q, such that for infinitely many η,
|p0

η − p2
η| ≥ q(η).

■ For any such η, either |p0
η − p1

η| ≥ q(η)/2 or |p1
η − p2

η| ≥ q(η)/2.
■ Either |p0

η − p1
η| ≥ q(η)/2 holds for infinitely many η, or

|p1
η − p2

η| ≥ q(η)/2 holds for infinitely many η.
■ A distinguishes either D0 and D1, or D1 and D2. 2



Independent components
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■ Let D0, D1, E be families of probability distributions.
■ Define the probability distribution F i

η by

1. Let x← Di
η.

2. Let y ← Eη.
3. Output (x, y).

■ E is polynomial-time constructible if there is a polynomial-time
algorithm E, such that the output of E(η) is distributed identically to
Eη.

■ Theorem. If D0 ≈ D1 and E is polynomial-time constructible, then
F 0 ≈ F 1.



Proof
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■ Suppose that F 0 6≈ F 1.
■ Let A be a polynomial-time adversary such that A can distinguish

F 0 and F 1 with non-negligible advantage.
■ Construct B as follows: on input (η, x), it will

◆ call E(η), giving y;
◆ call A(η, (x, y)), giving b;
◆ return b.

■ We see that

◆ if x is distributed according to D0
η, then the argument to A is

distributed according to F 0
η;

◆ if x is distributed according to D1
η, then the argument to A is

distributed according to F 1
η;

hence the advantage of B is equal to the advantage of A. 2



Multiple sampling
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■ Let D0 = {D0
η}η∈N and D1 = {D1

η}η∈N be two families of probability
distributions.

■ Let p be a positive polynomial.
■ Let ~Db

η be a probability distribution over tuples

(x1, x2, . . . , xp(η)) ∈ ({0, 1}∗)p(η)

such that

◆ each xi is distributed according to Db
η;

◆ each xi is is independent of all other x-s.
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■ Let D0 = {D0
η}η∈N and D1 = {D1

η}η∈N be two families of probability
distributions.

■ Let p be a positive polynomial.
■ Let ~Db

η be a probability distribution over tuples

(x1, x2, . . . , xp(η)) ∈ ({0, 1}∗)p(η)

such that

◆ each xi is distributed according to Db
η;

◆ each xi is is independent of all other x-s.

■ To sample ~Db
η, sample Db

η p(η) times and construct the tuple of
sampled values.



~D-s indistinguishable ⇒ D-s indistinguishable
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Theorem. If ~D0 ≈ ~D1 then D0 ≈ D1.
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Theorem. If ~D0 ≈ ~D1 then D0 ≈ D1.
If ••• ≈ ••• then • ≈ •.

Contrapositive: if • 6≈ • then ••• 6≈ •••



~D-s indistinguishable ⇒ D-s indistinguishable

13 / 23

Theorem. If ~D0 ≈ ~D1 then D0 ≈ D1.
If ••• ≈ ••• then • ≈ •.

Contrapositive: if • 6≈ • then ••• 6≈ •••
If • 6≈ • then there exists a PPT distinguisher A:

Pr[A(η, x) = 0 |x← D0
η]− Pr[A(η, x) = 0 |x← D1

η] ≥ 1/q(η)

for some polynomial q and infinitely many η.
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Let B(η, (x1, . . . , xp(η))) = A(η, x1).
Then B distinguishes ••• and •••.
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Theorem. If ~D0 ≈ ~D1 then D0 ≈ D1.
If ••• ≈ ••• then • ≈ •.

Contrapositive: if • 6≈ • then ••• 6≈ •••
If • 6≈ • then there exists a PPT distinguisher A:

Pr[A(η, x) = 0 |x← D0
η]− Pr[A(η, x) = 0 |x← D1

η] ≥ 1/q(η)

for some polynomial q and infinitely many η.

Let B(η, (x1, . . . , xp(η))) = A(η, x1).
Then B distinguishes ••• and •••.

I.e. we can distinguish ••• from ••• by just considering the first
elements of the tuples.



D-s indistinguishable ⇒ ~D-s indistinguishable
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(Interesting) theorem. If D0 ≈ D1 and there exist polynomial-time
algorithms D0 and D1, such that the output distribution of Db(η) is

equal to Db
η, then ~D0 ≈ ~D1.
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(Interesting) theorem. If D0 ≈ D1 and there exist polynomial-time
algorithms D0 and D1, such that the output distribution of Db(η) is

equal to Db
η, then ~D0 ≈ ~D1.

Assume for now that the polynomial p is a constant. I.e. the length of
the vector ~x does not depend on the security parameter η.
Let p be the common value of p(η) for all η.

Theorem statement: if • ≈ • then ••• ≈ •••. (let p = 3)
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(Interesting) theorem. If D0 ≈ D1 and there exist polynomial-time
algorithms D0 and D1, such that the output distribution of Db(η) is

equal to Db
η, then ~D0 ≈ ~D1.

Assume for now that the polynomial p is a constant. I.e. the length of
the vector ~x does not depend on the security parameter η.
Let p be the common value of p(η) for all η.

Theorem statement: if • ≈ • then ••• ≈ •••. (let p = 3)

Our lemmas said (• ≈ • ∧ • ≈ •)⇒ • ≈ • and • ≈ • ⇒ •• ≈ ••.

••• ≈ ••• ≈ ••• ≈ •••. By transitivity, ••• ≈ •••.

(Actually, we’re done with this case)



Constructing the distinguisher
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Contrapositive: if ••• 6≈ ••• then • 6≈ •.



Constructing the distinguisher
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Contrapositive: if ••• 6≈ ••• then • 6≈ •.
If ••• 6≈ ••• then there exists a PPT distinguisher A:

Pr[A(η, ~x) = 0 | ~x← ~D0
η]− Pr[A(η, ~x) = 0 | ~x← ~D1

η] ≥ 1/q(η)

for some polynomial q and infinitely many η.



Hybrid distributions
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If ••• 6≈ ••• then

(••• 6≈ •••) ∨ (••• 6≈ •••) ∨ (••• 6≈ •••)



Hybrid distributions
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If ••• 6≈ ••• then

(••• 6≈ •••) ∨ (••• 6≈ •••) ∨ (••• 6≈ •••)

Let ~Ek
η , where 0 ≤ k ≤ p, be a probability distribution over tuples

(x1, . . . , xp), where

■ each xi is independent of all other x-s;
■ x1, . . . , xk are distributed according to D0

η;
■ xk+1, . . . , xp are distributed according to D1

η.

Thus ~E0
η = ~D1

η and ~Ep
η = ~D0

η. Define P k
η = Pr[A(η, ~x) = 0 | ~x← ~Ek

η ].
Then for infinitely many η:

1/q(η) ≤ P p
η − P 0

η =

p
∑

i=1

(P i
η − P i−1

η ) .

And for some jη, P
jη

η − P
jη−1
η ≥ 1/(p · q(η)).



A distinguishes hybrids
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There exists j, such that j = jη for infinitely many η. Thus

Pr[A(η, ~x) = 0 | ~x← ~Ej
η]− Pr[A(η, ~x) = 0 | ~x← ~Ej−1

η ] ≥ 1/(p · q(η))

for infinitely many η. We have ~Ej−1 6≈ ~Ej.
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There exists j, such that j = jη for infinitely many η. Thus

Pr[A(η, ~x) = 0 | ~x← ~Ej
η]− Pr[A(η, ~x) = 0 | ~x← ~Ej−1

η ] ≥ 1/(p · q(η))

for infinitely many η. We have ~Ej−1 6≈ ~Ej.

If we can distinguish

~Ej = •• · · · •
︸ ︷︷ ︸

j−1

• •• · · · •
︸ ︷︷ ︸

p−j

from
~Ej−1 = •• · · · •

︸ ︷︷ ︸

j−1

• •• · · · •
︸ ︷︷ ︸

p−j

using A, then how do we distinguish • and •?



Distinguisher for D0 and D1
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On input (η, x):

1. Let x1 := D0(η), . . . , xj−1 := D0(η).
2. Let xj := x
3. Let xj+1 := D1(η), . . . , xp := D1(η)
4. Let ~x = (x1, . . . , xp).
5. Call b∗ := A(η, ~x) and return b∗.

The advantage of this distinguisher is at least 1/(p · q(η)).
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On input (η, x):

1. Let x1 := D0(η), . . . , xj−1 := D0(η).
2. Let xj := x
3. Let xj+1 := D1(η), . . . , xp := D1(η)
4. Let ~x = (x1, . . . , xp).
5. Call b∗ := A(η, ~x) and return b∗.

The advantage of this distinguisher is at least 1/(p · q(η)).

Unfortunately, the above construction was not constructive.
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For infinitely many η we had

1/q(η) ≤ P p
η − P 0

η =

p
∑

i=1

(P i
η − P i−1

η ) .

Hence the average value of P j
η − P j−1

η is ≥ 1/(p · q(η)).
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For infinitely many η we had

1/q(η) ≤ P p
η − P 0

η =

p
∑

i=1

(P i
η − P i−1

η ) .

Hence the average value of P j
η − P j−1

η is ≥ 1/(p · q(η)).

Consider the following distinguisher B(η, x):

1. Let j ∈R {1, . . . , p}.
2. Let x1 := D0(η), . . . , xj−1 := D0(η).
3. Let xj := x
4. Let xj+1 := D1(η), . . . , xp := D1(η)
5. Let ~x = (x1, . . . , xp).
6. Call b∗ := A(η, ~x) and return b∗.



What B does
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If (for example) p = 5, then B tries to distinguish

••••• and ••••• with probability 1/5
••••• and ••••• with probability 1/5
••••• and ••••• with probability 1/5
••••• and ••••• with probability 1/5
••••• and ••••• with probability 1/5

The advantage of B is 1/p times the sum of A’s advantages of
distinguishing these pairs of distributions.

The advantage of B is

1

p

p
∑

j=1

P j
η − P j−1

η =
1

p
(P p

η − P 0
η ) ≥

1

p · q(η)
.



If p depends on η
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B(η, x) is:

1. Let j ∈R {1, . . . , p(η)}.
2. Let x1 := D0(η), . . . , xj−1 := D0(η).
3. Let xj := x
4. Let xj+1 := D1(η), . . . , xp(η) := D1(η)
5. Let ~x = (x1, . . . , xp(η)).
6. Call b∗ := A(η, ~x) and return b∗.

The advantage of B is at least 1/(p(η) · q(η)). 2



Left-or-right security
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■ Consider again symmetric encryption (K,E,D).
■ Let k be generated by K(η).
■ Let Ob be the following oracle:

◆ On input (m0,m1) where |m0| = |m1|, it returns an encryption
of mb with the key k.

■ Let b ∈R {0, 1} be uniformly generated.
■ Let A have access to the oracle Ob.

◆ A can make as many oracle queries as it wants to.

■ Encryption system has left-or-right security against chosen-plaintext
attacks if no PPT A can guess b with probability more that
1/2 + f(η), where f is negligible.

Exercise. Show that an encryption system has left-or-right security
against CPA iff it has find-then-guess security against CPA.



Real-or-constant security
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■ Let O0 be the following oracle:

◆ On input m, it returns an encryption of m with the key k.

■ Let O1 be the following oracle:

◆ On input m, it returns an encryption of 0
|m| with the key k.

■ Let b ∈R {0, 1} be uniformly generated.
■ Let A have access to the oracle Ob.
■ Encryption system has real-or-constant security against

chosen-plaintext attacks if no PPT A can guess b with probability
more that 1/2 + f(η), where f is negligible.

Exercise. Show that an encryption system has left-or-right security
against CPA iff it has real-or-constant security against CPA.
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