
Secure Multiparty
Computation (part 2)

Unconditionally secure MPC

2 / 79

■ A week ago we considered secure multiparty computation.

◆ The security was computational.
◆ Good thing — with semi-honest adversary, the number of

corrupted parties did not matter.

■ Today we take a look what is possible if we want to remain
unconditionally secure.

Semi-honest adversary

3 / 79

■ Computed function f represented as a circuit consisting of

◆ binary addition and multiplication gates;
◆ unary gates for adding or multiplying with a constant.

◆ Values on wires — elements of Zp.

■ n players, where at most t− 1 may be adversarial.
■ All values on wires are shared using Shamir’s (n, t)-secret sharing

scheme.
■ The protocol starts by each party sharing his inputs.
■ Binary addition and unary operations — each party performs the

same operation with his own respective shares only.
■ Binary multiplication — next slides.
■ Protocol ends by parties sending the shares of outputs to each other.

Multiplying shared secrets

4 / 79

■ Let n parties hold shares s1, . . . , sn and s′1, . . . , s
′
n for two secrets

v, v′ ∈ Zp.
■ We want them to learn shares s′′1, . . . , s

′′
n for v′′ = v · v′, such that

these shares are uniformly distributed and independent from anything
else.

Multiplying shared secrets

4 / 79

■ Let n parties hold shares s1, . . . , sn and s′1, . . . , s
′
n for two secrets

v, v′ ∈ Zp.
■ We want them to learn shares s′′1, . . . , s

′′
n for v′′ = v · v′, such that

these shares are uniformly distributed and independent from anything
else.

■ Ideal protocol:

◆ There is a trusted dealer D 6∈ {P1, . . . , Pn}.
◆ D is sent the shares s1, . . . , sn, s′1, . . . , s

′
n.

◆ D recovers v and v′, computes v′′ = v · v′.
◆ D constructs the shares for v′′, sends them to P1, . . . , Pn.

■ We want the real protocol to cause the same distribution of
s1, . . . , sn, s′1, . . . , s

′
n, s′′1, . . . , s

′′
n.

◆ Each party Pi will see some more random values, but their
distribution must be constructible from si, s

′
i, s

′′
i .

Gennaro-Rabin-Rabin multiplication protocol

5 / 79

■ Assume t− 1 < n/2. (in other words, t− 1 ≤ (n− 1)/2)
■ Let f, f ′ be polynomials of degree ≤ t− 1 used to share v, v′.
■ f(0) = v. f ′(0) = v. Let f ′′ = f · f ′. Then f ′′(0) = v · v′′.
■ The degree of f ′′ is ≤ 2(t− 1) ≤ n− 1.
■ The values of f ′′ on n points suffice to reconstruct f ′′.

◆ Party Pi can compute f ′′(i) as si · s′i.
◆ But we don’t want to use f ′′ to share v′′.

■ There exist (public) r1, . . . , rn, such that f ′′(0) =
∑n

i=1 ri(si · s′i).
◆ By Lagrange interpolation formula ri =

∏

1≤j≤n,j 6=i j/(j − i).

■ At least t of r1, . . . , rn are non-zero.

◆ If only ri1 , . . . , rit−1
were non-zero, then

v = (f · 1)(0) =
n∑

i=1

rif(i)1(i) =
t−1∑

j=1

rijsij ,

allowing Pi1, . . . , Pit−1
to determine v.

Gennaro-Rabin-Rabin multiplication protocol

6 / 79

■ Each party Pi randomly generates a polynomial fi of degree at most
t− 1, such that fi(0) = si · s′i.

■ Party Pi sends to party Pj the value uij = fi(j).

◆ Party Pi receives the values u1i, . . . , uni.

■ Pi defines s′′i =
∑n

j=1 rjuji.

■ The shares s′′1, . . . , s
′′
n correspond to the polynomial f̂ =

∑n
j=1 rjfj .

◆ It is a random polynomial because fi-s were randomly generated.
◆ It is independent from any fi1 , . . . , fit−1

, because at least t of
the values r1, . . . , rn are non-zero.

■ This polynomial shares the value

f̂(0) =
n∑

j=1

rj · fj(0) =
n∑

j=1

rjsjs
′
j = f ′′(0) = v′′ .

Over half of the parties must be honest

7 / 79

■ Consider a two-party protocol Π for computing the AND of two bits.
■ Let Π(b1, r1, b2, r2) be the sequence of messages exchanged for party

Pi’s bit bi and random coins ri.

∀r1, r
0
2 ∃r1

2 : Π(0, r1, 0, r
0
2) = Π(0, r1, 1, r

1
2)

∀r1, r
1
2 ∃r0

2 : Π(0, r1, 0, r
0
2) = Π(0, r1, 1, r

1
2)

∀r1, r
0
2, r

1
2 : Π(1, r1, 0, r

0
2) 6= Π(1, r1, 1, r

1
2)

■ Party P2 whose input is b2 = 0 and random coins r0
2 can find b1 as

follows:

◆ Let T be the exchanged sequence of messages.
◆ Try to find such (b′, r′, r1

2), that Π(b′, r′, 1, r1
2) = T.

◆ If such triple exists then b1 = 0. If not, then b1 = 1.

Exercise. Generalize this result to more than 2 parties.

Exercise

8 / 79

Repeat the previous MPC construction, but using a verifiable secret
sharing scheme.

■ For example, Feldman’s VSS.

Exercise

8 / 79

Repeat the previous MPC construction, but using a verifiable secret
sharing scheme.

■ For example, Feldman’s VSS.

This exercise shows the possiblity of MPC, where

■ security is computational;
■ the number of corrupted parties is strictly less than n/2;
■ the adversary is malicious;
■ there is a broadcast channel;
■ the adversary can shut down the computation.

The security can be made unconditional and shutdown possibilities can
be eliminated.

Exercise

9 / 79

Consider Feldman’s VSS:

■ n parties, the share of i-th party is Pi.
■ A group G with hard discrete logarithm. An element g ∈ G of order

p.
■ The secret v = a0 is shared using a polynomial of degree at most

t− 1.
■ The values yi = gai for 0 ≤ i ≤ t− 1 have been published.

Suppose that during the secret reconstruction time, one of the parties Pz

refuses to produce a valid sz. How can the honest parties find sz?

Exercise

9 / 79

Consider Feldman’s VSS:

■ n parties, the share of i-th party is Pi.
■ A group G with hard discrete logarithm. An element g ∈ G of order

p.
■ The secret v = a0 is shared using a polynomial of degree at most

t− 1.
■ The values yi = gai for 0 ≤ i ≤ t− 1 have been published.

Suppose that during the secret reconstruction time, one of the parties Pz

refuses to produce a valid sz. How can the honest parties find sz?

This method allows us to kick out parties who behave maliciously.

What have we seen so far?

10 / 79

■ 2-party, computational, semi-honest, constant-round.
■ 2- or n-party, computational, semi-honest(< n), linear-round.
■ n-party, unconditional, semi-honest(< n/2), linear-round.
■ n-party, computational, malicious(< n/2), constant-round.

Coming up next: n-party, unconditional, broadcast, malicious(< n/3),
linear-round.

Malicious model — security definition

11 / 79

■ Simulatability — turn real adversary into an ideal one.
■ In the Ideal model, the computation proceeds as follows:

◆ The parties receive the inputs.
◆ Parties send their inputs to the ideal functionality F .

■ Malicious parties do not have to send it.

◆ If everybody sent something to F , it will compute the function f
and send the outputs to the parties. Otherwise sends ⊥ to
everybody.

◆ Honest parties output what they got. Malicious parties output
whatever they like.

■ In the Real model, two middle steps are replaced by the execution of
the actual protocol.

■ Real must be simulatable by ideal.

Malicious model — security definition

12 / 79

x1 x2 xn x1 x2 xn

environment environment

P1 P2 Pn P1 P2 Pn

Malicious model — security definition

12 / 79

x1 x2 xn x1 x2 xn

environment environment

P1 P2 Pn P1 P2 Pn

F

x1

xn

x′
2

y1 y2

yn

Protocol

Malicious model — security definition

12 / 79

x1 x2 xn x1 x2 xn

environment environment

P1 P2 Pn P1 P2 Pn

F

x1

xn

x′
2

y1 y2

yn

y1 z2
yn y1 z2

yn

Protocol

Malicious model — security definition

13 / 79

■ There must exist a simulator rtoi that turns real parties to ideal
parties.

◆ rtoi(i, P real
i) must equal P ideal

i .

■ For all Q1, . . . , Qn, where Qi = P real
i for at least n− t different

values of i
■ For all environments Z: its views in the following two runs must be

indistinguishable:

◆ Z |Q1 | · · · |Qn

◆ Z | rtoi(1, Q1) | · · · | rtoi(n,Qn) | F

Error-correcting codes

14 / 79

■ An (n, t, d)-code over a set X is a mapping C : X t → Xn, such that
for all x1, x2 ∈ X t, x1 6= x2 implies that C(x1) and C(x2) differ in
at least d positions.

■ An element x ∈ X t is encoded as y = C(x) ∈ Xn and transmitted.
During transmission, errors may occur in some positions of y.

■ A (n, t, d)-code can detect at most d− 1 errors.
■ A (n, t, d)-code can correct at most (d− 1)/2 errors.
■ Efficiency is another question, though.

Error-correcting codes

14 / 79

■ An (n, t, d)-code over a set X is a mapping C : X t → Xn, such that
for all x1, x2 ∈ X t, x1 6= x2 implies that C(x1) and C(x2) differ in
at least d positions.

■ An element x ∈ X t is encoded as y = C(x) ∈ Xn and transmitted.
During transmission, errors may occur in some positions of y.

■ A (n, t, d)-code can detect at most d− 1 errors.
■ A (n, t, d)-code can correct at most (d− 1)/2 errors.
■ Efficiency is another question, though.
■ In a linear code, X is a field and C is a linear mapping between

vector spaces X t and Xn.
■ For linear codes, d ≤ n− t + 1.

Reed-Solomon codes

15 / 79

■ Reed-Solomon codes are linear codes over some finite field F.
■ To encode t elements of F as n elements of F, fix n different

elements c1, . . . , cn ∈ F.
■ Interpret the source word (f0, . . . , ft−1) as a polynomial

p(x) =
∑t−1

i=1 fix
i.

■ Encode it as (p(c1), . . . , p(cn)).
■ For Reed-Solomon codes, d = n− t + 1.
■ Hence they can correct up to (n− t)/2 errors.

Decoding Reed-Solomon codes

16 / 79

■ Suppose that the original codeword was (s1, . . . , sn), corresponding
to the polynomial p.

■ But we received (s̃1, . . . , s̃n).

◆ We assume it has at most (n− t)/2 errors.

■ Find the coefficients for polynomials q0 and q1, such that

◆ Degree of q0 is at most (n + t− 2)/2. Degree of q1 is at most
(n− t)/2.

◆ For all i ∈ {1, . . . , n}: q0(ci)− q1(ci) · s̃i = 0.
◆ q0 and q1 are not both equal to 0.

■ Then p = q0/q1.
■ In general, there are more equations than variables, but s̃i are not

arbitrary.

Correctness of decoding

17 / 79

Such polynomials q0, q1 exist:

■ (s1, . . . , sn), (s̃1, . . . , s̃n) — original and received codewords. Let E
be the set of i, where si 6= s̃i. Then |E| ≤ (n− t)/2.

■ Let k(x) =
∏

i∈E(x− ci). Then deg k ≤ (n− t)/2.
■ Take q1 = k and q0 = p · k. Then deg q0 ≤ (n + t− 2)/2.
■ For all i ∈ {1, . . . , n} we have

q0(ci)− q1(ci) · s̃i = k(ci)(p(ci)− s̃i) = k(ci)(si − s̃i) =
{

k(ci)(si − si) = 0, i 6∈ E

0 · (si − s̃i) = 0, i ∈ E

Correctness of decoding

18 / 79

If q0 and q1 satisfy the equalities and upper bounds on degrees, then
p = q0/q1:

■ Let q′(x) = q0(x)− q1(x)p(x). Degree of q′ is at most
(n + t− 2)/2.

■ For each i 6∈ E, q′(ci) = q0(ci)− q1(ci)p(ci) = q0(ci)− q1(ci)s̃i = 0.

◆ 1 ≤ i ≤ n.

■ The number of such i is at least n− (n− t)/2 = (n + t)/2.
■ Thus the number of roots of q′ is larger than its degree. Hence

q′ = 0.
■ q0 − q1 · p = 0.

MPC with no errors

19 / 79

■ The number of corrupted players is at most t− 1 < n/3.
■ To distribute inputs, each party first commits to his input and then

shares the commitment.
■ Shamir’s scheme is used for both committing and sharing.

◆ Hence the commitments are homomorphic.
◆ For a value a, let [a]i denote the commitment of Pi to a. The

commitment is distributed, hence [a]i = ([a]1i , . . . , [a]ni), with Pj

holding the piece [a]ji .

Commitments

20 / 79

We need the following functionalities:

■ Commit: Pi commits to a value a.

◆ [a]i is a sharing of a using (n, t)-secret sharing.
◆ Followed by a proof that the degree of the polynomial is
≤ (t− 1).

■ Open and OpenPrivate: opens a commitment.

◆ Everybody broadcasts his share or sends it privately to the party
that is supposed to open it.

◆ Errors can be corrected.

■ Linear Combination: several commitments of the same party (or
different parties) are linearly combined.

◆ Everybody performs the same combination on the shares he’s
holding.

Commitments

21 / 79

■ Transfer: turns Pi’s commitment [a]i into Pj’s commitment [a]j .
Party Pj learns a.

◆ OpenPrivate a for Pj.
◆ Pj Commits a, giving [a]j.
◆ Find the Linear Combination [a]i − [a]j and Open it; check that

it is 0.

■ Share: applies Shamir’s secret sharing to a committed value [a]i.

◆ Pi generates the values a1, . . . , at−1 and Commits to them.
◆ si = a +

∑t−1
j=1 aji

j. These Linear Combinations of [a]i and
[a1]i, . . . , [at−1]i are computed, resulting in commitments
[s1]i, . . . , [sn]i.

◆ Commitment [sj]i is Transfered to [sj]j.

Commitments

22 / 79

■ Multiply. Given [a]i and [b]i, the party Pi causes the computation of
[c]i, where c = a · b.
◆ Compute c and Commit to it.
◆ Share [a]i and [b]i, giving [sa

1]1, . . . , [s
a
n]n and [sb

1]1, . . . , [s
b
n]n.

■ Let the polynomials be fa and f b.

◆ Let f c(x) = fa(x) · f b(x) = c +
∑2t−2

j=1 cjx
j. Party Pi Commits

to c1, . . . , c2t−2.
◆ Compute [f c(1)]i, . . . , [f

c(n)]i as Linear Combinations of [c]i
and [c1]i, . . . , [c2t−2]i.

◆ OpenPrivate [f c(j)]i to Pj. He checks that sa
j · sb

j = f c(j). If
not, broadcast complaint and Open [sa

j]j, [sb
j]j.

◆ If Pj complains then Pi Opens [f c(j)]i. Either Pi or Pj is
disqualified.

Exercise. Show that if Pi cheats then there will be a complaint.

MPC

23 / 79

■ For each wire, the value on it is shared and the parties have
commitments to those shares.

■ Start: each party Commits to his input and then Shares it.
■ Addition gates: Linear Combination is used to add the shares of

values on incoming wires.
■ Multiplication gates: the shares of the values on incoming wires are

Multiplied together. These products are Shared and those shares are
recombined into the shares of the product, using Linear Combination.

◆ i.e. Gennaro-Rabin-Rabin multiplication is performed on
committed shares.

■ End: the shares of a value that a party is supposed to learn are
Opened Privately to this party.

Commit: proving the degree of a polynomial

24 / 79

■ Pi wants to commit to a value a using a random polynomial f ,
where deg f ≤ t− 1 and f(0) = a. A party Pj learns [a]ji = f(j).

■ Pi has to convince others that f has a degree at most t− 1.

Commit: proving the degree of a polynomial

24 / 79

■ Pi wants to commit to a value a using a random polynomial f ,
where deg f ≤ t− 1 and f(0) = a. A party Pj learns [a]ji = f(j).

■ Pi has to convince others that f has a degree at most t− 1.
■ Pi randomly generates a two-variable symmetric polynomial F , such

that F (x, 0) = f(x) and the degrees of F with respect to x and y
are ≤ (t− 1). I.e.

◆ randomly generate coefficients ckl ∈ F, where 1 ≤ l ≤ k ≤ t− 1;
◆ Let c00 = a. Let ci0 be the coefficient of xi in f .
◆ Let clk = ckl for l ≥ k.
◆ Let F (x, y) =

∑t−1
k=0

∑t−1
l=0 cklx

kyl.

■ Pi sends to Pj the polynomial F (x, j) (i.e. its coefficients). The
share [a]ji of Pj is F (0, j) = F (j, 0) = f(j).

Commit: proving the degree of a polynomial

25 / 79

■ Pj and Pk compare the values F (k, j) and F (j, k). If they differ,
they broadcast a complaint{j, k}.

■ Pi answers to “complaint{j, k}” by publishing the value F (j, k)
(which is the same as F (k, j)).

■ If Pj (or Pk) has a different value then he broadcasts “disqualify Pi”.
■ Pi responds to that by broadcasting F (x, j).
■ All parties Pl check that F (l, j) = F (j, l). If not, broadcast

“disqualify Pi”. Again Pi responds by broadcasting F (x, l), etc.
■ If there are at least t disqualification calls then Pi is disqualified.
■ Otherwise the commitment is accepted and parties update their

shares with the values that Pi had broadcast.

Exercise. Show that if Pi is honest then the adversary does not learn
anything beyond the polynomials F (x, j), where Pj is corrupt.
Exercise. Show that if the commitment is accepted then the shares [a]ji
of honest parties are lay on a polynomial of degree ≤ (t− 1).

Consistency of shares

26 / 79

■ Let B ⊆ {1, . . . , n} be the set of indices of honest parties. We must
show that there exists a polynomial g of degree at most t− 1, such
that g(j) = [a]ji = F (0, j) for all j ∈ B.

■ Let C ⊆ B be the indices of honest parties that did not accuse the
dealer. Exercise. How large must C be?

■ Exercise. Show that for all j ∈ B and k ∈ C we have
F (j, k) = F (k, j) at the end of the protocol.

■ Let rk, where k ∈ C be the Lagrange interpolation coefficients for
polynomials of degree ≤ t− 1. I.e. h(0) =

∑

k∈C
rkh(k) for all such

polynomials h. Exercise. Why do such rk exist?
■ Exercise. Show that g(x) =

∑

k∈C
rk · F (x, k) is the polynomial

we’re looking for.

Consistent broadcast

27 / 79

■ There are n parties P1, . . . , Pn.
■ A party Pi has a message m to broadcast.
■ There are secure channels between each pair of parties.
■ t of the parties (t < n/3) are malicious.
■ All honest parties must eventually agree on a broadcast message and

the sender.

◆ If Pi is honest then all honest parties must eventually agree that
the message m was sent by Pi.

◆ If Pi was malicious then all honest parties must eventually agree
on the same message and a dishonest sender, or that there was
no message.

Protocol for consistent broadcast

28 / 79

■ Assume that a party never sends the same message twice.
■ If Pi wants to broadcast m, it sends (Init, Pi,m) to all other

parties.
■ If a party Pj receives (Init, Pi,m) from party Pi then it sends

(Echo, Pi,m) to all parties (including himself).
■ If a party Pj receives (Echo, Pi,m) from at least t + 1 different

parties, then it sends (Echo, Pi,m) to all parties himself, too.
■ If a party Pj receives (Echo, Pi,m) from at least 2t + 1 different

parties then it accepts that Pi broadcast m.

Exercise. Show that if an honest Pi wants to broadcast m, then all
honest parties have accepted it after two rounds.
Exercise. Show that if the honest party Pi has not broadcast m then no
honest party will accept that Pi has broadcast m.
Exercise. Show that if an honest party accepts that Pi broadcast m,
then all other honest parties will accept that at most one round later.

What have we seen so far?

29 / 79

■ 2-party, computational, semi-honest, constant-round.
■ 2- or n-party, computational, semi-honest(< n), linear-round.
■ n-party, unconditional, semi-honest(< n/2), linear-round.
■ n-party, computational, malicious(< n/2), constant-round.
■ n-party, unconditional (with 2−η chance of failing), broadcast,

malicious(< n/2), linear-round.
■ n-party, unconditional, malicious(< n/3), linear-round.

Not covered yet:

■ 2-party, computational, malicious.
■ n-party, computational, malicious(< n).

What have we seen so far?

30 / 79

■ 2-party, computational, semi-honest, constant-round.
■ 2- or n-party, computational, semi-honest(< n), linear-round.

◆ Linear in . . . of the circuit computing f .
◆ Exercise. Fill the blank.

■ n-party, unconditional, semi-honest(< n/2), linear-round.
■ n-party, computational, broadcast, malicious(< n/2), linear-round.

What have we seen so far?

30 / 79

■ 2-party, computational, semi-honest, constant-round.
■ 2- or n-party, computational, semi-honest(< n), linear-round.

◆ Linear in . . . of the circuit computing f .
◆ Exercise. Fill the blank.

■ n-party, unconditional, semi-honest(< n/2), linear-round.
■ n-party, computational, broadcast, malicious(< n/2), linear-round.

Exercise. How to implement a broadcast channel using only
point-to-point channels in the computational setting, assuming a
malicious adversary that has corrupted less than half of the parties?

What have we seen so far?

30 / 79

■ 2-party, computational, semi-honest, constant-round.
■ 2- or n-party, computational, semi-honest(< n), linear-round.

◆ Linear in . . . of the circuit computing f .
◆ Exercise. Fill the blank.

■ n-party, unconditional, semi-honest(< n/2), linear-round.
■ n-party, computational, broadcast, malicious(< n/2), linear-round.

Exercise. How to implement a broadcast channel using only
point-to-point channels in the computational setting, assuming a
malicious adversary that has corrupted less than half of the parties?

Coming up: n-party, computational, malicious(< n/2), constant-round.

Beaver-Micali-Rogaway’s MPC

31 / 79

■ Recall Yao’s garbled circuits:

◆ P1 coverts the circuit evaluating f to a garbled circuit.
◆ P1 sends to P2 the garbled circuit and keys corresponding to

his(P1) input bits.
◆ P2 obtains the keys corresponding to his input bits using

oblivious transfer.
◆ P2 evaluates the circuit and reports back (to P1) the result.

■ In Micali-Rogaway’s MPC, the garbled circuit and keys corresponding
to all parties’ inputs are produced cooperatively.

◆ All gates can be garbled in parallel — need only constant rounds.

■ After that, all parties evaluate that circuit by themselves.

Rabin’s and Ben-Or’s VSS

32 / 79

(MPC: n-party, unconditional (with small chance of failing), broadcast,
malicious(< n/2), linear-round)

■ An interactive VSS.

◆ Sharing and recovery protocols involve more communication
between parties.

■ Unconditionally secure.
■ Has a small error probability (of the order 2−η), where η is the

security parameter.

◆ Has a flavor of zero-knowledge proofs.

Rabin’s and Ben-Or’s VSS

32 / 79

(MPC: n-party, unconditional (with small chance of failing), broadcast,
malicious(< n/2), linear-round)

■ An interactive VSS.

◆ Sharing and recovery protocols involve more communication
between parties.

■ Unconditionally secure.
■ Has a small error probability (of the order 2−η), where η is the

security parameter.

◆ Has a flavor of zero-knowledge proofs.

■ Let p ∈ P ∩ {n + 1, . . . , 2n}. Let p′ ≥ 2η be a large prime, such that
p | (p′ − 1).

Check vectors

33 / 79

■ A bit like signatures. . .
■ Three parties — Dealer, Intermediary, Recipient.
■ D gives to I the v ∈ Zp′ . I may later want to pass v to R.
■ D is honest.
■ R wants to be sure that the value he received is really v.

Check vectors

33 / 79

■ A bit like signatures. . .
■ Three parties — Dealer, Intermediary, Recipient.
■ D gives to I the v ∈ Zp′ . I may later want to pass v to R.
■ D is honest.
■ R wants to be sure that the value he received is really v.
■ D generates random values b ∈ Z

∗
p′ and y ∈ Zp′ . Let c = v + by.

■ D sends (v, y) to I and (b, c) to R.
■ Later, I sends (v, y) to R who verifies that c = v + by.

Exercise. Security? Can R learn v too soon? Can I send a wrong value
to R? What if there are several R-s (the check vectors are different)?

Honest-dealer VSS

34 / 79

■ D generates random f(x) = v +
∑t−1

i=1 aix
i and sends si = f(i) to

Pi.
■ For each si and Pj, the dealer sends the check vector (bij, cij) to Pj

and the corresponding yij to Pi.
■ To recover v, Pi sends (si, yij) to Pj (for all i and j). The parties

verify the check vectors. To reconstruct v, they use those shares that
passed verification.

Check vectors with malicious dealer

35 / 79

■ If D is dishonest then the proof y sent to I might not match the
check vector (b, c) sent to R.

■ I, when receiving (v, y), wants to be sure that R will accept his
(v, y) afterwards.

Check vectors with malicious dealer

35 / 79

■ If D is dishonest then the proof y sent to I might not match the
check vector (b, c) sent to R.

■ I, when receiving (v, y), wants to be sure that R will accept his
(v, y) afterwards.

■ D will generate 2η check vectors (b1, c1), . . . , (b2η, c2η) and send
them to R. He sends the corresponding values y1, . . . , y2η to I.

■ I randomly chooses η indices i1, . . . , iη and sends them to R.

◆ Let ĩ1, . . . , ĩη be the other η indices.

■ R sends (bi1 , ci1), . . . , (biη , ciη) to I.
■ R verifies that cij = v + bijyij for all j. If all checks out, then I

thinks that R will accept.
■ Later, I sends (v, yĩ1

, . . . , yĩη
) to R. R verifies all remaining check

vectors. He accepts if at least one check vector is correctly verified.

Check vectors with malicious dealer

35 / 79

■ If D is dishonest then the proof y sent to I might not match the
check vector (b, c) sent to R.

■ I, when receiving (v, y), wants to be sure that R will accept his
(v, y) afterwards.

■ D will generate 2η check vectors (b1, c1), . . . , (b2η, c2η) and send
them to R. He sends the corresponding values y1, . . . , y2η to I.

■ I randomly chooses η indices i1, . . . , iη and sends them to R.

◆ Let ĩ1, . . . , ĩη be the other η indices.

■ R sends (bi1 , ci1), . . . , (biη , ciη) to I.
■ R verifies that cij = v + bijyij for all j. If all checks out, then I

thinks that R will accept.
■ Later, I sends (v, yĩ1

, . . . , yĩη
) to R. R verifies all remaining check

vectors. He accepts if at least one check vector is correctly verified.
■ Exercise. What is the probability that R rejects, although I thought

he would accept?
■ Exercise. What is the probability that R will accept a value

different from v?

Verified-at-the-end VSS

36 / 79

■ In Verified-at-the-end VSS, a malicious dealer is caught during the
recovery protocol.

■ Also, the dealer cannot change his mind after the sharing protocol.
■ The sharing protocol has two phases:

◆ Sharing the secret.
◆ Verifying the check vectors.

Sharing the secret

37 / 79

■ Dealer randomly generates the polynomial f(x) = v +
∑t−1

j=1 aix
i and

sends the share si = f(i) to each Pi.
■ Dealer generates the check vectors (bij, cij) and the proofs yij for

si. Sends the vector to Pj and proof to Pi.

◆ Each of bij, cij, yij is actually a 2η-tuple of elements of Zp′ .

Verifying the check vectors

38 / 79

■ Pi wants to know whether Pj will accept his proof yij .
■ On the broadcast channel Pi asks Pj to publish η components of the

check vector (bij, cij). Components are chosen by Pi.
■ Pj does so (on broadcast channel).
■ The dealer has two options:

◆ Broadcast “I approve”.
◆ Broadcast a new (bij, cij) and send the corresponding new yij

privately to Pi.

■ Party Pi verifies the (received components of) the check vector.

◆ If OK, move on to Pj+1.
◆ If not OK, ask the dealer to broadcast si. Do not move on.

■ The value broadcast by dealer is taken as si by all parties.

Exercises

39 / 79

■ Show that this part of the protocol does not expose data that is not
known to dishonest parties (except for halves of check vectors).

■ At this point, let a coalition be a set of parties C ⊆ {P1, . . . , Pn},
such that for all P, P ′ ∈ C, party P knows that P ′ will accept his
share during recovery. Show that there is a coalition containing all
honest parties.

◆ A broadcast share is always accepted.

Recovery protocol

40 / 79

■ D broadcasts the (coefficients of the) polynomial f .
■ Each Pi sends to each Pj his share si and the proof yij .

◆ If the share si was broadcast then Pi does nothing.

■ Each Pi verifies each received (sj,yji) with respect to the check
vector (bji, cji) that he has.

■ Each Pi verifies whether f(j) = sj for each share sj that he
accepted on the previous step.

■ If this check succeeds for all accepted sj, then Pi takes f(0) as the
secret v.

■ If this check does not succeed for some accepted sj then Pi

broadcasts “dealer is malicious”.
■ A dealer whose maliciousness gets at least t votes is disqualified.

Exercises

41 / 79

■ Show that all honest parties will arrive at the same value of the
secret v.

■ Show that an honest dealer is not disqualified.

Unconditionally secure VSS

42 / 79

■ Here, during the dealing protocol, the dealer gives zero-knowledge
proof that f has degree at most ≤ t− 1.

■ In the beginning, D sends out the shares si as always.

◆ No check vectors are necessary.

■ Each Pi will use (n, t)-Verified-at-the-end VSS to share si. After
that, each honest party Pi will have

◆ His share si.
◆ A polynomial f i of degree at most t− 1, such that f i(0) = si.
◆ The share βj

i of sj at point i. If Pj is honest then βj
i = f j(i).

◆ A check vector (bj
ki, c

j
ki) allowing Pi to verify that the share βj

k

is a correct share of sj for party Pk.
◆ A proof y

j
ik allowing Pi to prove to Pk that his share βj

i is a
correct share of sj for party Pi.

◆ Belief that all other parties accept the shares βj
i that he is

holding. (Everybody will accept βj
i if it has been broadcast.)

The ZK proof

43 / 79

■ Dealer picks a random polynomial f of degree ≤ t− 1.
■ Dealer sends si = f(i) to Pi.
■ Each Pi will use (n, t)-Verified-at-the-end VSS to share si. After

that, each honest party Pi will have f i, βj
i , (bj

ki, c
j
ki), y

j
ik.

■ Each Pi also shares si = si + si using the polynomial f i = f i + f i.

◆ The check vectors (bj
ki, c

j
ki) and proofs y

j
ik are independently

created and verified.

■ One of the parties Pi (chosen in round-robin manner) asks the dealer
to reveal either f or f = f + f .

■ Dealer reveals f . Each Pi checks whether f(i) = si.

◆ If unsatisfied, asks the dealer to broadcast si and si.
◆ Dealer complies. Each Pj checks that f(i) = si.

■ For each i, the parties run the recovery protocol of
Verified-at-the-end VSS for si shared with f i. Each Pj checks if
si = f(i). If not, disqualify Pi.

Exercises

44 / 79

■ Show that no data unknown to the adversary is broadcast.
■ Show that an honest party is not disqualified.
■ Show that after O(η) rounds, all values si that have been broadcast

or that are held by still qualified players lay on the same polynomial
of degree at most t− 1.

Recovery of v

45 / 79

■ The recovery protocols of Verified-at-the-end VSS are run for still
hidden shares si.

■ These shares are used to reconstruct f .

The VSS has the following properties:

■ If the dealer is honest then he won’t be disqualified.
■ After the ZK proof (all rounds of which can be run in parallel), the

secret value v has been uniquely determined for all honest parties.

◆ It is also determined whether the recovery protocol will produce
a v or not.

◆ The dealer will not be disqualified during the recovery.

Summary

46 / 79

■ The secret is shared with Shamir’s scheme.
■ Each share is shared with Shamir’s scheme.
■ Each share2 created by Pi for Pj has check vectors for each Pk.
■ Pj is sure that Pk will accept this check vector.
■ A ZK-style proof is given that the shares lay on a polynomial of

degree at most ≤ (t− 1).

◆ A random polynomial of degree ≤ (t− 1) is generated and
shared and shared2 together with check vectors.

◆ Either the random polynomial or (original+random) polynomial
is opened.

◆ The check vectors are used to catch malicious parties Pi.
◆ Comparision of shares and opened polynomial is used to catch

malicious D.

■ During the recovery, D does not matter any more.

MPC with Rabin’s and Ben-Or’s VSS

47 / 79

■ For each wire, the value it is carrying is distributed using the VSS.
■ The inputs are shared using the VSS. The outputs are recovered

using the VSS.
■ Adding two wires (v = v + v):

◆ si = si + si. f i = f i + f i. βj
i = βj

i + βj
i .

◆ Pi sends to Pk the new check vector (bi
jk, c

i
jk) and to Pj the

corresponding proof yi
jk. Pj verifies that Pk will accept this

proof for βi
j.

◆ Exercise. Why not reuse the existing check vectors?

■ Multiplying with a constant (v = cv):

◆ si = csi. f i = cf i. βj
i = cβj

i .
◆ b

j
ki = c · bj

ki. c
j
ki = c · cj

ki. y
j
ik = y

j
ik.

■ Recall that c
j
ik[z] = βj

i + b
j
ik[z] · yj

ik[z].

Multiplication (v = v · v)

48 / 79

■ Verified-at-the-end sharings of si and si are extended to fully verified
sharings.

◆ All shares2 βj
i and βj

i are shared using the verified-at-the-end
sharing scheme, giving us shares3 γji

k and γji
k and corresponding

check vectors and proofs.
◆ ZK-proof is given that all shares βi

j lay on a polynomial of
degree at most t− 1.

■ Presumably, this polynomial is f i.

◆ Same for β and f .

■ Each party Pi shares si = si · si using full VSS.
■ Each party Pi proves in ZK that si = si · si.

◆ Next slides. . .

■ v is computed as a suitable linear combination of s1, . . . , sn.

Proving that v = v

49 / 79

■ The dealer has shared v and v.
■ Use MPC to compute v − v.
■ Recover the shared value. Check that it is 0.

Proving that v = v · v

50 / 79

■ Recall that we compute in a field Zp, where n < p ≤ 2n (except
check vectors).

■ The dealer has shared v, v and v.
■ The dealer shares the entire multiplication table of Zp.

◆ Let T = {(x, y, z) |x, y ∈ Zp, z = xy}.
◆ Let (x1, y1, z1), . . . , (xp2 , yp2 , zp2) be randomly permuted T.
◆ Dealer shares all xi, yi, zi using full VSS.

■ One of the Pi (chosen by round-robin) requests one of:

◆ Open the entire table. Everybody checks that it was indeed the
multiplication table of Zp.

◆ Show the line (v, v, v). The dealer names i ∈ {1, . . . , p2} and
proves that v = xi, v = yi, v = zi.

Components of Rabin’s and Ben-Or’s MPC

51 / 79

Shamir’s

scheme

Check

vectors

Cut

and

choose
VatE SS

C.V.

accept

proofs
VSS

Proof of

share

validity

ZK

Add

shared

values

Const.mult

shared

values

Shared

value

equality

proof

Lin.combs.

of shared

values

MPC

Multiply

shared

values

Shared

value

product

proof

Homomorphic encryption systems

52 / 79

■ Let (K,E,D) be an IND-CPA-secure public-key encryption system.
Let the plaintext space R be a ring.

■ (K,E,D) is homomorphic, if there exist efficient algorithms

◆ to compute Ek(a + b) from Ek(a) and Ek(b);
◆ to compute Ek(ca) from Ek(a) and c ∈ R.

Paillier’s cryptosystem

53 / 79

■ Let p and q be large primes. Let N = pq. Then Z
∗
N2
∼= G×H where

◆ G is a cyclic group of order N .
◆ H ∼= Z

∗
N .

■ Then Ḡ = Z
∗
N2/H is also cyclic of order n. Let ā ∈ Ḡ be the coset

of a ∈ Z
∗
N2.

■ 1 + N generates Ḡ and (1 + N)i ≡ 1 + iN (mod N2).
■ Let λ = lcm(p− 1, q − 1). Then bλ = 1 for any b ∈ Z

∗
N .

■ For any a ∈ Z
∗
N2 , there are i ∈ ZN and h ∈ H, such that

a ≡ (1 + N)ih (mod N2).
■ aλ = (1 + N)iλ · hλ ≡ (1 + N)iλ ≡ 1 + (iλ mod N)N (mod N2).
■ Let L(x) = (x− 1)/N . Then log1+N ā = L(aλ)/λ (in Ḡ).
■ If g ∈ Z

∗
N2 then let j = log1+N ḡ.

◆ Then logḡ ā = (log1+N ā) · j−1 mod N .

Paillier’s cryptosystem

54 / 79

■ Generate p, q, public key is N, g, where g ∈R Z
∗
N2 .

■ Private key: λ = lcm(p− 1, q − 1), j = log1+N ḡ.
■ To encrypt m ∈ ZN pick a random r ∈ Z

∗
N2 and set

c = E(m; r) = gmrN mod N2 .

■ Decryption: m = L(cλ mod N2) · j−1 mod N .

MPC from threshold homomorphic

cryptosystem

55 / 79

■ Assume that the keys have been distributed:

◆ everybody knows pk ;
◆ each party Pi knows his secret key share sk i.
◆ At least t parties out of n must help to decrypt.

■ The function f is represented by a circuit of addition, scalar
multiplication, and multiplication gates.

■ A value v on a wire is represented by Epk(m).

◆ All parties know Epk (m).
◆ Sharing of an input: encrypt it and broadcast the result.
◆ Opening an output: at least t parties help to decrypt the value

on output wire.

■ Addition and scalar multiplication — every party performs the
operation with the encrypted value(s) by itself.

Multiplying a and b

56 / 79

■ Let Epk(a) and Epk(b) be known to everybody.
■ Each party Pi chooses a random di ∈ ZN .
■ Pi broadcasts Epk(di) and Epk(dib).
■ Everybody computes Epk(a +

∑n
i=1 di).

■ This ciphertext is decrypted, everybody learns a +
∑n

i=1 di.
■ Everybody computes Epk((a +

∑n
i=1 di) · b−

∑n
i=1 dib).

■ This protocol can be made secure against malicious adversaries.

Threshold RSA

57 / 79

■ n parties, at least t needed to decrypt.
■ Primes p, q, public modulus N = pq, public exponent e, secret

exponent d = e−1 mod φ(N).
■ A dealer chooses all of those values.

◆ Let e be a prime that is larger than n.

■ The dealer shares d using Shamir’s t-out-of-n secret sharing, working
in Zφ(N). It sends the i-th share si to the party Pi.

◆ For any set C ⊆ {1, . . . , n}, where |C| = t, there exist
coefficients r̃C

i , such that d =
∑

i∈C
r̃C

i si.

■ not sure about this. . .

◆ But finding such r̃C

i requires the knowledge of φ(N).
◆ There are public coefficients rC

i , such that n! · d =
∑

i∈C
rC

i si.

Public coefficients

58 / 79

The points (i, si), i ∈ C can be interpolated in Z:

f(k) =
∑

i∈C

si

∏

j∈C,j 6=i

k − j

i− j
.

Hence n! · f(0) =
∑

i∈C
rC

i si where

rC

i = n! ·
∏

j∈C\{i}(−j)
∏

j∈C\{i}(i− j)

The numbers rC

i are integers because denominator divides n!.

The same equality n! · f(0) =
∑

i∈C
rC

i si holds in Zφ(N).

Decryption

59 / 79

■ Publicly decrypting me = c ∈ ZN : each party Pi publishes
mi = csi mod N .

■ Given a set of plaintext shares mi, where i ∈ C, compute c′ by

c′ =
∏

i∈C

m
rCi
i .

■ c′ = mn!. As n! ⊥ e, there exist (public) coefficients a, b ∈ Z, such
that ae + b(n!) = 1.

■ Compute m = ca + c′b.
■ Threshold Paillier is doable in the same way.

Threshold Paillier

60 / 79

■ Generate N as for RSA. Let λ be shared among parties.

◆ Also let p ≡ q ≡ 3 (mod 4).

■ λ = 2µ where µ is odd. Let d be such that

◆ d ≡ 0 (mod µ);
◆ d ≡ j−1 (mod N).

then (write g = (1 + N)jh for some h ∈ H)

c2d = (1 + N)2jmd(hmrN)2d = (1 + N)2jmd mod N =

(1 + N)2m = 1 + 2mN (mod N2)

and m can be found from it using only public knowledge.

Distributed generation of RSA keys

61 / 79

■ Boneh-Franklin scheme: two parties Alice and Bob, and a helper,
Henry.

■ Alice randomly picks pa, qa, Bob randomly picks pb, qb.
■ Using secure computation (next slides)

◆ Define p = pa + pb, q = qa + qb.

■ p and q are not uniformly distributed, but still have large
entropy.

◆ Do trial division for p and q with small primes.
◆ Compute N = pq and broadcast it.

■ Test that N is a product of two primes.
■ Generate public exponent and shares of private exponent.

Testing that N is product of two primes

62 / 79

■ Let N = pq where p ≡ q ≡ 3 (mod 4).

◆ p = pa + pb, q = qa + qb, Alice knows pa and qa, Bob knows pb

and qb.
◆ pa ≡ qa ≡ 3 (mod 4), pb ≡ qb ≡ 0 (mod 4).

■ Alice and Bob agree on a random g ∈ Z
∗
N , such that

(
g
N

)
= 1.

■ Alice computes va = g(N−pa−qa+1)/4. Bob computes vb = g(pb+qb)/4.
■ Alice and Bob compare va and vb. If va ≡ ±vb (mod N) then

“success” else “fail”.

◆ Note that the test checks whether g(N−p−q+1)/4 ≡ ±1 (mod N).

Theorem. The preceeding algorithm is “almost Monte-Carlo”: for all
but negligible fraction of non-RSA-moduli N , the probability of getting
“fail” is at least 1/2. But if N is an RSA-modulus, then the test always
outputs “success”.

If p and q are prime

63 / 79

■ Then g(N−p−q+1)/4 = gϕ(N)/4 = g
p−1

2
· q−1

2

■ g
p−1

2
· q−1

2 = (g
p−1

2)
q−1

2 ≡
(

g
p

) q−1

2 =
(

g
p

)
(mod p)

◆ Because q−1
2

is odd and
(

g
p

)
∈ {−1, 1}.

■ Similarly, g
p−1

2
· q−1

2 ≡
(

g
q

)
(mod q).

■
(

g
p

)
=

(
g
q

)
because

(
g
n

)
= 1.

■ Hence g
p−1

2
· q−1

2 mod n equals
(

g
p

)
and

(
g
q

)
.

If p or q is composite

64 / 79

■ Let e = (N − p− q + 1)/4 and

G = {g ∈ Zn |
(

g

n

)

= 1}

H = {g ∈ G | ge ≡ ±1 (mod N)}

Both G and H are subgroups of Z
∗
N and H ≤ G.

■ We show that almost always there is a g ∈ G\H, i.e. |H| < |G|. As
|H| | |G|, the group G has a least twice as many elements as H.

■ Let N = rd1

1 · · · rds
s be a non-trivial factorization of N with s ≥ 1

and
∑

di ≥ 3.
■ Note that e is odd.

If s ≥ 3

65 / 79

■ N = rd1

1 · rd2

2 · rd3

3 · · · where r1, r2 and r3 are different.
■ Let a be a quadratic non-residue modulo r3.
■ Let g ∈ Z

∗
N satisfy

◆ g ≡ 1 (mod r1)
◆ g ≡ −1 (mod r2)
◆ g ≡ 1 (mod r3) if

(
−1
r2

)
= 1

◆ g ≡ a (mod r3) if
(
−1
r2

)
= −1

◆ g ≡ 1 (mod ri) for i ≥ 4.

■ Then
(

g
N

)
= 1

■ ge ≡ 1 (mod r1) and ge ≡ −1 (mod r2). Hence ge 6≡ ±1
(mod N).

If gcd(p, q) > 1

66 / 79

■ Let r ∈ P be such that r | p and r | q. Then r2 | N and r | ϕ(N).
■ Z

∗
N contains an element g of order r.

■
(

g
N

)
=

(
g
n

)r
=

(
gr

N

)
=

(
1
N

)
= 1, i.e. g ∈ G.

■ r | p, r | q, r | N . Hence r 6 | N − p− q + 1 = 4e.
■ g4e 6≡ 1 (mod N). ge 6≡ ±1 (mod N). g 6∈ H.

The remaining case

67 / 79

■ p = rd1

1 , q = rd2

2 , r1 6= r2, r1, r2 ∈ P, d1 + d2 ≥ 3. W.l.o.g. d1 ≥ 2.
■ Z

∗
p is cyclic. |Z∗

p| = rd1−1
1 (r1 − 1).

■ Let g′ ∈ Z
∗
p have order rd1−1

1 .
■ Let g ∈ Z

∗
N , g ≡ g′ (mod p), g ≡ 1 (mod q).

■ The order of g is rd1−1
1 .

■
(

g
N

)
=

(
g
n

)r
d1−1

1 =
(

gr
d1−1

1

N

)
=

(
1
N

)
= 1, i.e. g ∈ G.

■ If q 6≡ 1 (mod rd1−1
1) then:

■ rd1−1
1 6 | N − p− q + 1 = 4e

■ g4e 6≡ 1 (mod N). ge 6≡ ±1 (mod N). g 6∈ H.

If q ≡ 1 (mod rd1−1
1) then

68 / 79

■ The group H might actually be equal to G.
■ Probabilities (note that p and q are independent quantities):

◆ Pr[q ≡ 1 (mod rd1−1
1)] ≤ 1/rd1−1

1 ≤ 1/
√

p ≤ 2−n/2 where n is
the bit-length of p and q.

◆ Pr[p is a prime power] ≤ n/2n/2.

The probability of both happening is less than n/2n.

Multiplying p and q

69 / 79

■ Let P > N be some prime. We work in ZP .
■ Fix xa, xb, xh ∈ Z

∗
P as distinct non-zero elements.

■ Alice generates ca 6= 0, da 6= 0, pb,a, qb,a, r1, r2 ∈ ZP .
■ Alice computes pa,i = caxi + pa, qa,i = daxi + qa, ri = r1xi + r2x

2
i ,

Na = (pa,a + pb,a)(qa,a + qb,a) + ra.
■ Alice sends pa,b, qa,b, pb,a, qb,a, rb to B and pa,h, qa,h, rh, Na to H.
■ Bob computes cb = (pb,a − pb)/xa, db = (qb,a − qb)/xb,

pb,i = cbxi + pb, qb,i = dbxi + qb, Nb = (pa,b + pb,b)(qa,b + qb,b) + rb.
■ Bob sends pb,h, qb,h, Nb to Henry.
■ Henry computes Nh = (pa,h + pb,h)(qa,h + qb,h) + rh.
■ Henry finds a quadratic polynomial α passing through (xa, Na),

(xb, Nb), (xh, Nh).
■ α(0) = N . Henry broadcasts it.

Trial division

70 / 79

■ Consider a number q = qa + qb. Let p be a small prime. Alice and
Bob want to know whether q ≡ 0 (mod p).

■ Equivalently: whether qa ≡ −qb (mod p).
■ Alice picks (c, d) ∈ Z

∗
p × Zp. Sends (c, d) to Bob and

(cqa + d) mod p to Henry.
■ Bob sends (−cqb + d) mod p to Henry.
■ Henry outputs whether the values received from Alice and Bob were

the same or not.

Shares of private exponent

71 / 79

■ If public exponent e = 3 then d equals

◆ (ϕ(N) + 1)/3 = (N − (pa + pb)− (qa + qb) + 2)/3 if
ϕ(N) ≡ 2 (mod 3);

◆ (2ϕ(N) + 1)/3 = 2(N − (pa + pb)− (qa + qb))/3 + 1 if
ϕ(N) ≡ 1 (mod 3).

◆ (if ϕ(N) ≡ 0 (mod 3) then e cannot be 3)

■ Alice broadcasts (pa + qa) mod 3. Bob broadcasts (pb + qb) mod 3.
Now everybody knows ϕ(N) mod 3.

◆ Everybody also learned ≤ 2 bits of information about p and q.
◆ That’s too little to worry about.

■ Alice and Bob distribute the expression for d.

◆ Alice gets da, Bob gets db, such that da + db = d.

Arbitrary public exponent e ⊥ ϕ(N)

72 / 79

■ Let ϕa = N − pa − pb + 1, ϕb = −pb − qb. Then ϕ(N) = ϕa + ϕb.
■ Alice picks ra ∈ Ze. Bob picks rb ∈ Ze.
■ With help of Henry compute Ψ = (ra + rb)(ϕa + ϕb) mod e. If

Ψ 6⊥ e then start over.
■ Alice computes ζa = raΨ

−1 mod e. Bob computes
ζb = rbΨ

−1 mod e.

◆ ζ = ζa + ζb = (ra + rb)Ψ
−1 ≡ ϕ(N)−1 mod e.

Arbitrary public exponent e ⊥ ϕ(N)

73 / 79

■ Let P > 2N2e be an odd integer.
■ With help of Henry compute

A + B = −(ζa + ζb)(ϕa + ϕb) + 1 mod P . Alice knows A, Bob
knows B, A alone or B alone is random.

■ If 0 ≤ A,B < P then (A + B) mod P ∈ [0, P/N). With probability
≥ 1− 1

N
we have A + B ≥ P .

■ If Alice does A← A− P then A + B = −(ζa + ζb)(ϕa + ϕb) + 1
holds in integers.

■ A + B = −(ζa + ζb)(ϕa + ϕb) + 1 ≡ −(ϕa + ϕb)
−1(ϕa + ϕb) + 1 = 0

(mod e).
■ We can pick d = (A + B)/e. Alice sets da = ⌊A/e⌋. Bob sets

db = ⌈B/e⌉.

More than two parties

74 / 79

■ Primality testing, multiplication, inverting e generalize.
■ Trial division:

◆ Let q = q1 + · · ·+ qk be the candidate prime. Let p be a small
prime.

◆ Generate shares of r = (r1 + · · ·+ rk) mod p. Compute and
publish qr mod p.

■ If qr mod p 6= 0 then p does not divide q.
■ If qr mod p = 0 then p divides q or r ∈ Zp is zero.

◆ Do several trials to make the second case unlikely.

■ qr mod p does not give any information about a good q.

■ This gives k-out-of-k sharing of d. Can be converted to t-out-of-k
sharing.

Proactive secret sharing

75 / 79

■ Let D be a secret that is distributed with Shamir’s secret sharing
scheme, using the polynomial f◦ of degree ≤ t− 1.

■ Recomputing shares: change the polynomial to f• with
f◦(0) = f•(0) in a random manner.

■ Passive adversary:

◆ each party Pi generates a random polynomial hi with zero free
term; sends hi(j) to Pj.

◆ parties add the values they got to their current shares.
◆ Thus f• = f◦ + h1 + · · ·+ hn.

■ Active adversaries: use VSS. Only use h-s from honest parties.
■ A party relieved from adversarial control needs to be repaired.

◆ To repair Pr, construct a polynomial f• + h where h is a random
polynomial with h(r) = 0.

◆ Send to Pr the shares corresponding to that polynomial.

Applications of homomorphic encryption

76 / 79

■ e-voting
■ oblivious transfer
■ auctions
■ things for privacy-preserving data mining

◆ Exercise. Alice has a vector (a1, . . . , an). Bob has a vector
(b1, . . . , bn). How do they compute the scalar product of those
vectors without revealing them?

OT with homomorphic encryption

77 / 79

■ Bob has a database (b1, . . . , bm). Alice has an index i ∈ {1, . . . ,m}.
■ Let the set of plaintexts be a group G of order q ∈ P.

◆ I.e. use ElGamal. Let g be the generator, let b1, . . . , bm ∈ G.

■ Alice generates keys. Sends public key, c = E(gi;R) to Bob.
■ Bob computes cj = (c/E(gj;R))rj · E(bj;R) for each j ∈ {1, . . . ,m}

and r1, . . . , rm are randomly chosen from Zq. Sends them all to
Alice.

■ Alice recovers bj = D(cj).

Auctions

78 / 79

■ Consider sealed-bid auctions. Let B1 < B2 < · · · < Bk be the
possible bids.

■ Let auction authority’s public key be known.
■ To bid Bbi

, the i-th bidder Pi sets the bid vector

bi = (0, . . . , 0
︸ ︷︷ ︸

bi−1

, Y, 0, . . . , 0
︸ ︷︷ ︸

k−bi

)

where Y 6= 0 is a fixed element.
■ Pi encrypts bi componentwise, publishes it, and proves in ZK that it

has the correct form.
■ Define

b′
i = (Y, . . . , Y

︸ ︷︷ ︸

bi

, 0, . . . , 0
︸ ︷︷ ︸

k−bi

),b′′
i = (Y, . . . , Y

︸ ︷︷ ︸

bi−1

, 0, . . . , 0
︸ ︷︷ ︸

k−bi+1

),

■ Everybody can compute encryptions of b′
i,b

′′
i from encryption of bi.

Auctions

79 / 79

■ Find
∑

i b
′
i +b′′

i . How does its structure reflect the structure of bids?

◆ Disregard several parties bidding the same value.

■ Everybody can compute that sum in encrypted form.
■ If we want to find the M -th highest bidder, we subtract

(2M − 1)Y (1, 1, . . . , 1) from that sum. Let c be the resulting
vector.

■ Let b′′′
i = (0, . . . , 0

︸ ︷︷ ︸

bi

, Y, . . . , Y
︸ ︷︷ ︸

k−bi

).

■ Party Pi gets the rerandomized encryption of c + 2Mb′′′
i .

◆ It has a 0 component only if Pi was among winners. The
position of 0 shows the winning price.

	Unconditionally secure MPC
	Semi-honest adversary
	Multiplying shared secrets
	Gennaro-Rabin-Rabin multiplication protocol
	Gennaro-Rabin-Rabin multiplication protocol
	Over half of the parties must be honest
	Exercise
	Exercise
	What have we seen so far?
	Malicious model --- security definition
	Malicious model --- security definition
	Malicious model --- security definition
	Error-correcting codes
	Reed-Solomon codes
	Decoding Reed-Solomon codes
	Correctness of decoding
	Correctness of decoding
	MPC with no errors
	Commitments
	Commitments
	Commitments
	MPC
	Commit: proving the degree of a polynomial
	Commit: proving the degree of a polynomial
	Consistency of shares
	Consistent broadcast
	Protocol for consistent broadcast
	What have we seen so far?
	What have we seen so far?
	Beaver-Micali-Rogaway's MPC
	Rabin's and Ben-Or's VSS
	Check vectors
	Honest-dealer VSS
	Check vectors with malicious dealer
	Verified-at-the-end VSS
	Sharing the secret
	Verifying the check vectors
	Exercises
	Recovery protocol
	Exercises
	Unconditionally secure VSS
	The ZK proof
	Exercises
	Recovery of v
	Summary
	MPC with Rabin's and Ben-Or's VSS
	Multiplication (magentav=redvbluev)
	Proving that redv=bluev
	Proving that magentav=redvbluev
	Components of Rabin's and Ben-Or's MPC
	Homomorphic encryption systems
	Paillier's cryptosystem
	Paillier's cryptosystem
	MPC from threshold homomorphic cryptosystem
	Multiplying a and b
	Threshold RSA
	Public coefficients
	Decryption
	Threshold Paillier
	Distributed generation of RSA keys
	Testing that N is product of two primes
	If p and q are prime
	If p or q is composite
	If s3
	If gcd(p,q)>1
	The remaining case
	If q18mu(mod6mur1d1-1) then
	Multiplying p and q
	Trial division
	Shares of private exponent
	Arbitrary public exponent e(N)
	Arbitrary public exponent e(N)
	More than two parties
	Proactive secret sharing
	Applications of homomorphic encryption
	OT with homomorphic encryption
	Auctions
	Auctions

