
Cryptographic protocols
(MTAT.07.014, 4 AP / 6 ECTS)

Lectures and Mon 12-16 hall 404 ! 315

Exercises: Tue 12-14 hall 403

Wed 10-12 hall 405

homepage:

http://www.ut.ee/~peeter_l/teaching/krprot09s

(contains lecture materials)

Grading: Home exercises and exam in January.

� Cryptology I was mostly about primitives.

– (A)symmetric encryption, signatures, MACs, hash

functions, etc.� To achieve the security goals of systems, several of

them have to be used together.� This gives us protocols.� It’s quite easy to use the primitives in the wrong way.� This makes the protocols insecure, although the prim-

itives themselves might have been secure.

� Example: Alice and Bob want to set up a private chan-

nel between themselves.� They know each other’s public keys KA and KB.� Alice generates a new key KAB of some symmetric en-

cryption system.� Alice sends KAB to B, encrypted with KB.A �! B : f[KAB℄gKB� Bob decrypts and learns KAB.� Alice and Bob use KAB to encrypt messages between

each other.

– Assume it also provides integrity.

� Who sent the key to Bob?

– Alice did. . .

– Include Alice’s name in the message:A �! B : f[A;KAB℄gKB� When was it sent?

– consider replay attacks.

– The adversary may somehow know the old session

keys.

� Include a timestamp to the message:A �! B : f[A; T;KAB℄gKB� B must check that T is not far off.� How do A and B synchronize their clocks?� What if the attacker takes over B’s NTP server?

� Better: include a nonce in the message:A �! B : f[A;N;KAB℄gKB

– Nonce � random bit-string.� B must check that it has not received that N before.

� B has to store all N -s it receives. . .

– What if his hard drive fails?� The attacker may

1. not deliver the message f[A;N;KAB℄gKB ;

2. wait until it learns KAB;

3. deliver f[A;N;KAB℄gKB .

� B needs to know that A sent that message recently.� B must answer to A and then A must answer to B.A�!B : f[A;N;KAB℄gKBB�!A : f[???℄gKAA�!B : f[???℄gKB

� 2nd and 3rd message have to mention N .A�!B : f[A;N;KAB℄gKBB�!A : f[N ℄gKAA�!B : f[N ℄gKB� A must verify that it sent N recently.� B must do the same verification after 3rd message.� What replay possibilities are there?

� B needs a nonce, too.A�!B : f[A;NA;KAB℄gKBB�!A : f[NA; NB℄gKAA�!B : f[NA; NB℄gKB

� Assume now that Alice wants to talk to Charlie:A �! C : f[A;NA;KAC ℄gKC� But Charlie is bad. . .C(A) �! B : f[A;NA;KAC ℄gKB� Bob responds, thinking that Alice is talking to him:B �! C(A) : f[NA; NB℄gKA� Charlie simply forwards that message:C �! A : f[NA; NB℄gKA

� Alice decrypts that pair of nonces for Charlie:A �! C : f[NA; NB℄gKC� and Charlie can respond to Bob:C(A) �! B : f[NA; NB℄gKB� Now Bob thinks that it shares the key KAC with Alice,

but Charlie also knows that key.

� B’s answer must contain his name:A�!B : f[A;NA;KAB℄gKBB�!A : f[NA; NB; B℄gKAA�!B : f[NA; NB℄gKB� Is this protocol secure? Maybe. . .� Are all its parts necessary?

– Do we need all components of all messages?

– Does everything have to be under encryption?

Probably not.

More fundamental questions?� What is the security property?� What did this A �! B : M actually mean? Or:� What is the execution model?

– What data and control structures do the parties

use?

– How are the messages relayed?

– How are the parties scheduled?

– Where is the adversary?� How are the parties corrupted and the keys leaked?

We do not need answers to all of these questions as long

as we are just showing attacks against protocols.

Following the formalisms in Cryptology I:� Each party is an implementation of some interface. It

has methods for

– starting a session;

– receiving a message and producing and answer;

– maybe something more.� The adversary has a method “run” that takes all par-

ticipants as its arguments.

– More generally: there is an environment with a

method “run” that takes both the participants and

the adversary as arguments.

– The implementation of this environment is fixed.

This defines the scheduling and the relaying of mes-

sages.

� The security property is an environment inside which

the adversary (together with the participants) is run.� In the more general case, we can augment the environ-

ment to also check whether the security property still

holds.� Then we can talk about probabilities that b = b�, or

that bad is set to true.� We can analyse the protocols by doing transforma-

tions. . . or in any other way.

– We’ll definitely meet the hybrid argument some-

where in this course.

A

P1 P2 P3 P4
P5

Init

Secrets

A

P1 P2 P3 P4
P5

Init

Secrets

... = AResponder = P4Initiator = P2Start session 172

A

P1 P2 P3 P4
P5

Init

Secrets

session 53
msg. 3 is T

A

P1 P2 P3 P4
P5

Init

Secrets

give me
msg. 4

of session 13
M

A
Env

P1 P2 P3 P4
P5

Init

Secrets b

b�

� Such analysis may be hard. . .

– but we’ll be rewarded with rigorous security proofs.� But, intuitively, what are the things that an adversary

may do?

� Capture messages sent by one party to another.

– Learn the intended sender and recipient.� Send a message it has constructed to any party.

– . . . faking the sender.� Generate new keys, nonces, . . .� Construct new messages from the ones its has.

– Only applying “legitimate” constructors.

– Because everything else will be weeded out by other

parties. . .� Decompose tuples. Decrypt if it knows the key.

The adversary cannot do things like:� Learn anything about M from f[M ℄gK .� Transform fM1gK ; : : : ; fMngK to fM 0gK forM 0 related
to M1; : : : ;Mn, not knowing the key K.� . . . or construct any fMgK without knowing K at all.

Hence the encryption must provide message integrity, too.

Such encryption is often called perfect.

In the next few lectures we make the perfect cryptography

assumption (also called the Dolev-Yao model).

Messages can be expressed as terms (trees). Let us have� a countable set Keyssym of keys for symmetric encryp-

tion;� a countable set Keysde
 of decryption keys for asym-

metric encryption;� a countable set Keyssig of signature keys.� a countable set Nonce of nonces.

The elements of these sets do not have any internal struc-

ture besides their identity.

There are also atomic messages expressing constants and

payloads.

There are the constructors:� pk(K) gives the public key corresponding to secretK 2

Keysde
 [Keyssig.� (M1; : : : ;Mn) is the tuple of the messages M1; : : : ;Mn.� fMgK , f[M ℄gKp , [fMg℄Ks are the symmetric, asymmet-

ric encryption and signatures.

– If we model randomized primitives then there is the

third argument, too — the random coins.� h(M) is the digest of M .

A party can apply a constructor if it knows all of its argu-

ments.

A party, including the adversary, is a process. It can� Construct new atomic messages from sets Keyssym,

Keysde
, Keyssig, Nonce.� Apply constructors of messages.� Send messages.� Receive messages.� Decompose messages:

– Take components of tuples.

– Decrypt, if it knows the correct key.� Check the equality of messages.� Verify signatures, if it knows the correct verification

key.� Check if a decomposition would succeed.

Structure of data — a set of variables that take messages

as values.

The control structures:� Sequential composition.� if–then–else.� Parallel composition.

– In P jQ, processes P and Q do not share the state.� Replication.

– !P — a countable number of processes P run in

parallel.

Other constructs as needed. . .

A protocol consists of� The initialization of common variables;

– Mainly long-term keys� The parallel composition of all parties.

The protocol is executed in parallel with the adversary.

Our example: A�!B : f[A;NA;KAB℄gKBB�!A : f[NA; NB; B℄gKAA�!B : f[NA; NB℄gKB

Names �= public keysA�!B : f[KA; NA;KAB℄gKBB�!A : f[NA; NB;KB℄gKAA�!B : f[NA; NB℄gKB

PA(KB) isNA := new nonce;KAB := new symkey;m1 := f[pk(SKA); NA;KAB℄gKB ; send m1;m2 := receive;dm2 ?:= dec(SKA;m2);(N 0A; NB;K 0B) ?:= dm2;
if NA 6= N 0A _KB 6= K 0B then stop;m3 := f[NA; NB℄gKB ; send m3SKA is the decryption key of party A.

PB(KA) is
m1 := receive; dm1 ?:= dec(SKB;m1);(K 0A; NA;KAB) ?:= dm1; if KA 6= K 0A then stop;NB := new nonce;m2 := f[NA; NB; pk(SKB)℄gKA; send m2;m3 := receive; (N 0A; N 0B) ?:= dec(SKB;m3);

if NA 6= N 0A _NB 6= N 0B then stop;SKB is the decryption key of party B.

The whole protocol isSKA := new asymkey;SKB := new asymkey;

send pk(SKA); send pk(SKB);(!(KX ?:= receive;PA(KX)) j!(KX ?:= receive;PB(KX)))

. . . and this is executed in parallel with the adversary.� At each point of the process, only variables defined

above this point are visible.� We demand that no variable is ever redefined

– no communication through shared variables.

Security properties:� Secrecy of something — this thing cannot become the

value of some variable in the adversarial process.

– Generally a weaker property than “the adversary

cannot distinguish which one of two fixed values

this thing has”.

– Justified by the perfection of the cryptographic prim-

itives.� Authenticity — a certain situation cannot happen. . .

– B thinks it shares KAB with A, but A thinks thatKAB is for a different purpose. . .

PA(KB) isNA := new nonce;KAB := new symkey;

. o O (start session with KB using (NA;KAB))m1 := f[pk(SKA); NA;KAB℄gKB ; send m1;m2 := receive;dm2 ?:= dec(SKA;m2);(N 0A; NB;K 0B) ?:= dm2;
if NA 6= N 0A _KB 6= K 0B then stop;m3 := f[NA; NB℄gKB ;
. o O (end session with KB using (NA; NB;KAB))
send m3

PB(KA) is

m1 := receive; dm1 ?:= dec(SKB;m1);(K 0A; NA;KAB) ?:= dm1; if KA 6= K 0A then stop;NB := new nonce;
. o O (start session with KA using (NA; NB;KAB))m2 := f[NA; NB; pk(SKB)℄gKA ; send m2;m3 := receive; (N 0A; N 0B) ?:= dec(SKB;m3);

if NA 6= N 0A _NB 6= N 0B then stop;
. o O (end session with KA using (NA; NB;KAB))

Authentication property:

If B ended session with pk(SKA) using (n1; n2; k) then A

ended session with pk(SKB) using (n1; n2; k).
If A ended session with pk(SKB) using (n1; n2; k) then B

started session with pk(SKA) using (n1; n2; k).
. . . and for different red thoughts correspond different green

thoughts.

Scheduling of protocols — non-deterministic.

We get a set of protocol traces, not a probability distribu-

tion over them.

Justification — both secrecy and authentication properties

are specified by valid protocol traces.

In our actual arguments we just assume that everything

that may go wrong goes wrong.

(A1) B ended session i with KA[i℄.
(A2) KA[i℄ = pk(SKA).

(1) m3[i℄, which came from outside, contained the value ofNB[i℄.
(2) NB[i℄ left the scope of the current session only insidem2[i℄.
(3) m2[i℄ was encrypted with KA[i℄ = pk(SKA). Only

someone who knows SKA is able to decrypt it.

(4) SKA is used only to get the corresponding public key,

and to decrypt. Hence the adversary cannot knowSKA.

(5) A had a session j where she decrypted m2[i℄ = m2[j℄.
Hence

– N 0A[j℄ = NA[i℄, NB[j℄ = NB[i℄, K 0B[j℄ = pk(SKB).
– Maybe there were several such sessions j.

(6) NB[j℄ left the scope of the session j only inside m3[j℄.
– KB[j℄ = K 0B[j℄ = pk(SKB), NA[j℄ = N 0A[j℄ = NA[i℄.
– A ended session j with KB[j℄.� We still have to show that

– KAB[j℄ = KAB[i℄
– There is no i0 6= i, such that B ended session i0 with

pk(SKA) using (NA[i℄; NB[i℄;KAB[i℄).� Easy — NB[i0℄ 6= NB[i℄.

(7) KAB[i℄ is defined together with NA[i℄ which equalsNA[j℄.
Can the adversary construct a message of the formf[pk(SKA); NA[i℄;K 0℄gpk(SKB) with K 0 6= KAB[j℄ ?

(8) NA[j℄ is sent out in messages m1[j℄ and m3[j℄. They

are encrypted with pk(SKB).
(9) The adversary does not know SKB.

(10) B does not accept the message m3[j℄ as the first mes-

sage from A.

(11) If B accepts m1[j℄ in some session k, then KA[k℄ =

pk(SKA). Hence the adversary cannot decrypt m2[k℄.
The adversary cannot learn NA[i℄.

The adversary cannot learn NA[i℄ = NA[j℄ and there is only

a single first message containing it constructed by A.

This message contains the key KAB[j℄.
Injective agreement would still have hold if A’s belief about

ending a session had not contained NB.

The other property is proved similarly.

Secrecy of KAB is shown similarly to the secrecy of NA.

Authentication properties can be specified using correspon-

dence properties.

Introduce statements begin(E) and end(E).
These statements do nothing but appear in the trace of the

protocol.

A protocol has agreement if every end(E) in a trace is

preceeded by begin(E).
A protocol has injective agreement if it satisfies agreement

and one can find a different begin corresponding to each

end.

PA(KB) isNA := new nonce;KAB := new symkey;

. o O (start session with KB using (NA;KAB))m1 := f[pk(SKA); NA;KAB℄gKB ; send m1;m2 := receive;dm2 ?:= dec(SKA;m2);(N 0A; NB;K 0B) ?:= dm2;
if NA 6= N 0A _KB 6= K 0B then stop;m3 := f[NA; NB℄gKB ;
. o O (end session with KB using (NA; NB;KAB))
send m3

PB(KA) is

m1 := receive; dm1 ?:= dec(SKB;m1);(K 0A; NA;KAB) ?:= dm1; if KA 6= K 0A then stop;NB := new nonce;
. o O (start session with KA using (NA; NB;KAB))m2 := f[NA; NB; pk(SKB)℄gKA ; send m2;m3 := receive; (N 0A; N 0B) ?:= dec(SKB;m3);

if NA 6= N 0A _NB 6= N 0B then stop;
. o O (end session with KA using (NA; NB;KAB))

PA(KB) isNA := new nonce;KAB := new symkey;m1 := f[pk(SKA); NA;KAB℄gKB ; send m1;m2 := receive;dm2 ?:= dec(SKA;m2);(N 0A; NB;K 0B) ?:= dm2;
if NA 6= N 0A _KB 6= K 0B then stop;m3 := f[NA; NB℄gKB ;
if pk(SKB) = KB then end(“startB” ; NA; NB;KAB);

if pk(SKB) = KB then begin(“endB” ; NA; NB;KAB);

send m3

PB(KA) is
m1 := receive; dm1 ?:= dec(SKB;m1);(K 0A; NA;KAB) ?:= dm1; if KA 6= K 0A then stop;NB := new nonce;

if pk(SKB) = KB then begin(“startB” ; NA; NB;KAB);m2 := f[NA; NB; pk(SKB)℄gKA ; send m2;m3 := receive; (N 0A; N 0B) ?:= dec(SKB;m3);
if NA 6= N 0A _NB 6= N 0B then stop;
if pk(SKA) = KA then end(“endB” ; NA; NB;KAB)

Key-establishment protocols are just one case where au-

thentication is necessary.

In pure authentication protocols (entity authentication)

two parties have established a connection. Party A wants

to check that the other one is who A thinks it is.� In a connectionless model of communication, entity

authentication is used to check the liveness of the other

party.

Mutual authentication — both parties check each other’s

liveness.

Basic tool for one-way entity authentication: challenge-

response mechanism.� A sends a new nonce to B.� B transforms that nonce in a way that only B (or A)

could do and sends back the result.� A checks the result.

Let CertX be the certificate of the verification key pk(KX)

of the party X.

Alice checking Bob’s liveness:A�!B :NAB�!A :CertB; NA; NB; A; [fNA; NB; Ag℄pk(KB)NB is used to not let Alice completely control what is

signed by Bob (otherwise KB cannot be used for anything

else).

(ISO Public Key Two-Pass Unilateral Authentication Protocol)

Exercise. Where do begin and end go?

Mutual authentication — two unilateral authentications:1: A�!B :NA12: B�!A :CertB; NA1; NB; A; [fNA1; NB; Ag℄pk(KB)3: A�!B :CertA; NB; NA2; B; [fNB ; NA2; Bg℄pk(KA)

A draft version of ISO Public Key Three-Pass Mutual Au-

thentication Protocol.� Simply two instances of the protocol on previous slide.� Insecure.

1: C(A)�!B :NA12: B�!C(A) :CertB; NA1; NB; A; [fNA1; NB; Ag℄pk(KB)10: C(B)�!A :NB20: A�!C(B) :CertA; NB; NA2; B; [fNB; NA2; Bg℄pk(KA)3: C(A)�!B :CertA; NB; NA2; B; [fNB; NA2; Bg℄pk(KA)B thinks he has been the responder in a protocol session

with A. A does not think that she has initiated a session

with B.

A variant with no such attacks:1: A�!B :NA2: B�!A :CertB; NA; NB; A; [fNA; NB; Ag℄pk(KB)3: A�!B :CertA; NB; NA; B; [fNB ; NA; Bg℄pk(KA)

But here B has a lot of control over the message signed byA.

Exercise. What if A and B were not under signature in

messages 2 and 3?

1: A�!C :NA10: C(A)�!B :NA20: B�!C(A) :CertB; NA; NB; A; [fNA; NBg℄pk(KB)2: C�!A :CertC ; NA; NB; A; [fNA; NBg℄pk(KC)3: A�!C :CertA; NB; NA; C; [fNB; NAg℄pk(KA)30: C(A)�!B :CertA; NB; NA; B; [fNB; NAg℄pk(KA)B thinks he was the responder in a session initiated by A.A does not think she had initiated a session with B.

Entity authentication can be done using one-time pass-

words:A and B have agreed on a code-book f : f0; 1gn �!f0; 1g�.
1. A generates r 2 f0; 1gn, sends it to B.

2. B responds with f(r).
3. A checks that it indeed received f(r).

Care has to be taken to not repeat the chellenge r.

Lamport’s one-time password scheme:

Initialization: B chooses a password pw and n 2 N . Sends(B;hn(pw); n) to A over an authenticated channel.� B puts nB := n.� A puts pw 0 := hn(pw).
One round:

1. A sends a notice to B.

2. B computes r := hnB�1(pw), decrements nB and sendsr to A.

3. A checks that h(r) = pw 0 and puts pw 0 := r.
This works as long as A and B are synchronized. Resyn-

chronization again requires authentic channels.

S/KEY one-time password scheme:

Initialization: B chooses a password pw and n 2 N . Sends(B;hn(pw); n) to A over an authenticated channel.� A puts nA := n.� A puts pw 0 := hn(pw).
One round:

1. A sends the notice n := nA to B.

2. B computes r := hn�1(pw) and sends r to A.

3. A checks that h(r) = pw 0, puts pw 0 := r and nA :=n� 1.
Insecure. Exercise. Attack it.

We have seen Diffie-Hellman key exchange:

Let G be a group with hard Diffie-Hellman problem. Letg generate G. Let m = jGj.
1. A chooses a random a 2 Zm, sends x = ga to B.

2. B chooses a random b 2 Zm, sends y = gb to A.

3. A computes K = ya. B computes K = xb.
4. K is used as a common secret. (h(K) may be a sym-

metric key)

This protocol needs authentication, too.

Station-to-station protocol:A�!B : gNAB�!A : gNB ;CertB; f[fgNB ; gNAg℄KBggNANBA�!B :CertA; f[fgNA ; gNBg℄KAggNANB

Proposed by Diffie et al.

Aimed to have several security properties:

� Mutual entity authentication.� Key agreement.

– No third party knows the key.� Key confirmation.

– The other party knows the key.� Perfect forward secrecy.

It does not quite achieve mutual authentication:1: A�!C(B) : gNA10: C�!B : gNA20: B�!C : gNB ;CertB; f[fgNB ; gNAg℄KBggNANB2: C(B)�!A : gNB ;CertB; f[fgNB ; gNAg℄KBggNANB3: A�!C(B) :CertA; f[fgNA ; gNBg℄KAggNANB

At this point A thinks she was the initiator in a session

with B. But B does not think he was a responder in a

session with A.

The secrecy of gNANB is not violated.

Identities of parties inside the signed messages would have

helped.

Neumann-Stubblebine key exchange protocol.

A TTP T generates a new key for A and B.

Let KXT be the (long-term) symmetric key shared by X

and T .1: A�!B :A;NA2: B�!T :B;NB; fA;NA; TBgKBT3: T�!A :NB; fB;NA;KAB; TBgKAT ; fA;KAB; TBgKBT4: A�!B : fA;KAB; TBgKBT ; fNBgKABTB is a timestamp.

A similarity:1: A�!B :A;NA2: B�!T :B;NB; fA;NA; TBgKBT3: T�!A :NB; fB;NA;KAB; TBgKAT ; fA;KAB; TBgKBT4: A�!B : fA;KAB; TBgKBT ; fNBgKAB

Attack through a type flaw:1: C(A)�!B :A;NA2: B�!C(T) :B;NB; fA;NA; TBgKBT4: C(A)�!B : fA;NA; TBgKBT ; fNBgNA

where NA 2 Keyssym \Nonce.

B thinks he has agreed on key KA with A. A has no idea.

Otway-Rees key exchange protocol:1: A�!B :N;A;B; fNA; N;A;BgKAT2: B�!T :N;A;B; fNA; N;A;BgKAT ; fNB; N;A;BgKBT3: T�!B : fNA;KABgKAT ; fNB;KABgKBT4: B�!A : fNA;KABgKAT

Possible type confusion:1: A�!B :N;A;B; fNA; N;A;BgKAT2: B�!T :N;A;B; fNA; N;A;BgKAT ; fNB; N;A;BgKBT3: T�!B : fNA;KABgKAT ; fNB;KABgKBT4: B�!A : fNA;KABgKAT
The triple (N;A;B) masquerading as a key may be from

some old session.

Further reading:

Chapter 12.1–12.6 and 12.9 of

Menzeses, van Oorschot, Vanstone.

Handbook of Applied Cryptography.

(available on-line)

