Constructs party's name
from his key shared with S

'A—B:A N,

B—S:B, N, {AN].

S—A:N, {BK, NI {AK, NI
fun host/1. A—B{AK, Nols {Ngli

private reduc getkey(host(x)) = x.

¢ -- public channel

Destructor getkey gives party's
key from his name
private — adversary cannot use

(* Shared key cryptography *)

fun encrypt/2. public constructor
reduc decrypt(encrypt(x,y),y) = X. and public destructor

(* Secrecy assumptions *)

Hints for ProVerif
not kas. May speed up verification
not kbs. Semantically insignificant

new names
adversary does not see them

secrecy queries

private free secretA, secretB.
query attacker:secretA; attacker:secretB.

query evinj:endAparam(x) ==> evinj:beginAparam(x).

endAparam and beginAparam are events
This is a correspondence query
We are interested in injective agreement
for non-inj. replace evinj with ev
ProVerif can check more complex properties
W sequences of events

query evinj:endBparam(x) ==> evinj:beginBparam(x).
query evinj:endBkey(x,y,z,t) ==> evinj:beginBkey(X,y,z,t).

I[dentifiers can be bound to processes
These identifiers can be used where
a process is normally expected

let processA =

, Input a triple;
new Na; :
. |0ut(C’ (host(kas), Na)): Let the rg:ualtt?i:) Ideecryptlon

Standard way of parsing

.) ba 19 2 9 I .
in(c, (nb, ml, m2)) tuples in ProVerif.

let (b, kab, na2) = decrypt(m1, kas) i
event beginBparam(b);
“|if na2 = Na then

Syntactic sugar.
Could be represented with:
reduc testeq(x,x) = X.

let dummy = testeq(na2,Na) in ...

event beginBkey(b, host(kas), nb, kab);
4. |out(c, (m2, encrypt(nb, kab)));
(* OK *)

© | if b = host(kbs) then
@ | event endAparam(host(kas));
? lout(c, encrypt(secretA, kab)). One round of
~———Alice acting as initiator
let processB = — +Bob acting as responder

in(c, (a, na)); “*

event beginAparam(a);

new Nb;

out(c, (host(kbs), Nb, encrypt((a,na), kbs)));
in(c, (m3, m4));

let (=a, kab, =Nb) = decrypt(m3, kbs) in

Syntactic sugar.
Equivalent to
let (x1,kab,x2)=decrypt (m3,kbs) in
if x1=a & x2=Nb then
if Nb = decrypt(m4, kab) then
(* OK ™)
if a = host(kas) then
event endBparam(host(kbs));
event endBkey(host(kbs), a, Nb, kab);
out(c, encrypt(secretB, kab)).

let processS =
in(c, (b, nb, m5));
let kbs2 = getkey(b) in
let (a, na) = decrypt(mS5,kbs2) in
let kas2 = getkey(a) in
new kab;
out(c, (nb, encrypt((b, kab, na), kas2),
encrypt((a, kab, nb), kbs2))).

Alice acting only as initiator
Bob acting only as responder
(unbounded number of sessions)

declaration
private free kas, kbs.

Equivalent to

process
new kas; new kbs;
(('processA) | (!processB) | (!processS))

processA, processB, processS are replaced
with their declarations.
NB! This is textual replacement only.
Similar to C preprocessor replacing #define-s

	Slide 1

