
public constructor
and public destructor

free c.

fun host/1.
private reduc getkey(host(x)) = x.

(* Shared key cryptography *)

fun encrypt/2.
reduc decrypt(encrypt(x,y),y) = x.

(* Secrecy assumptions *)

not kas.
not kbs.

private free secretA, secretB.

query attacker:secretA; attacker:secretB.

query evinj:endAparam(x) ==> evinj:beginAparam(x).

query evinj:endBparam(x) ==> evinj:beginBparam(x).
query evinj:endBkey(x,y,z,t) ==> evinj:beginBkey(x,y,z,t).

let processA =
 new Na;
 out(c, (host(kas), Na));

 in(c, (nb, m1, m2));
 let (b, kab, na2) = decrypt(m1, kas) in
 event beginBparam(b);
 if na2 = Na then

 event beginBkey(b, host(kas), nb, kab);
 out(c, (m2, encrypt(nb, kab)));
 (* OK *)
 if b = host(kbs) then
 event endAparam(host(kas));
 out(c, encrypt(secretA, kab)).

let processB =
 in(c, (a, na));
 event beginAparam(a);
 new Nb;
 out(c, (host(kbs), Nb, encrypt((a,na), kbs)));
 in(c, (m3, m4));
 let (=a, kab, =Nb) = decrypt(m3, kbs) in

 if Nb = decrypt(m4, kab) then
 (* OK *)
 if a = host(kas) then
 event endBparam(host(kbs));
 event endBkey(host(kbs), a, Nb, kab);
 out(c, encrypt(secretB, kab)).

let processS =
 in(c, (b, nb, m5));
 let kbs2 = getkey(b) in
 let (a, na) = decrypt(m5,kbs2) in
 let kas2 = getkey(a) in
 new kab;
 out(c, (nb, encrypt((b, kab, na), kas2),

 encrypt((a, kab, nb), kbs2))).

process
new kas; new kbs;
((!processA) | (!processB) | (!processS))

c -- public channel
Constructs party's name

from his key shared with S

Destructor getkey gives party's
key from his name

private – adversary cannot use

Hints for ProVerif
May speed up verification
Semantically insignificant

new names
adversary does not see them

secrecy queries

endAparam and beginAparam are events
This is a correspondence query
We are interested in injective agreement

for non-inj. replace evinj with ev
ProVerif can check more complex properties
about sequences of events

Identifiers can be bound to processes
These identifiers can be used where

a process is normally expected

A → B : A, N
A

B → S : B, N
B
, {A,N

A
}

K b s

S → A : N
B
, {B,K

a b
,N

A
}

K a s
, {A,K

a b
,N

B
}

K b s

A → B : {A,K
a b

, N
B
}

K b s
,{N

B
}

K a b

Input a triple;
Let the result of decryption

be a triple.
Standard way of parsing

tuples in ProVerif.

Syntactic sugar.
Could be represented with:

reduc testeq(x,x) = x.
...
let dummy = testeq(na2,Na) in ...

1.

3.

4.

se
cr

et

Syntactic sugar.
Equivalent to

let (x1,kab,x2)=decrypt (m3,kbs) in
if x1=a & x2=Nb then

processA, processB, processS are replaced
with their declarations.

NB! This is textual replacement only.
Similar to C preprocessor replacing #define-s

Alice acting only as initiator
Bob acting only as responder

(unbounded number of sessions)

One round of
●Alice acting as initiator
●Bob acting as responder

Equivalent to
declaration

private free kas, kbs.

	Slide 1

