
The protocols of Sharemind



Sharemind system

2 / 15

■ Three computing parties (called “miners”). One may be corrupt.
■ Semi-honest adversary.
■ Secure channels between each pair of parties.
■ Unconditionally∗ secure.

◆ Security of channels?
◆ Source of randomness?

■ Data providers share their inputs for the miners.
■ Controller traverses the circuit of f and instructs the miners.



Sharing

3 / 15

■ The values are from a finite ring R.

◆ In Sharemind platform, R = Z232.

■ The arithmetic circuit for f is made up of operations of R.
■ The values are shared additively:

◆ v ∈ R is shared as (s0, s1, s2) ∈ R3, where s0 + s1 + s2 = v, but
any two shares look like uniformly distributed independent
random values.

◆ i-th miner knows si.

■ A data provider shares v by

◆ randomly generating s0, s1 ∈R R;
◆ defining s2 = v − s0 − s1;
◆ sending si to miner Mi.

■ Note that none of the actions of a data provider qualifies as cheating.



Resharing a value

4 / 15

■ Let v be shared as s0 + s1 + s2.
■ We want to have a different sharing v = t0 + t1 + t2, such that ti is

independent of si.
■ Protocol:

◆ Pi generates ri ∈R R and sends it to P(i+1) mod 3;

■ Pi receives r(i−1) mod 3

◆ Pi sets ti = si + ri − r(i−1) mod 3.

■ An important sub-protocol: makes a share of a value independent of
other shares and uniformly distributed.



Non-interactive protocols

5 / 15

■ To add two shared values or to multiply with a scalar: each miner
does the same operation with the shares it holds.

■ To open a shared value: each miner sends its share to the controller.



Ideal functionality I

6 / 15

■ Reactive — several rounds between I and the environment.
■ Keeps of database of values D : N → R ∪ {⊥}.

◆ Elements of N — handles.
◆ Let ℓD be the index of the last filled slot of D, initially 0.

■ Environment H gives commands to I, receives answers:
■ Command store(v), v ∈ R:

◆ D[++ℓD] := v; return ℓD.

■ Command retrieve(h):

◆ return D[h].

■ Command ⋆(h1, . . . , hk), where ⋆ is k-ary arithmetic operator:

◆ D[++ℓD] = ⋆(D[h1], . . . , D[hk]); return ℓD.

■ I sends all executed commands to the adversary Aideal.
■ H and Aideal can talk to each other directly.



Real functionality

7 / 15

■ Environment H talks to the controller C. Controller talks with the
miners.

◆ C basically forwards the commands to miners.

■ Controller forwards all executed commands to the adversary Areal.
■ If some Mi is corrupted then continuously sends all of its internal

state to Areal.
■ Each miner Mi keeps a database Di : N → R ∪ {⊥}.

◆ The database stores the shares of the values.

■ H and Areal can talk to each other directly.



Security

8 / 15

Black-box reactive simulatability:

■ There must exist a simulator Sim, such that
■ For any H and Areal

■ If we define Aideal = Sim | Areal then
■ H cannot distinguish whether it is running in parallel with

◆ C, M0,M1,M2, Areal; or
◆ I, Aideal.

Important: Sim must work during the runtime of the protocol, not
afterwards.



Simulating simple commands

9 / 15

■ Let Mc be corrupt, c ∈ {0, 1, 2}.
■ Receiving store(v) from I:

◆ Forward store(v) to Areal;
◆ Generate s ∈R R, send it to Areal as from Mc.
◆ Dsim[++ℓDsim

] := s.

■ Receiving retrieve(v) from I:

◆ Forward it, don’t do anything else.

■ Receiving h1 + h2 from I:

◆ Forward h1 + h2 to Areal.
◆ Dsim[++ℓDsim

] := Dsim[h1] + Dsim[h2].
◆ (Send Dsim[ℓDsim

] to Areal as from Mc.)



Du-Atallah multiplication

10 / 15

■ Let Alice have a ∈ R, Bob have b ∈ R.
■ Alice, Bob and Charlie want to obtain sA, sB, sC ∈ R, such that

sA + sB + sC = a · b.

◆ Party X only learns sX and nothing else.

■ Alice generates α1 ∈R R. Sends α1 to Charlie and a + α1 to Bob.
■ Bob generates α2 ∈R R. Sends α2 to Charlie and b + α2 to Alice.
■ The shares are defined as

sA = −α1(b + α2)

sB = b(a + α1)

sC = α1α2 .

(Exercise. Verify that their sum is a · b)
■ Security: each of the parties only sends out uniformly randomly

distributed values.



Sharemind multiplication

11 / 15

■ Let v = s0 + s1 + s2 and v′ = s′0 + s′1 + s′2.

vv′ = s0s
′

0 + s0s
′

1 + s0s
′

2 + s1s
′

0 + s1s
′

1 + s1s
′

2 + s2s
′

0 + s2s
′

1 + s2s
′

2

■ Mi can compute sis
′

i itself.
■ To compute sis

′

j we use Du-Atallah multiplication with Mi as Alice,
Mj as Bob and M3−i−j as Charlie.

■ Each party Mi obtains six new shares from six instances of the
Du-Atallah protocol.

■ These six shares, as well as sis
′

i are added together. The result is
party Mi’s share of vv′.

■ Finally, do resharing.
■ Simulation:

◆ Send a bunch of random values to the adversary.
◆ Pick Dsim[++ℓDsim

] ∈R R.



Share conversion

12 / 15

■ Let u ∈ Z2 be shared as u = u0 ⊕ u1 ⊕ u2.
■ We want to get shares s0, s1, s2, such that u = s0 + s1 + s2 in R.
■ Note that u = u0 + u1 + u2 − 2u0u1 − 2u0u2 − 2u1u2 + 4u0u1u2 in

R.
■ Compute this expression in distributed fashion:

◆ ui will contribute to the share si of Mi;
◆ use Du-Atallah multiplication to get shares of 2uiuj;
◆ find shares of 4u0u1u2 :

■ let M2 share 2u2 with the resharing protocol;
■ multiply 2u0u1 and 2u2 with the multiplication protocol

◆ Add the shares from the computation of all monomials;
◆ Reshare.



Bit extraction

13 / 15

■ We have shares of the 32-bit value u.
■ Let u(k) be the k-th least significant bit of u. u =

∑31
i=0 u(k)2k.

■ We want to have shares of u(0), . . . , u(31) over Z232.



Bit extraction

13 / 15

■ We have shares of the 32-bit value u.
■ Let u(k) be the k-th least significant bit of u. u =

∑31
i=0 u(k)2k.

■ We want to have shares of u(0), . . . , u(31) over Z232.
■ Let Mi generate 32 random bits r0

i , . . . , r
31
i .

■ We thus have shared 32 random bits r0, . . . , r31 over Z2.
■ Convert shares of rj to shares of r(j) = rj over Z232.
■ Linearly combine shares of r(0), . . . , r(31) to get shares of r.
■ Compute a = u − r (linear combination). Publish a.

◆ a is distributed uniformly randomly; independently of u.

■ Share the bits of a:

◆ a(j)0 = a(j);
◆ a(j)1 = a(j)2 = 0.

■ We have shares of bits of a and r, want to get shares of bits of a + r.



Shares of bits of u = a + r

14 / 15

■ Define d(0) = a(0) + r(0), d(i) = 2ia(i) + 2ir(i) + c(i) if i > 0.

◆ c(i) is the carry bit (see blackboard).

■ c(i) = 2i
∑i−1

j=0 2j · (a(j) + r(j) − u(j)).
■ u(i) depends on d(i) as follows:

◆ We have d(i) ∈ {0, 2i, 2i+1, 2i+1 + 2i}.
◆ u(i) = (d(i) mod 2i+1)/2i.

■ Let p(0), . . . , p(31) be shared random bits.
■ Let f(i) = (d(i) + 2ip(i)) mod 2i+1.

◆ modulo is computed by each party.
◆ f(i) ∈ {0, 2i, 2i+1, 2i+1 + 2i, 2i+2}

■ Publish f(i). If f(i) mod 2i+1 = 2i then u(i) = 1 − p(i) else
u(i) = p(i).



greater than

15 / 15

■ Consider two values v, v′.
■ We want to compute whether v < v′. Want to get the result as a

shared bit.
■ If v, v′ ∈ Z231 then we can compute v − v′ and then check the sign

bit.

◆ sign bit ≡ most significant bit

■ Sign bit is given by bit extraction.


	Sharemind system
	Sharing
	Resharing a value
	Non-interactive protocols
	Ideal functionality I
	Real functionality
	Security
	Simulating simple commands
	Du-Atallah multiplication
	Sharemind multiplication
	Share conversion
	Bit extraction
	Shares of bits of u=a+r
	greater than

