Protocol analysis using
ProVerif

ProVerif

http:/ /www.proverif.ens.fr

Static analysis for cryptographic protocols under the perfect
cryptography assumption

Can check secrecy and correspondence properties

Errs only to the safe side

[0 If a protocol is insecure, then says so
[0 If a protocol is secure, then sometimes may claim to have found
an attack

Principle: translate the protocol to a set of Horn clauses
[0 Involves a little bit of abstraction

There is an attack = this set is satisfiable

2 /20

Horn clauses

pl(tlly ... 7t1k1) JANEIIE /\pn(tnl, . 7tnkn) — Q(tll, ... ,t,/m)

D1, ..., Pn, ¢ — predicate symbols
0 from a fixed set; each with fixed arity
ty,t. — terms

[1 countable number of atoms
[1 constructors from a fixed set

terms may contain term variables as subterms
A;pi(...X..))=¢q(...X...) means

Vt € Term : (/\zpz(t) :>q(...t...))

0 Term — the set of all ground terms (without variables)

3 /20

Examples

m A translation of a protocol always contains a unary predicate a
0 a(t) means that the attacker can learn ¢

m A translation contains rules for composing and decomposing
messages:

a(pair(X,Y)) = a(X) a(pair(X,Y)) = a(Y)

K)Na(X) = a(sign(K, X))
a(sign(K, X)) = a(X)

1 s O N I
oo

(
(
Epenc(pk(K),X)) Na(K) = a(X)
(
(

4/ 20

Recall our example

14__+Z3:{l{Aap[4rK;Uﬂ}KB
B—A: {:NA, NB; KB]}KA
A—B:{{Na, Npl}g,
B—A: {M}KAB

m [he attacker can have the first message by starting a new session

a(pk(A)) N a(pk(B)) = a(penc(pk(B), triple(pk(A),n, k)))

5 / 20

Recall our example

14__+Z3:{l{A7p[4rK;Uﬂ}KB
B%A . {:NA, NB; KB]}KA
A— B :{{ Ny, NB]}KB
B—A:{M}g, .

m [he attacker can have the first message by starting a new session
a(pk(A)) N a(pk(B)) = a(penc(pk(B), triple(pk(A), n, k)))

Something is very wrong here. .. What n? What k7
m n and k£ would be different in each session. There must be a

parameter “session ID".

5 / 20

The first message

A—B: {:KA, NA, KAB}}KB
B%A . {:NA, NB; KB]}KA
A— B :{{ Ny, NB]}KB
B—A:{M}g, .

m [he attacker can have the first message by starting a new session

a(pk(A)) N a(pk(B)) Aa(ld) =
a(penc(pk(B), triple(pk(A), n|Id], k|Id])))

6 / 20

The first message

A—B: {:KA, NA, KAB}}KB
B—A: {:NA, NB; KB]}KA
A— B :{{ Ny, NB]}KB
B—A:{M}g, .

The attacker can have the first message by starting a new session

a(pk(A)) N a(pk(B)) Aa(ld) =
a(penc(pk(B), triple(pk(A), n|Id], k|Id])))

Attacker: “Dear Alice, please start session 5 with Bob”
0 k(5) will be exchanged
Attacker “Dear Alice, please start session 5 with me”

0 Attacker learns k(5)

6 / 20

The first message

A—B: {:KA, NA, KAB}}KB
B—A: {:NA, NB; KB]}KA
A— B :{{ Ny, NB]}KB
B—A:{M}g, .

m Session |ID must contain the roles of the parties.

a(pk(A)) ANa(pk(B)) Aa(ld) =
a(penc(pk(B), triple(pk(A),
n|pk(A), pk(B), Id], k[pk(A), pk(B), Id])))

7 /20

The second message

A—B: {:KA, NA, KAB}}KB
B%A . {:NA, NB; KB]}KA
A— B :{{ Ny, NB]}KB
B—A:{M}g, .

m When Bob gets the first message, he responds with the second

a(Id) N a(penc(pk(B), triple(pk(A), N, K))) =
a(penc(pk(A), triple(N, n'[pk(A), pk(B), Id], pk(B))))

8 / 20

The third message

A—B: {:KA, NA, KAB}}KB
B—A: {:NA, NB; KB]}KA
A— B :{{ Ny, NB]}KB
B—A:{M}g, .

m When Alice gets the second message, she responds with the third

a(penc(pk(A), triple(n|pk(A), pk(B), Id], N', pk(B)))) =
a(penc(pk(B), pair(n[pk(A), pk(B), Id], N")))

9 /20

The fourth message

A—B: {:KA, NA, KAB}}KB
B%A . {:NA, NB; KB]}KA
A— B :{[Ny, NB]}KB
B—A:{M}g, .

m When Bob gets the third message, he responds with the fourth. ..
m But only if he has participated in the session from the beginning

10 / 20

The fourth message

A—B: {:KA, NA, KAB}}KB
B%A . {:NA, NB; KB]}KA
A— B :{[Ny, NB]}KB
B—A: {M}KAB

When Bob gets the third message, he responds with the fourth. ..
But only if he has participated in the session from the beginning
When Bob has received the first and third messages, he can respond
with the fourth.

a(penc(pk(B), triple(pk(A), N, K)))A
a(penc(pk(B), pair(N, n'[pk(A), pk(B), Id]))) =
a(senc(K,m))

10 / 20

The fourth message

A—B: {:KA, NA, KAB}}KB
B%A . {:NA, NB; KB]}KA
A— B :{[Ny, NB]}KB
B—A: {M}KAB

When Bob gets the third message, he responds with the fourth. ..
But only if he has participated in the session from the beginning
When Bob has received the first and third messages, he can respond
with the fourth.

a(penc(pk(B), triple(pk(A), N, K)))A
a(penc(pk(B), pair(N, n'[pk(A), pk(B), Id]))) =
a(senc(K,m))

What is wrong here?

10 / 20

The fourth message

A—B: {:KA, NA, KAB}}KB
B%A . {:NA, NB; KB]}KA
A— B :{[Ny, NB]}KB
B—A:{M}g, .

Only Bob will send M, and only to Alice.

a(penc(pk(sB), triple(pk(sA), N, K)))A
a(penc(pk(sB), pair(N,n'[pk(sA), pk(sB), 1d]))) =
a(senc(K,m))

11 / 20

Solving the system

m Is a(m) derivable?
m You may ask a Prolog system. And it will answer. ..

12 / 20

Solving the system

Is a(m) derivable?
You may ask a Prolog system. And it will answer. ..
... infinite loop.

0 To get a(m), we could use some a(f(m))
0 To get a(f(m)), we could use some a(f(f(m)))
[0 To get...

The unification strategy of ProVerif is more geared towards such
protocol representations.

12 / 20

Demo

Try to run ProVerif

13 / 20

Try to run ProVerif

m Demo
m [Iry to reconstruct the attack

13 / 20

What went wrong

m Alice sent the first message to Bob
m Bob received it twice, responding to it both times

[0 Fair enough

14 / 20

What went wrong

Alice sent the first message to Bob
Bob received it twice, responding to it both times

[0 Fair enough

But the adversary repeated the session identifier

[0 Not good

[0 To avoid that, newly generated values must contain all received
messages so far.

14 / 20

The second message

A—B: {:KA, NA, KAB}}KB
B%A . {:NA, NB; KB]}KA
A— B :{[Ny, NB]}KB
B—A:{M}g, .

m When Bob gets the first message, he responds with the second

a(Id) A a(penc(pk(B), triple(pk(A), N, K))) =
a(penc(pk(A), t'rzple(
n'[pk(A), pk(B), Id, penc(pk(B), triple(pk(A), N, K))],

)
pk(B))))

15 / 20

The fourth message

A—>BZ{:KA7NA7KAB}}KB
B—A: {:NAaNBaKB]}KA
A——DB:{[Na, Nplt,,
B—A:{M}g, .

a(penc(pk(sB), triple(pk(sA), N, K))) A a(penc(pk(sB),
pair(N,n'[pk(sA), pk(sB), Id, penc(pk(sB), triple(pk(sA), N, K))]))) =
a(senc(K,m))

16 / 20

Demo

Try to run ProVerif

17 / 20

Try to run ProVerif

m Demo
m A similar-looking attack. ..

17 / 20

Try to run ProVerif

m Demo
m A similar-looking attack. ..
m We actually have a type flaw! Let us correct it.

17 / 20

Try to run ProVerif

Demo
A similar-looking attack. . .
We actually have a type flaw! Let us correct it.

OK

17 / 20

Correspondence assertions

Two more predicates, b and ¢, for begin and end.

After a party has executed begin (M), its following messages are
translated with b(M) as a premise.

[0 ... contains session |IDs and received messages.

Emitting end(M) is adversary's goal, hence it is the conclusion of a
rule.

O a(mq) A---a(mg) = e(m)

If b(X) is necessary for ¢(X), then we have (non-injective)
agreement.

18 / 20

ISO 3-pass mutual authentication

Draft:
1. A—B: Ny
2. B—A: [{NAlaNBaKA}]KB
3. A—B: [{NB,NAQ,KB}]KA
Final:
1. A—B: Ny
2. B— A [{NA,NB,KA}]KB
3. A—B: [{NB,NA,KB]KA
m From signature find the message.
m Public key = principal’'s name.
m end(K 4, Kp) executed by B in the very end.
m begin(K,, Kg) executed by A before 3rd message.

19 / 20

Injective agreement

Add the session identifier to the argument of e.
Add the session identifiers and received messages to the argument of
b

If b((X,I1I)) is necessary for ¢((X,I)), and I appears in I, then we
have injective agreement.

Example:
1. A—B: (A, B)
2. B—A [N}k,

has agreement, which is not injective. Indeed, A's signature
verification fails, if B has never signed anything.

20 / 20

	ProVerif
	Horn clauses
	Examples
	Recall our example
	The first message
	The first message
	The second message
	The third message
	The fourth message
	The fourth message
	Solving the system
	Try to run ProVerif
	What went wrong
	The second message
	The fourth message
	Try to run ProVerif
	Correspondence assertions
	ISO 3-pass mutual authentication
	Injective agreement

