
1

GOOD DIAGNOSTICS = ADEQUATE STEPWISE
SOLUTION INTERFACE?

Rein Prank
Tartu University

Institute of Computer Science
prank@cs.ut.ee

About ten years ago we started the computerisation of the exercises of our basic course in
Mathematical Logic in Tartu University. As a result, we implemented a package of four
programs designed for the following types of exercises:
1) truth-table exercises,
2) formula manipulation,
3) proofs in Propositional and Predicate Calculus,
4) Turing Machines.
A general description of the package and our first experience is given in [1] and some
concrete items are discussed in [2] and [3]. Having now exploited the package during six
years with the yearly enrolment of 70-100 students, we have made some corrections and
additions to our first versions of the programs. Also, some problems for which we do not
have good solutions have arisen.

The reason for our project was not “to make science” but to design programs that can be
really used in teaching. Our main intention was to give the students a better feedback than
by traditional paper-and-pencil technology. In general our programs can be characterised
as stepwise problem-solving environments with diagnostic feedback and assessment
features. Already at the first stages we based the diagnosis not on prover-like error-
reconstruction but on understanding the mistakes at the moment when they are made by
the student. This requires some efforts by the design of problem solving dialogues and
student interface. Practical orientation also means that the programs do not try to
demonstrate their ability to give a very detailed diagnosis. For many situations the
exploitation has convinced us that the message “The expressions are not equivalent” is
sufficient for the students to correct the mistake. Then this minimal message is
didactically the best because it makes the student understand himself what caused the
incorrect result.

The paper describes the diagnostics-directed features of the interface of two programs:
Truth-Table Checker and Algebraic Manipulation Assistant. Both programs have many
different working modes for different ways of the use (classroom exercises and
homework, tests, self-checking of written homework and even the work of instructors).

Error diagnosis in traditional and computerised environments

Consider the amount of information that the teacher can use when he is diagnosing the
errors of the student in different situations. In the most trivial case the teacher knows only
the answer given by the student (or looks only at the answer). If the answer is wrong,

2

then he can make conjectures about the mistake(s) that could cause this answer. If the
student has not made some single most typical mistake, the teacher can often guess
several quite probable ‘stories’ of proceeding, and in many cases he has no reasonable
assumption.

If the teacher is checking a written homework or test in Mathematics, the solutions are
usually presented in a form of some “solution text”. It can be a sequence of expressions
separated by ‘=’ , some kind of a table with numbers, etc. For several types of exercises
such “plain solutions” have well-known commonly accepted templates.
The templates often allow to reconstruct the decisions and calculations made by the
student and to understand the order of operations. But in some cases this is impossible or
the steps of solution presented in the script are not atomic and contain too many possible
substeps.

If the student is solving the problem on the blackboard, then the teacher has more
information for precise diagnosis. The teacher can look at the order of symbolwise
writing of the solution and it can help understand the student’s way of thinking. The
teacher has the possibility to ask questions when something erroneous appears on the
blackboard. In many cases the teacher does not consider it to be necessary to give a direct
diagnosis but he advises (in appropriate moment) to check (to compare) some items in the
solution. Sometimes he only tells that the script on the blackboard contains mistake(s).
The teacher can also require that the student must comment on every step of the solution:
what operation will be made next, what part of the expression will be replaced by some
equivalent, what formula will be applied, etc. Such a mode of the work allows the other
students to understand what namely appears on the blackboard but it also allows to
diagnose the errors and misunderstandings better.

Examine now what input data use the mathematical CAL programs for error diagnosis.
Most of the drill-and-practice programs do not allow to enter more than only the answer
of the task. As in our first case with the teacher it is clear that using such scarce input, the
real diagnosis of the reasons for a wrong answer is a very hard or even a hopeless task. It
is not surprising that most of such programs have exactly two reactions for the response:
“Correct” or “Wrong. Correct answer is …”. Some papers published in the AI
community describe the attempts to reconstruct the (combinations of) errors using serious
prover-like algorithms and big computing resources [4]. The author considers it more
prospective to develop interfaces for getting the information at the moment when the
errors are being made by the student. It also allows to give the feedback when the student
has not yet forgotten what caused him to make a particular mistake.

The most natural way to design acceptable computerised problem-solving environments
is to put the traditional solution templates on the screen of the computer. The most natural
way to design good diagnostic features is to follow the traditional noncomputerised error
diagnosis environments.

3

Formula Manipulation Assistant

The Formula Manipulation Assistant was the first of our two programs for dealing with
expressions. Expression manipulation is one of the subjects where the teachers are not
satisfied with the level of skills of the students. But at the same time it is not very clear
for the mathematicians where namely the students go wrong. In our work we have got
some picture about the errors with propositional formulas. Here the situation of the
student is slightly different than, for example, with polynomials in secondary school. On
the one hand, the propositional exercises are easier(!). The definitions of all the
propositional operations together contain less information than the multiplication table,
and the members of the logical expressions do not have coefficients. On the other hand,
the students have not yet memorised these definitions and the ideas behind propositional
operations are new for them when they start the exercises.

Starting the computerisation project, we had quite clear ideas about the work of Turing
Machine and Proof Editor programs. We also wanted to design a program for the formula
manipulation exercises (expressibility in terms of {&, ¬}, {∨,¬}, { ⊃,¬}, normal forms).
But we realised that without some experience we are not able to design good interface for
entering the solutions. Therefore, we first implemented quite a simple environment
computerising mainly the “written homework” paradigm of error diagnosis.

Working with our first version, the student entered the solution row by row and signalled
with ‘=’ about the end of the formula (with ‘;’ if he supposed the solution to be finished).
The program had special editor that did not allow to enter meaningless symbols, ignored
the difference between the upper and lower case, enabled entering the propositional
connectives by functional keys and had a mechanism for symbolwise copying from
preceding line.
After entering the symbol ‘;’ or ‘=’ , the program first checked the syntax of the
obtained formula and required the correction if necessary. Further the program checked
the equivalence with the preceding formula, then some simple conditions of profitability
of the step and reaching the goal. In case of the mistakes the program gave a
corresponding error message, the counters of mistakes were increased and the student had
to correct the mistake.
The first version was not able to diagnose the errors deeper when the entered formula was
not equivalent to the preceding. The exploitation demonstrated that the insufficiency of
the diagnosis really caused the problems with understanding of the messages. A typical
example is the situation where the student has transformed the formula
X&Y~Z∨U to
X&Y&Z∨¬Y&¬Z∨U,
i. e. applied the conversion rule A~B = A&B∨¬A&¬B to the substring Y~Z, that is
not a subformula. In such a case the program gave simply the message that the formula
was not equivalent with preceding line. The students often checked the equivalence in
their lecture notes and protested that the program had not accepted their correct operation.
Exploiting the first version of Assistant we formulated following law:

4

If the student had violated a conversion rule then he is able to correct the mistake himself
using his textbook or lecture notes. But many students violate the order of operations
and are then not able to correct the mistake.
Moreover, it seems that there are students who establish a new order of operations in the
formula each time trying to make the next step as easy as possible. We decided to
overcome the difficulties with the order of operations improving the problem solving
interface and providing a better feedback.

Working with the second version of Assistant every formula conversion step consists of
two parts. In the first part the student fixes the subformula that will be changed and in the
second part he defines the string to be put instead of this subformula. The remaining left
and right sides of the formula will be copied automatically to the next line.

Our program implements two modes for the localisation of subformula:
a) TREE - the highlighted active part of the formula on the screen is moved by arrow

keys up, down, left and right on the syntax analyse tree of the formula,
b) LINEAR - the ends of active part are moved by arrow keys.

Mode a) is used in many interactive computer algebra programs. It is clear that in this
mode the computer itself makes the work with the order of operations and the student has
no possibility to make mistakes and there is almost no need to learn. Only sometimes the
subformula locator does not jump to the expected part of the formula and it can make the
student think what is wrong.

Mode b) gives the student the possibility to make arbitrary mistakes. The error message
will be given if the fixed substring is not a syntactically correct formula (for example, the
brackets are not balanced) or if it is not a subformula (misunderstanding of the order of
operations).

An important item by implementation of subformula location modes is the treatment of
conjunction and disjunction as n-ary operations (the same problems arise with
arithmetical operations in school algebra). The exercise program must enable to carry out
the conversions in the same way as they are taught to be made on paper. In LINEAR
mode the program allows the student to choose an arbitrary segment of the n-ary junction
as subformula. We wanted to do the same in TREE but we did not find a natural way to
implement this by some combination of keys. After some experiments we have, in fact,
stopped to use TREE in our exercises.

For the second part of the step the program has three modes
1) IMMEDIATE - immediate entering of the string replacing the subformula,
2) RULE - choice of conversion rule from the menu,
3) INPUTRULE - entering of conversion rule.

IMMEDIATE is the working mode of the first version applied to subformula. First the
program checks the syntax of the entered formula. If the syntax is correct, the
equivalence with highlighted subformula is checked (and the corresponding error

5

message given if necessary). If the subformulas are equivalent, then the program checks
the correctness of replacing (again with a possible message). For instance,
¬(¬X&¬Y) = X∨Y is a valid equivalence but in conjunction ¬(¬X&¬Y)&Z the left
operand cannot be replaced by X∨Y but only by (X∨Y). It means that in IMMEDIATE
mode we also require from the some checking of the order of operations student in
second part of the step and we diagnose corresponding errors.

In RULE mode the student has to choose some rule from the menu for the conversion of
highlighted subformula. For example, for DNF exercises the menu looks like the
following:

 1. X~Y = X&Y∨¬X&¬Y 7. X∨f = X
 2. X⊃Y =¬X∨Y 8. X∨X&Y = X
 3. ¬(X&Y) = ¬X∨¬Y 9. X = X&Y∨X&¬Y
 4. ¬(X∨Y) = ¬X&¬Y 10. (X) = X
 5. ¬¬X = X 11. X*X = X
 6. X&(Y∨Z) = X&Y∨X&Z 12. X*Y = Y*X
 13. X*(Y*Z) = (X*Y)*Z

Rules 11-13 can be applied to conjunction or disjunction. Issues 1-6 in the list also
present more than one rewrite rule. The program allows to modify the "activated" rule
by functional keys. The F1 key applies the negation to the both sides (for example, the
first rule is changed to ¬(X~Y) = X&¬Y∨¬X&Y). The F2 key exchanges the sides of
the rule (the rules are supposed to be applied from left to right). After the selection of the
rule the program checks whether the application of this rule to highlighted subformula is
possible and then applies the rule. The brackets are put automatically if needed.

We have implemented the rules concerning disjunction and conjunction so that they may
be applied to n-ary junctions. In case of the rules from the right column we also permit
the multi-use of the rule in one step (deleting more than one member by rules 7, 8 and
11, adding more than one variable by rule 9, enabling arbitrary reordering by rule 12 and
arbitrary changes of the brackets by rule 13). If the result of the multi-application of the
rule is not uniquely defined, then the student is asked to enter additional information. So,
in case of rule 7, the student is asked in case of each member of disjunction, whether to
delete it or not. Then the program verifies that the members to be deleted are really false,
and that not all the members are deleted. Using rules like 7, 8 and 11, the program
allows to delete the members only in accordance with the meaning of the rule. For
instance, by rule 11 we can convert
X&Y ∨ X&Y ∨ X ∨ X&Y ∨ X to X&Y ∨ X but not to X.
The last step can be made by rule 8. It means that in RULE mode the students must
clarify their operations to certain extent and this argumentation is checked.

The RULE mode helps the student perform the details of the conversion automatically
and concentrate on the general algorithm of solving the task. We use this mode especially
in DNF exercises. The argumentation of the steps also gives the possibility to diagnose

6

better the steps which do not correspond to the conversion algorithm. But those items are
not yet sufficiently well implemented in our program.

The INPUTRULE mode is an intermediate one between IMMEDIATE and RULE
modes. The student manipulates the formula as in RULE Mode using the rules from
menu. From the very start some rules (like 10-13) are on the screen. The student can add
new rules and delete them. The program accepts only the rules with equivalent left and
right sides. If the entered rule is identical to some rule implemented in the program, then
the program will understand it in an equal way (multi-use etc.). Otherwise the rule will be
applied purely syntactically. The length of the added rules is restricted. Entering the rules
allows the program to diagnose incorrectly memorised rules.

The exploitation of the program during several years has proved that the two-stage
structure of the step has essentially improved the interface of Formula Manipulation
Assistant and the diagnostic messages are almost always understandable to the students.

Truth-Table Checker

Truth-Table Checker is designed for the exercises of filling the table, checking of
tautologicity, checking of equivalence etc. The work of the student at the task consists
normally of two parts: filling the table and the answer motivation dialog. The student
can switch over to the answer when he supposes that the answer can be motivated using
the entered values in the table. In this paper we consider only the table-filling.

The program for truth-table exercises was designed as the last in our package. But the
student meets it first. In our course the truth-table exercises are the first real mathematical
tasks following the exercises on the formalization of the sentences of natural language.
They do not require ingenuity because the solution consists usually of filling some part of
the truth-table and straightforward verifying of conditions of some definition. The student
must know the definitions of logical operations, the order of operations and the definition
of the considered notion. Nevertheless, we have experienced that some participants of the
test at the end of chapter are totally incompetent. We decided to computerise also the
truth-table exercises in order to give the students a possibility to exercise with feedback
and to mechanise the work of the instructors.

The mistakes of some students in truth-table are caused by insufficient carefulness. Some
other students start the labs without studying the content of lectures and this can cause all
types of mistakes. In both cases the message “The row contains mistake(s)” could be
sufficient. But when designing our truth-table program we knew already from the
experiments that there exists a more serious ground - for some students the idea that they
must follow some order of operations is not sufficiently clear. And we knew that such
students need a clear diagnosis of the mistakes.

The truth-table is a clear template for the visual organisation of the work on the task. But
the symbols ‘T’ and ‘F’ in the filled table are not sufficient for diagnosing the errors

7

caused by misunderstanding the order. In many cases it is impossible to understand in
what order the row was filled and whether the wrong value at some position is caused by
a wrong order of operations or by a mistake of performing the operation. As an example
of this kind we can try to diagnose the following situation:

(T,F,T) X⊃Y∨Z
 F T

The comparison of different rows does not necessarily give more information because if
the student does not accept the order of operations then he can fill different rows in
different order. The only natural way to get the correct diagnosis is to track the student
during filling the table and to react to the wrong order of operations immediately.

Now let us describe the work of the program. For filling the table of Truth-Table Checker
the student has to perform all the logical operations moving the cursor to the necessary
position in the table and entering T or F. The program checks the work of the student
and can do (in some working modes) part of the work. The working mode depends on the
values of the following options:
ORDER (CHECKED / FREE / AUTOMAT),
OPERATIONS (STUDENT / AUTOMAT),
VALUES-CHECKING (RAPID / BEFORE_ANSWER / AT_END),
LINEFILL (FULL / PARTIAL).
The student can control the direction of filling the table (HORISONTAL / VERTICAL).

In VERTICAL case the cursor is moved down in the column automatically. PARTIAL and
FREE were implemented for possible self-checking of written homework but we have not
used them. AUTOMAT has been used in the exercises on finding the formula for the
given column of the values and in the work of the teachers.
Normally the order is CHECKED. It means that if the student tries to enter the result of
some operation but the operands are not yet entered, then the program gives the message
“Missing operand(s)”, the counter of order mistakes is increased and the question marks
appear in the table at the position of cursor and missing operand(s):

8

1. Fill the table

 X Y X ∨ Y ⊃ Y & X
 T T T T T
 T F ? ? F
 F T

 F F Missing operand(s)
 Press any key

MISTAKES. Order: 1 Syntax: 0
 Values: 0 Answer: 0

Our students solve the first exercises for learning the propositional connections by
VALUES-CHECKING=RAPID signalling about the wrong truth-values immediately by
the input. But the students do not like this mode and ask for the possibility to revise the
table before checking the mistakes. In real work they correct the values very seldom. In
BEFORE_ANSWER the values in the table are checked when the student chooses the
item Answer in main menu. If the table contains wrong value(s), the corresponding
message is given, the counter of mistakes is increased by 1 and the cursor points to some
mistake. The student can correct one or more mistakes and choose Answer again. The
program switches to the answer motivation dialogue only after correcting all the mistakes
in the table. We have also designed a mode VALUES-CHECKING =AT_END where the
students answer the question of the task and motivate it using the actually entered (not
certainly correct) values. Note that this mode is not a sole computerisation of the paper-
and-pencil procedure. If the order of operations is CHECKED, then we know that the
operations are made in the right order and we are able to point out and count the
mistakes. Main (default) mode of Truth-Table Checker is
CHECKED + STUDENT + BEFORE_ANSWER + FULL. Different combinations of the
values of the task options produce the modes which are suitable for different stages of the
work and for different types of the tasks.

Conclusions

1. The work with two expression-oriented programs has convinced us that the error
diagnosis can be successfully improved using appropriate stepwise solution interfaces.
Fortunately we must not invent new ways of conversation between the student and the
computer for this purpose. They could be hard to understand for the students. The most
natural way for getting useful information is to keep the usual templates of written
solutions on the screen and to follow the dialogues developed during centuries by human
teachers. If we do it adequately, then the student understands the solution interface and
the program can give the feedback in understandable terms. It also guarantees sound
integration of computerised and traditional methods.

9

2. Understanding of the order of operations plays some key role in the exercises with
expressions. Understanding of right order is critical for the students and understanding of
student’s order is critical for the diagnostic procedure. The programs that are successful
with the order of operations seem to be successful.

3. The exercises of our computerised labs have direct analogs in school mathematics. We
suppose that the same is true of the methods of computerisation.

References

[1] R Prank. Using Computerised Exercises on Mathematical Logic. Informatik und
Schule 1991. Informatik-Fachberichte, 292, 34-38. Springer-Verlag 1991.
[2] R. Prank, H. Viira. Algebraic Manipulation Assistant for Propositional Logic.
Computerised Logic Teaching Bulletin 4, Nr.1, 13-18. University of St Andrews 1991.
[3] R.Prank. Towards Flexible Programs For Exercises In Mathematics. Hypermedia in
Tallinn’96. Proceedings. 188-192. Tallinn Technical University 1996.
[4] H.U.Hoppe. Deductive error diagnosis and inductive error generalisation for
intelligent tutoring systems. Journal of Artificial Intelligence in Education, 5, 27-49.

