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Dense word embeddings are very popular in NLP
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ity B 357 ¥ food * Distributional word representations
i S travel s * . .
&N G * Semantically and/or morphologically
e e | Y A ) similar words are located together

‘o

* Provide useful features for many NLP
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Training high quality word embeddings requires lots of
data

* To reliably estimate the word’s distributional representation the word must be
observed 1n many contexts

* Most research on word embeddings has been done on English

* There are several large corpora available for English:
* Wikipedia — 2B words
* Gigaword — 4B words

e Common Crawl — 840B words
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Training word embeddings for Estonian

* Estonian Reference Corpus — 250M words
* Wikipedia (as of 2013) — 23M words

* Morphologically rich language:
* Type-token ratio much higher than in English

* Thus, the training corpus would need to be even larger than in English
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How to improve word embeddings?

* Collect more data
* Develop better methods for training word embeddings

* Construct an ensemble of several embedding models
* Cancel out noise

* Reinforce useful regularities
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Ensemble of word embeddings

* The useful relations in the embedding space are linear

* Use linear transformations to align word embedding models into a common
embedding space

* Combine the aligned embedding vectors via averaging
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Previous and related work

* Learning Word Meta-Embeddings (Yin and Schiitze, ACL 2016)

* Combined the embeddings pre-trained with 5 different embedding learning systems
* Experiments on English only

* The ensemble barely outperforms the Glove embeddings (42B words)

* Align series of word embeddings to detect the semantic changes over time
e Kulkarni et al., 2015 (WWW)
* Hamilton et al., 2016 (ACL)

* Align the embedding spaces of two languages
e Mikolov et al., 2013 (arxiv)
* Mogdala and Rettinger, 2016 (NAACL)
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This work

* Combine several word embedding models into an ensemble
* All models are trained on the same dataset and with the same method (word2vec)
* Due to stochastic training all embedding models are different

* Experiment with two different linear methods for combining;:
* Linear regression

e Orthogonal Procrustes (Schonemann, 1966)

* Experiments on Estonian
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Iterative solution

P, * Wi, ..., W,: initial embeddings
P, * Y: combined embeddings (ensemble)
P, * P, ..., P;: linear transformation
matrices
Fn

* Estimate Y and P, ..., P, iteratively
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Solution to Orthogonal Procrustes problem

Y =WP, s.t.PPT=PTpP=]

Transformation matrices are

1.5 A1

orthonormal
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The lengths and the angles between

0.5 A
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singular value decomposition
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Data

* Embedding models trained on Estonian Reference Corpus using Word2Vec
e 250M word tokens
e 800K word types

* 10 embedding models combined into an ensemble

* Dimensionality of the embedding vectors: 50, 100, 150, 200, 250, 300
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Evaluation

* Accuracy of analogy tests:

~7

* Wking — Wman + Wyoman

* Mean synonym ranks:

* Replacement for a more popular word similarity test
* Assumption: synonymous words are organized close in the embedding space
* Find the similarity rank of the synonym pairs

e Compute the mean rank over all synonym pairs
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Analogy tests

* 259 analogy questions

* Positive and comparative adjectives

e pime : pimedam, joukas : joukam (dark : darker, wealthy : wealthier)

* Nominative singular and plural nouns

 vajadus : vajadused, vOistlus : voistlused (need : needs, competition : competitions)

 The lemma and the 3" person past form of the verbs

e aitama : aitas, katsuma : katsus (help : helped, touch : touched)



Accuracy of analogy tests
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Mean synonym ranks

* 1000 synonym pairs
* Extracted from Estonian synonym dictionary
* The first word 1n the pair 1s chosen based on frequency

* The second word is the first synonym offered by the dictionary



Mean synonym ranks
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Orthogonal Procrustes 100-dimensional
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Dissimilar synonyms

* Kaks — puudulik (two — 1nsufficient)
* Ida — ost (east — ost)

* Rubla — kull (rouble — bank note in slang)
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Scatteredness of the embedding vectors

Linear regression Orthogonal Procrustes
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Future work

* Test Orthogonal Procrustes method on more languages

* Test in Estonian on semantic analogy questions

 Study the relations between the training corpus size and the effectiveness of the
ensembling
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Conclusion

* Two linear methods for combining word embedding models into ensemble
* Evaluated on synonymy and analogy tests on Estonian

* Orthogonal Procrustes performed well, improving significantly over the best

initial model
* Linear regression was worse than the initial models

* Embeddings with more dimensions (200+) perform better on Estonian



