

Abstract— In this paper, we propose a framework for the

management of the Internet of Things (IoT) devices in a smart

building to model services based on the serverless computing

paradigm. The deployment of an IoT compatible serverless

paradigm consists of a hierarchical structural design across

the edge, fog, and cloud computing layers. The fog/edge nodes

collect the data generated from various sensors, process the

data in the intermediate nodes, and then forward certain data

to a cloud for future analysis. The framework consists of a

heterogeneous IoT network. We proposed a data distribution

algorithm in the framework to make sure management,

maintenance and availability of heterogeneous IoT network in

the serverless computing paradigm are effective and efficient.

The experiments conducted are validated at the developed fog

and edge gateways using API mechanism. The response times

for an application doing the computation at fog level and at

the cloud level are compared. The experimentation shows that

latency is less for the fog model as compared to the data sent to

the cloud model.

Keywords—Wireless Sensor Network, Smart Building, Fog

Computing, Serverless Computing, Sensing Systems

I. INTRODUCTION

Smart building technology is an emerging technology that

has the provision of automating and managing various

services in a building. Conducive computing architecture is

very much required for the present connected world of

things. It allows sensor data exchange with low latency [1],

reliable operation, and overcomes the connectivity issues

with the cloud. The combination of IoT, Artificial

Intelligence, and 5G communication technologies allows

the applications to perform effectively with the computing

architecture. The “Fog computing” architectural model

provides the facilities as mentioned above to perform the

computations and storage from the cloud closer to the

devices based on the service and data requirements [2].

The IoT application research involves the things/devices to

the globally interconnected network [3]. The smart sensing

devices in the IoT capture large amounts of data that have

to be transmitted, stored, processed, analyzed and act

accordingly within a specific period time to provide a real-

time outcome [4]. Cloud architectural model for the IoT

applications is latency intensive.

The Fog-based solutions move the data processing closer to

the network edge, which allows for faster response times

and increased energy efficiency [5]. Instead of continually

moving data to the cloud for computing operations, which

accounts for the energy costs, data can be processed and

mined on fog/edge devices closer to the user [6]. For cases

involving health monitoring, low latency driven by edge

and fog solutions allows for emergency medical help to

arrive promptly on time. Due to a large amount of data

traditionally sent to cloud services, privacy and security

remain a crucial issue, especially in cases where a patient’s

medical data could be hacked [7].

*The authors are with the School of Computer and Information Sciences,

University of Hyderabad, Telangana, India; (Email: nks@uohyd.ac.in)
+The author is with the University of Tartu, Estonia.

In existing fog deployments, an increased number of fog

nodes contribute to lower latency in data transfer [8].

Various fog/edge mining techniques can also contribute to

lowering the amount of time spent transferring data to the

cloud [9]. Fog/Edge can have lightweight computations on

close continuous, for example, the sensor data aggregation

and handling of stream data. This innovation is an essential

empowering influence for the future improvement of

cutting edge administrations, for example, traffic checking

and arranging through the mix of road sensors information

(e.g., vehicle following, air quality estimations) and

meteorological data.

In spite of the fact that fog gateways (hubs) offer an obliged

registering limit contrasted with their cloud partners,

regardless they have capacities to process information in

close ongoing to give confined administration to users,

limiting the communication necessities with the cloud, or

guaranteeing application strength and avoiding blackouts

between the Fog and Cloud layers. With circulated Fog-

based computational capacities, applications require a better

capacity than adjust to the consistent changes that happen

inside the elements of a cutting edge city: the best way to

give the required adaptability will be using progressed

Artificial Intelligence (AI) procedures that assist

frameworks to learn and demonstrate the conduct of data in

close continuous.

When using the cloud-only solutions, the data retrieval

times are too high for a real-time scenario, such as fall

detection or stroke mitigation, that require high response

times from medical professionals [10]. Frequently sending

information to the cloud for computation accounts for

higher power consumption and costs associated, even more

so today, when the amount of data generated by sensors is

huge [11]. In a typical cloud service, it was proved that high

latency and low sustained performance as compared to

distributed computing architecture with several computing

nodes at different geographical locations is better than

cloud-based solutions [12]. Cloud-based solutions also do

not offer the user a low-cost mobile environment, which is

required for many of the patient monitoring scenarios.

A few advances applicable to the development of the IoT

have risen in the most recent years, including 5G

communication and fog processing [12]. The blend of these

innovations opens another scope of potential applications

with regards to Smart Cities. There is a quick development

in the number of activities wanting to convey new

administrations to citizens, in view of the sending of

countless hubs close to the edge, in the lanes of present-day

urban communities, overcoming any issues among gadgets

and cloud-based administrations. The present research work

identifies a needed shift from centralized cloud

architectures to distributed fog and edge-based ones that

better meet the needs of a smart building system with an

excess of data as compared to legacy systems. This work

also proposes a device abstraction mechanism in the form

of the Application Program Interface (API). It supports

Suvajit Sarkar*, Rajeev Wankar*, Satish Srirama
+
 and N.K.Suryadevara*

Serverless Management of Sensing Systems for Fog

Computing Framework

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSEN.2019.2939182

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

heterogeneity, smooth integration of new sensing devices,

and portability of the system to a new environment.

The fog computing model uses distributed computing

approaches to establish smart and connected areas. Fog

computing ability is to support compute-intensive

applications. It enables real-time decision-making; deploy

low latency-sensitive operations to perform very

effectively. Consideration of a decentralized architecture for

the device to connect to the network shall reduce the

bandwidth restrictions and create room for the continued

addition of more connected devices with the help of fog

computing.

The present smart home/buildings are utilizing the IoT

theme for better efficiency in energy consumption,

improved inhabitant experience, and lower operational

expenses. They require distributed fog/edge arrangements

since they contain a large number of sensors estimating

different structural working parameters [13], such as

ambient temperature, humidity, monitoring inhabitants,

energy use, smart card readers, parking spot inhabitance,

fire, smoke, security, elevators, and air quality. This

utilization case shows how fog/edge hubs at the room level,

floor level, building level, and cloud level can be

progressively architected for effective and efficient real-

time processing, empowering many new applications.

II. DEPLOYMENT MODELS FOR IOT APPLICATIONS

This section describes different computation models

currently followed by application developers for various

IoT tasks:

A. The Cloud computing model provides access to a shared

pool of resources through the internet [14][15]. The

resources may be network, storage, and computation [16].

The deployment of IoT applications using the cloud in

comparison to traditional data-center is cost-effective.

B. Edge computing for an IoT based application is to carry

out the computation at the same network level as that of

data generation. Since the processing is done near the

source, latency for data transfer is less. An application that

requires quick response time uses edge computing [17][18].

C. Fog computing is an important model in the deployment

of distributed applications that are latency aware [19]. Fog

cluster consists of fog nodes arranged in hierarchical order

in multiple layers. Each layer of a fog cluster can be

designed to solve a particular problem. Load balancing

among the nodes of a fog cluster can be done [20]. Also,

data can be offloaded to the powerful cloud servers for

further processing.

In an edge-computing architecture, data operations, such as

classification or compression, are completed at the edge of

the network. These edge nodes are often small servers that

allow for the fast processing of data that mobile devices can

often not achieve. Edge or fog nodes can be a multitude of

devices, deployed at different distances between the Cloud

and edge user device, depending on the operating range.

The commercially available products such as Raspberry Pi

[21] [22], Arduino [23] [24], and Field-Programmable Gate

Array (FPGA) [25] platforms serve as fog/edge gateways.

IoT applications are the stimulus to events. An event such

as sensed data from the temperature sensor can trigger the

HVAC system [26]. Based on the location of data

processing [27], we have explained different models that

are used currently for deploying IoT applications.

� IoT + edge model
Data generated from the IoT sensors/devices are processed

in some near edge devices. The edge devices take action

based on the processing. The model is limited by the low

computation power of the edge devices.

� IoT+cloud model

In this model, data from the sensors are directly transmitted

to the cloud for processing and analysis. High-performance

computing units support the cloud infrastructure. Hence,

this model can support heavy applications. The drawback of

this model is high latency cost since the cloud nodes are

geographically far from the IoT sensors.

� IoT + fog + cloud model

Data flow from sensors to fog nodes. Fog nodes are capable

of taking any action or can filter data and send it to the

cloud for further analysis. Hence, this model has a high-

performance computing power of the cloud as well as can

respond quickly to an emergency using the low latency fog

infrastructure.

D. Software service models offered by Cloud/Fog

computing

We can architect the cloud as well as fog infrastructure to

provide various services such as Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), Software as a Service

(SaaS) [28][29]. Many applications use these services for

computation, storage, management and control purposes.

IaaS: Using virtualization techniques IaaS provider offers

virtual machines to the users on top of the underlying

fog/cloud infrastructure [30][31]. Users have complete

control over the operating systems, packages to be installed,

and networking.

PaaS: Offers an environment for running user tasks. The

user can design the application in any programming

language. The user also has control over the libraries used.

The environment is a container which is a process running

on any host physical/virtual machine.

SaaS: It is a software service deployed on a fog or cloud

cluster. The user has very little control over the system

components.

A few urban areas around the globe are associated with new

schemes towards Smart Cities. The frameworks in the cities

such as Nice, France, use Connected Boulevard [32] which

has been developed to advance several aspects of the city

including traffic, road lighting, waste transfer, and

environmental conditions. Likewise, in Santander, Spain,

the venture SmartSantander [33], centers around the

European office for research and experimentation of

models, innovations, and applications for brilliant urban

communities, yet without concentrating on Fog

computation. Further, different urban communities like

Songdo (South Korea), Masdar City (Abu Dhabi, UAE),

Paredes (Portugal), Manchester (UK), Boston (US), Tianjin

(China) and Singapore, declared smart city-related tasks

[34]. Even though different approaches portray on every

city, a flexible and secure investigation between the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSEN.2019.2939182

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

fog/edge and server computations are interesting issues,

rotating around reasonable and moderate methods for the

framework [34].

Many fog applications depend on the real-time data stream

process. Yang et al. [35] present general models and

designs for Fog information streaming and examine the

basic properties of the most widely recognized applications.

An outline about device-to-device correspondence on the

fog can likewise be found in the article Bao et al.,

concentrating on the physical plane of such devices.

Similarly, Gang Xu et al. indicated how availability issues

are imperative in this field, explicitly in remote

correspondences, applying a calculation to organize which

of the accessible information in a given field with

interconnected sensors is send to a versatile bearer and how

to course it when associations between information supplier

and the portable transporter are discontinuous and short in

time.

The most popular case requiring low latency is elderly

monitoring in homes. Rasika et al. [38] and Shalom et al.

[39] proposed systems that collect patient’s sensors data on

current body status and transmit to a Personal Digital

Assistant (PDA) or mobile phone, which does local

processing and alerts family or emergency services in case

of a fall detected or a deviation from healthy heart rate or

blood pressure. Communication between a device and fog

node is done with short-range communication protocols,

such as IEEE 802.15.1 or 802.15.4 [40]. Often a sensor

node will be connected to additional computing devices or

cloud services using a wireless 802.11protocol [41]. Many

applications similar to [42] utilize IEEE 802.15.1 or

Bluetooth as a protocol for communication between a

medical device and a smartphone, where computation is

done at the device level. Once a small amount of computing

is finished on the smart device, data is transferred to a

doctor or an additional server via mobile communication

services such as 4G or 5G. These are popular solutions due

to low cost and simple programming. Other research uses a

graphics processing unit in cases where pictures are the data

input to be computed. Other popular nodes are Telos Mote

[43] and Intel Edison [44], especially for cases involving

ambient sensing. Telos is a collection of sensing devices

developed by UC Berkeley for wireless sensor network

(WSN) research that utilizes WPAN/IEEE 802.15.4. Intel

Edison, is similar to the Telos mote, except it is compatible

with IEEE 802.11 and IEEE 802.15.1.

The basic features of edge/fog computing gateways (hubs):-

1) In the industry, we have wireless communication

protocols such as Zwave, Zigbee, WiFi, and Bluetooth.

Hence, the edge/fog computing system recognizes the

necessity of incorporating wireless compatibility of several

communication technologies.

2) The edge/fog gateway needs to collect and process the

data locally to reduce latency.

3) Access the data remotely for the distribution of data so

that the load balancing mechanism can be incorporated.

4) The edge/fog gateway should have the capability to store

the data for local computations.

5) The edge/fog gateway should have the mechanism for

data security and be able to provide data on request.

6) Gateways should support services/applications for

various IoT protocols as such REST, MQTT and COAP.

III. SYSTEM SETUP

The system setup for the smart building application consists

of the hardware components, computing devices,

communication modules, and software units.

A. HARDWARE COMPONENT DETAILS:

The IoT framework usually consists of sensors based on the

specific application. The general hardware devices are

Arduino, Raspberry Pi, nodeMCU [45], XBee [46]. These

devices are also edge devices but can also be used as fog

nodes.

Sensing Systems:

Sensors to monitor room environment like DHT [47] and

gas sensors [48] can be an important inclusion in a Smart

home application. They have a low cost and easy to

maintain. Sensors do not have any computational power.

Sensors, along with a computational device, can be

abstracted as a sensing system. Sensors can be further

categorized into environmental and smoke sensors.

Fig.1 a.DHT11, b. Gas Sensors and c. Philips Hue Lights used in the

experimental setup

Environmental Sensors: DHT11 Digital Humidity and

Temperature (DHT) sensor outputs calibrated digital signal

as temperature and humidity data in the output pin. A

DHT11 sensor consists of three pins VCC, ground, and data

pin, which is shown in Fig.1(a) The calibrated data can be

collected in an Arduino and processed further to get the

value of temperature and humidity.

Gas Sensors: These sensors are used to test the quality of

air to detect some gases it is designed for. Fig.1 (b) shows

various smoke sensors used in our work. MQ2 sensor

detects the quantity of carbon monoxide (CO) gas in the air.

It requires the power of 5V and gives the output as an

analog signal. MQ2 sensor is capable of detecting gases like

CH4, H2, LPG, smoke, propane, and CO. It has both analog

and digital output pin. MQ135 sensor can be used in a smart

home or office to detect the proportion of different gases

like CO2, Alcohol, NH3, benzene, and smoke.

a b

c

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSEN.2019.2939182

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Philips Hue Lights is a smart light that has a varying range

of colors and is used to control the ambiance of a room. The

color at any point of time can be changed remotely from

other devices using the REST layer provided by openHAB.

Fig.1(c) shows Philips hue light used in our experiment

with varied colors at different points of time.

B. Computational Devices

The following section describes the computing devices

required in the present IoT environment. We have used

these devices to act as an edge or fog node.

1) Arduino: Arduino is an open-source platform for creating

hardware and software solutions for critical digital

problems. The physical board or microcontroller is capable

of computation or processing of data it senses from the

attached sensors. It is a low cost as well as supports

multiple platforms like Windows, Linux, and MAC. The

software Arduino IDE helps to write the logic. It is based

on the C++ language.

2) Raspberry Pi: Similar to Arduino, Raspberry Pi is also a

computational device with more capability. The

microcontroller has ARM-based processor, memory,

storage cards, a wireless communication module, GPIO

pins. It supports Debian based operating system known as

Raspbian. Sensor output can be connected with the GPIO

pins to get the data at the Raspberry Pi. Raspberry Pi 3

Model B+ was used in our experimentation.

C. Communicational Devices

These devices are used to forward the data to other

computational devices for data processing.

1) NodeMCU: Similar to Arduino, NodeMCU is also an

open-source project providing open-source solutions for

both hardware and software. It supports the Wi-Fi protocol

for communication.

2) XBee: These devices are low-cost radio modules

designed only to route the data from an XBee connector to

an XBee receiver. The XBee connectors also pass the data

to the next level for processing. The XBee devices are

connected in the form of mesh topology and follow the

Zigbee protocol for communication.

D. Open Source Software Tools

The software tools like openHAB and OpenFaaS can be

integrated with the IoT devices to have customized

management of an application.

i). openHAB: The open Home Automation Bus (openHAB)

is a platform for home automation applications. It provides

the ability to connect a large number of devices and systems

[49]. openHAB communicates electronically with devices

in the smart home environment and performs user-defined

actions. Using open-HAB control panel or openHAB REST

API, various parameters of hue lights like color, brightness,

and saturation can be controlled to create a smart home

environment. Fig.2 shows an instance of the configuration

panel in openHAB, which provides information about

various connected things in our experimental setup.

Fig. 2 An instance of an openHAB configuration panel

ii). OpenFaaS: It is an open-source framework used to

achieve Function as a Service on the top of a cluster of

computational devices [50]. OpenFaaS uses the service of

other software tools like docker and docker swarm. It

installs a docker engine on top of the underlying operating

system. Docker engine is responsible for the creation of

containers that is a lightweight process running to provide

the desired programming environment. Swarm or

Kubernetes Dockers is used to manage docker. Load

balancing among the participating nodes is done by calling

the services of Prometheus which offers a graphical view of

the system workload. The Graphical User Interface (GUI)

of openFaaS is shown in Fig.3 and Command Line

Interpreter (CLI) to create and deploy micro-services

requested by the user of the system. The micro-services

become RESTful services with the REST API support of

OpenFaaS. Hence, the micro-services can be easily invoked

from an application or other micro services.

Fig.3 An instance of an OpenFaaS GUI

iii). Software solutions

1) IoT and Cloud Model: This model consists of a device

tier, a gateway tier, and a cloud layer. Data from the device

tier are pushed to the edge and fog gateways. The

corresponding gateway application using the MQTT

protocol [51] pushes the data to the public cloud for further

processing. The gateway can also use the HTTP protocol to

send data to REST API [52] of the public cloud.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSEN.2019.2939182

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2) IoT, Fog and Cloud computing: This model is similar to

the previous (Edge computing) model except that the edge

gateway pushes the data to some near to the device fog

node. The fog nodes filter the data at this layer before

sending it to the cloud. Hence, latency can be reduced if this

model is followed.

3) Serverless/Distributed deviceless Model: Serverless

computing is running user functions on runtime in a

container and gets back results. This architecture helps in

cost optimization as compared to IAAS where virtual

machines have to run continuously to keep the application

up. Multiple fog devices can be used to create a distributed

system having provision for load balancing. The proposed

setup can be configured to run the applications as given in

[53-58] for effective quality of network service parameters.

IV. EXPERIMENTAL SETUP AND RESULTS

HARDWARE SETUP
We have set up the physical layer consisting of edge

devices like Raspberry Pi, Arduino, and some sensors like

MQ7, MQ2, and DHT11. Our experimental setup also

contains XBee devices that follow the Zigbee protocol. It

also consists of openhab environment. The sensors are

connected to the Arduino pins. The data flows from the

Arduino to the Raspberry Pi through the serial cable. The

XBee unit is also connected with the Raspberry Pi by cable.

The Raspberry Pi is the edge gateway that collects the

sensor data. We have a cluster of Raspberry Pi, which is a

fog cluster. The fog cluster has been set up using Openfaas.

Hence, the microcontroller where Openfaas gateway

application is running acts as the fog gateway.

HARDWARE ABSTRACTION
Device abstraction is the method of hiding the complex

working knowledge of devices while reflecting only the

functionality it provides. We have designed and developed

an API that does the abstraction by creating classes for each

device. Multiple devices of the same class can be included

in the system in the form of objects having a unique id. In

this work, we have created separate classes for

environmental and smoke sensors. The objects of the

proposed classes are capable of calling the set of functions

which are depicted in Fig.4.

Fig.4 Hardware Device Abstraction

DISTRIBUTED DEVICELESS COMPUTATION MODEL

We have proposed a distributed serverless computation

model. For that, we have used an open source orchestration

platform OpenFaaS to create a fog cluster. We can create

functions using the OpenFaaS CLI tool or through the

gateway application provided by OpenFaaS. The functions

deployed are capable of doing a predefined set of tasks on a

container when invoked. The invocation of a function can

also be done using the REST API of the function. We can

send the sensor data as arguments in the REST based

get/post call. Fig.5 shows a fog cluster having multiples of

Raspberry Pi units in the cluster model. The function

defined uses the infrastructure to run in an appropriate node

to provide the service it is intended. There is a provision to

offload some computation to the cloud by calling the

particular responsible function.

Fig.5 Distributed deviceless Platform

A. Data Aggregation

For data collection, we connected multiple sensors to a

raspberry pi which acts as an edge gateway. We created a

software service in the form of API to monitor the sensors.

The API has abstracted the sensors to reflect only the

functionality defined. Algorithm.1 collects the data stream

from the input buffer and returns the data.

Algorithm 1 collectData(edgeGatewayIP)
Result: Data read or failed to

read while True do
if check buffer then

data = read stream; if data
then Display data;

else
Display ”failed to read

data”; end
else

wait
end

return data
end

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSEN.2019.2939182

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

B. Data Distribution
We have created several micro-services, each one
responsible for its own set of tasks. Using the load balancing
facility of OpenFaaS we have distributed the services evenly
on the fog cluster.

Algorithm2 is used to send data to cloud for further
processing.

Algorithm 2 sendCloud(data,chId,key)
Result: Http response(200,404,500 etc)
while data do

requests.post(data,keys)
end

storeDataDb() procedure is used to store the data in a
database. The micro-service may segregate the data or it can
receive the segregated data from the below layer.

Algorithm 3 storeDataDb(data,tableId)
Result: Http response(200,404,500 etc)
while data do

insert data into table tableId
end

SYSTEM ARCHITECTURE:

The proposed system architecture is described in Fig.6 An
application “edge API” is running on the edge gateway to
gather the data from the sensors. The middleware is
responsible for the management of the fog cluster and the
edge gateway. The fog cluster is created with openFaas.
Data from the edge gateway can be pushed to the fog
gateway using the REST API provided by openfaas.

Fig.6 Overall System Architecture

Data at the fog layer can be processed using the underlying
fog Infrastructure. We have designed the fog cluster to
provide Platform as a Service (PaaS) to the users or
application developer. The developer can make decisions
whether the processing is to be done at the fog level or send
to the cloud for deeper analysis.

A. Edge Gateway Configuration

The edge gateway is a raspberry pi connected with different
sensors using different protocols. We are running a data
aggregation program to collect the sensor data. Both
Raspberry Pi and Arduino are used as edge nodes in our lab
setup. We have configured a Raspberry Pi as the gateway.
An Arduino is connected to it which collects the data from
smoke and DHT sensors. The combination of different
sensors with the edge gateway can be found in Fig.7

B. Fog Cluster Configuration

We have created a cluster of four Raspberry Pi devices to
act as a fog infrastructure. All the machines are on the same
level of the network. We installed OpenFaaS on a cluster of
micro-controllers. The configuration details of the fog nodes
which are Raspberry Pi in our setup are given in Table-I.

C. ThingSpeak Cloud

ThingSpeak is an IoT based platform for visualizing and
analyzing data generated from IoT sensors. We have used
the free version of ThingSpeak cloud to upload our sensor
data. DHT sensor data uploaded to ThingSpeak channel can
be visualized as shown in Fig.8.

Table.I Configuration of the existing computing devices

Parameters Arduino Uno Raspberry Pi B+

Processor ATMega328P
Broadcom BCM2835 SoC

based ARM11 76JZF

Operating Voltage 5V 5V

System Memory 2kB 512MB

Flash Memory 32kB -

EEPROM 1kB -
 IEEE 802.11 b/g/n, IEEE 802.11 b/g/n,

Communication IEEE802.15.4, IEEE802.15.4,

Supported 433RF, BLE4.0, 433RF, BLE4.0,
 Ethernet, Serial Ethernet, Serial

SPI, 12C,
SPI, DSI,

I/O Connectivity UART,SDIO,
UART, GPIO

CSI,GPIO

Fig.7 Edge gateway connected with different sensors

Sensing

Devices

Sensing

Devices

Sensing

Devices

Sensing

Devices

Sensing

Devices

Wireless Communication Protocols

 Zigbee WiFi ….. RF

Fog Node

 Distributed platform

Edge Gateway

Cloud

API

 Interfacing

 Users

….

Reduction in Latency

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSEN.2019.2939182

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Fig.8 ThingSpeak cloud visualization of sensor data

A. Result of fog + cloud Model

The combination of fog and cloud model is used when we

have to do very heavy computations which are not possible

in less powerful fog devices. The computation is offloaded

to a more powerful cloud infrastructure. We have computed

the turnaround time (latency) for sending data from edge

devices, where the data is generated to fog gateway and

then to cloud. We have used ThingSpeak for our

experimentation. The combined data of different sensors are

separated either at the edge gateway or at a fog node.

The turnaround time for each sensor to reach the cloud is

plotted in Fig.9 a,b,c The orange points in the graph are the

time required using the cloud model. An orange dot in Fig.9

a,b,c shows the distribution of time taken to upload all the

sensor data to their corresponding ThingSpeak cloud

channel. The separation of data is done at the fog level.

B. Result of fog+fog Model

The fog cluster model is used in applications that required

frequent data access and quick response time. The Openfaas

distribute the data at the device and send to the fog cluster

for further processing. In another experiment, the data is

segregated and then processed at the fog level. Fig.9 a,b,c

shows the time taken for the sensor data received and

processed at the fog node. Time taken by the fog model is

represented by the blue points in all the graphs. It is clear

that the turnaround time hence latency for the cloud model

is higher than the fog model. In the fog model, the data can

be processed locally with minimum data transfer hence

better result. But the fog architecture is limited by the less

powerful micro-controller used in our experimentation as

fog nodes. The average latency delay between the cloud

model and fog model is 2 sec for the two sensing systems

deployed in the building.

Similarly, the data related to Philips Hue Lights such as

Light intensity, Light temperatures and Color values too

have reduction in the response time as compared to cloud

model.

 (a)

 (b)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSEN.2019.2939182

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

 (c)

Fig.9 a) DHT11 sensor data latency comparison between cloud and fog node

 b) MQ135 sensor data latency comparison between cloud and fog node

 c) MQ2 sensor data latency comparison between cloud and fog node

An orange dot indicates the latency of the sensor data received at the cloud

model, and a blue dot indicates the latency of the sensor data received at

the fog node.

V. CONCLUSION AND FUTURE WORK

From this study, we can conclude the following points:

� The serverless mechanism will be most appropriate in the

event that you aren’t worried about the issues related to

cloud lock-in.

� The arrangement of serverless computing with the fog

framework under the IoT theme does not require the

transmission of data from the device to the cloud. Hence,

expenses can be reduced considerably.

� The developed framework using open source IoT

arrangements is effective as compared to a cloud-centric

system where the application demand swift actions based

on real-time data.

� The solution does not require frequent upload of data to

the cloud. Data can be filtered before sending it to the

cloud.

� The serverless model does not charge for idle time as

compared to the cloud model.

� The internal system administration process is trivial

compared to the cloud agnostic model.

� It is adaptable and deficiency tolerant structure

� It lessens the improvement and arrangement costs and

time periods.

� It gives us flexibility in using openHAB and customer

unit software.

� By distributing information across a fog instead of

concentrating important information in one part of the

network, enhanced privacy can be achieved.

In this work, devices are abstracted to give a functional

view to the user. There is a provision for device

authentication by registering them on to the system and

only the authenticated devices are allowed to perform any

action. This will protect the system from Denial of Service

(DoS) attack as well as data security can be achieved. The

future scope of this work is to build a system more robust,

secure and incorporate a few predictive learning models to

extract some useful information from sensor data.

REFERENCES

[1] Gopika Premsankar, Mario Di Francesco, and Tarik Taleb. “Edge

Computing for the Internet of Things: A Case Study”, IEEE Internet

of Things Journal 5 (2018), pp. 1275–1284.

[2] Ashkan Yousefpour, Genya Ishigaki, and Jason P. Jue. “Fog

Computing: Towards Minimizing Delay in the Internet of Things”.

IEEE International Conference on Edge Computing (EDGE) (2017).

[3] Ebraheim Alsaadi and Abdallah Tubaishat. “Internet of Things:

Features, Challenges, and Vulnerabilities”, International Journal of

Advanced Computer Science and Information Technology

(IJACSIT) 4 (2015).

[4] Faycal Bensaali , Xiaojun Zhai , Abbes Amira , and Lu Liu. “Guest

Editorial Special Issue on Real-Time Data Processing for Internet of

Things”.IEEE Internet of Things Journal 5 (2018), pp. 3487– 3490.

[5] Aazam M, Zeadally S, and Harrass KA. “IoT Stream Processing and

Analytics in the Fog”. In: IEEE Communications Magazine (2018),

pp. 46–52.

[6] Weisong Shi , Jie Cao, Quan Zhang, Youhuizi Li , and Lanyu Xu.

“Edge Computing: Vision and Challenges”. IEEE Internet of Things

Journal 3 (2016), pp.637–646.

[7] Stephanie B Baker, Wei Xiang, and Ian Atkinson. “Internet of Things

for Smart Healthcare: Technologies, Challenges, and Opportunities”.

IEEE Access 5 (2017), pp. 26521–26544.

[8] Gilsoo Lee, Walid Saad, and Mehdi Bennis. “An Online

Optimization Framework for Distributed Fog Network Formation

With Minimal Latency”,IEEE Transactions on Wireless

Communications 18 (2019), pp. 2244– 2258.

[9] Elena I. Gaura, James Brusey, Michael Allen, Ross Wilkins, Dan

Goldsmith, and Ramona Rednic. “Edge Mining the Internet of

Things”. In: IEEE Sensors Journal 13 (2013), pp. 3816– 3825

[10] Ahmet Turan Ozdemir, Cihan Tunc, and Salim Hariri. “Autonomic

Fall Detection System”. In: IEEE 2nd International Workshops on

Foundations and Applications of Self Systems (2017).

[11] Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu,

Jie Lin, and Xinyu Yang . “A Survey on the Edge Computing for the

Internet of Things”. In: IEEE Access 6 (2017), pp. 6900–6919.

[12] Romana Shahzadi, Ambreen Niaz, Mudassar Ali, Muhammad

Naeem, Joel J. P. C. Rodrigues, Farhan Qamar, and Syed

Muhammad Anwar. “Three tier fog networks: Enabling IoT/5G for

latency sensitive applications”. In: IEEE Communications 16 (2019),

pp. 1–11.

[13] Nitinder Mohan and Jussi Kangasharju, “Edge-Fog cloud: A

distributed cloud for Internet of Things computations”, IEEE

Cloudification of the Internet of Things (CIoT) (2016).

[14] Cloud Computing Basics. Last accessed 24 Aug 2018. URL: https:/ /

www.ibm.com/blogs/cloud-computing/2014/02/04/cloud-computing-

basics/.

[15] Cloud Computing. Last accessed 24 Aug 2018. URL: https:/ /www.

bartleby.com/essay/Cloud-Computing-Provides-A-Shared-Pool

[16] B. B Prahlada Rao, Paval Saluia, Neetu Sharma, Ankit Mittal, and

Shivay Veer Sharma . “Cloud computing for Internet of Things and

sensing based applications”. In: IEEE Sixth International Conference

on Sensing Technology (ICST) (2012).
[17] Najmul Hassan, Saira Gillani, Ejaz Ahmed, Ibrar Yaqoob, and

Muhammad Imran. “The Role of Edge Computing in Internet of

Things”. In: IEEE Communications Magazine, 56 (2018).

[18] Edge Computing, Last accessed 25 Aug 2019. URL:

https://en.wikipedia.org/wiki/Edge computing.

[19] Fog Computing. Last accessed 30 Aug 2018. URL: https:

//en.wikipedia.org/wiki/Fog computing.

[20] Qiang Fan and Nirwan Ansari. “Towards Workload Balancing in Fog

Computing Empowered IoT”, IEEE Transactions on Network

Science and Engineering (2018).

[21] Raspberry Pi, Last accessed 25 Sep 2018. URL: https:

//www.raspberrypi.org/blog/

[22] What is a Raspberry Pi? Last accessed 25 Sep 2018. URL:

https://opensource.com/resources/raspberry-pi

[23] Arduino - Tutorials. Last accessed 28 Sep 2018. URL:

https://www.arduino.cc/en/Tutorial/HomePage?from=Main.Tutorials

[24] Arduino Tutorial. Last accessed 28 Sep 2018. URL:

https://www.tutorialspoint.com/arduino/

[25] Field-programmable gate array, Last accessed 20 Sep 2018. URL:

https:/ /en.wikipedia.org/wiki/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSEN.2019.2939182

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

[26] Wei Song , Ning Feng, Yifei Tian, and Simon Fong. “An IoT-Based

Smart Controlling System of Air Conditioner for High Energy

Efficiency”, IEEE International Conference on Internet of Things

(iThings) (2017).

[27] Antonio Brogi , Stefano Forti, Ahmad Ibrahim, and Luca Rinaldi.

“Bonsai in the Fog: An active learning lab with Fog computing”

IEEE Third International Conference on Fog and Mobile Edge

Computing (FMEC) (2018)

[28] Cloud Service Models. Last accessed 28 Oct 2018. URL:

https://www.ibm.com/cloud/learn/iaas-paas-saas.

[29] Cloud Computing, Last accessed 20 Oct 2018. URL:

https://en.wikipedia.org/wiki/Cloud computing.

[30] Virtualization Technology. Last accessed 18 Dec 2018. URL: https:/

/www.vmware.com/in/solutions/virtualization.html.

[31] Virtualization in Cloud Computing. Last accessed 18 Dec 2018.

URL:https://www.sam-solutions.com/blog/virtualization-techniques-

in-cloud-computing/.
[32] Connected Boulevard – It’s what makes Nice, France a Smart City.

https://blog.iiconsortium.org/2014/09/connected-boulevard-its-

whatmakes-nicefrance-a-smart-city.html. Last accessed 15 Feb 2019.

[33] Luis Sanchez, Veronica Gutierrez, José Antonio Galache, Pablo

Sotres, Juan Ramon Santana, Javier Casanueva, and Luis Munoz.

“SmartSantander: Experimentation and service provision in the smart

city”. In: 16th Inter-national Symposium on Wireless Personal

Multimedia Communications (WPMC) (2013).

[34] Cities Get Smarter- MIT Technology Review. Last accessed 25 Jan

2019. URL: https://www.technologyreview.com/business-report/

cities-get- smarter/

[35] Shusen Yang. “IoT Stream Processing and Analytics in the Fog”. In:

IEEE Communications Magazine 55 (2017), pp. 21–27.

[36] Oladayo Bello and Sherali Zeadally. “Intelligent Device-to-Device

Communication in the Internet of Things”, IEEE Systems Journal 10

(2016), pp. 1172– 1182.

[37] Gang Xu, Edith C.-H. Ngai, and Jiangchuan Liu. “Ubiquitous

Transmission of Multimedia Sensor Data in Internet of Things”,

IEEE Internet of Things Journal 5 (2018), pp. 403–414.

[38] Rasika S. Ransing and Manita Rajput. “Smart home for elderly care,

based on Wireless Sensor Network”. In: IEEE International

Conference on Nascent Technologies in the Engineering Field

(ICNTE) (2015).

[39] Shalom Greene, Himanshu Thapliyal, and David Carpenter. “IoT-

Based Fall Detection for Smart Home Environments”. In: IEEE

International Symposium on Nanoelectronic and Information

Systems (iNIS) (2016).

[40] IEEE 802.15.4. Last accessed 20 Jan 2019. URL: https:

//en.wikipedia.org/wiki/IEEE 802.15.4

[41] IEEE 802.11. Last accessed 24 Mar 2019. URL: http:

//www.ieee802.org/11/.

[42] Dominik Kobylarz and Jacek Danda. “A Common Inter-face for

Bluetooth-based Health Monitoring Devices”. In: 29th Southern

Biomedical Engineering Conference (2013).

[43] Telosb Sensors. Last accessed 20 Jan 2019. URL: https:

//telosbsensors.wordpress.com/.

[44] Intel Edison. Last accessed 20 Jan 2019. URL: https:

//en.wikipedia.org/wiki/Intel Edison.

[45] NodeMcu. Last accessed 28 Jan 2019. URL: https://

www.nodemcu.com/index en.html.

[46] Digi XBee Ecosystem. Last accessed 28 Jan 2019. URL:

https://www.digi.com/xbee

[47] DHT11 and DHT22 Sensors. Last accessed 25 Feb 2019. URL:

https://howtomechatronics.com/tutorials/arduino/dht11-dht22-

sensors - temperature - and - humidity-tutorial-using-arduino/

[48] Gas Sensor Basics. Last accessed 25 Feb 2019. URL: https: / / www.

dnatechindia.com/GAS-Sensor-Basics.html.

[49] OpenHAB. https / /www.openhab.org Last accessed 21 Jun 2019.

[50] Introduction to OpenFaaS. https://docs.openfaas.com/ Last accessed

10 Apr 2019.

[51] MQTT. Last accessed 20 Feb 2019. URL: http://mqtt.org/

[52] REST API Tutorial. https://www.restapitutorial.com/ Last accessed

21 Feb 2019.

[53] Sandeep Pirbhulal, Heye Zhang, Subhas Chandra Mukhopadhyay,

Wanqing Wu and Yuan-Ting Zhang. “Heart-Beats Based Biometric

Random Binary Sequences Generation to Secure Wireless Body

Sensor Networks” IEEE Transactions on Biomedical Engineering, 65

(12), 2751-2759 http://ieeexplore.ieee.org/document/8314739, 2018.

[54] Wanqing Wu, Heye Zhang, Sandeep Pirbhulal, Subhas Chandra

Mukhopadhyay and Yuan-Ting Zhang, Assessment of Biofeedback

Training for Emotion Management Through Wearable Textile

Physiological Monitoring System, IEEE SENSORS JOURNAL,

VOL. 15, NO. 12, DECEMBER 2015, pp. 7087-7095.

[55] G. M. Mendez, M.A.M. Yunus and S. C. Mukhopadhyay, A WiFi

based Smart Wireless Sensor Network for Monitoring an

Agricultural Environment, Proceedings of IEEE I2MTC 2012

conference, IEEE Catalog number CFP12MT-CDR, ISBN 978-1-

4577-1771-0, May 13-16, 2012, Graz, Austria, pp. 2640-2645.

[56] G. M. Mendez, M.A.M. Yunus and S. C. Mukhopadhyay, A WiFi

based Smart Wireless Sensor Network for Monitoring an

Agricultural Environment, Proceedings of IEEE I2MTC 2012

conference, IEEE Catalog number CFP12MT-CDR, ISBN 978-1-

4577-1771-0, May 13-16, 2012, Graz, Austria, pp. 2640-2645.

[57] N.K.Suryadevara, M.T.Quazi and S.C.Mukhopadhyay, Intelligent

Sensing Systems for measuring Wellness Indices of the Daily
Activities for the Elderly, proceedings of the 2012 Eighth

International Conference on Intelligent Environments, Mexico, June

1-3, 2012, pp. 347-350.

[58] Suryadevara N.K., Negi A., Rudraraju S.R., A Smart Home Assistive

Living Framework Using Fog Computing for Audio and Lighting

Stimulation. In: Satapathy S., Raju K., Shyamala K., Krishna D.,

Favorskaya M. (eds) Advances in Decision Sciences, Image

Processing, Security and Computer Vision. ICETE 2019. Learning

and Analytics in Intelligent Systems, vol 3. Springer, Cham.

Suvajit Sarkar has recently completed his M.Tech

from The University of Hyderabad, India. This

research is a part of his M.Tech thesis. His research

interests are in the areas of Cloud Computing,

Serverless Computing, Fog Computing and IoT.

Rajeev Wankar is working as a Professor in the

School of Computer and Information Sciences

(SCIS) at University of Hyderabad (UoH). He

earned Ph.D. in Computer Science from the School

of Computer Sciences, Devi Ahilya University

Indore. In 1998, the German Academic Exchange

Service (DAAD) awarded him "Sandwich Model"

fellowship. His research interests are in the areas of

Cloud Computing and Grid Computing.

Satish Narayana Srirama is a Research Professor

and the head of the Mobile & Cloud Lab at the

Institute of Computer Science, University of

Tartu, Estonia and a Visiting Professor at

University of Hyderabad, India. His current

research focuses on cloud computing, mobile web

services, mobile cloud, Internet of Things, fog

computing, migrating scientific computing and

enterprise applications to the cloud and large scale data analytics on the

cloud. He is IEEE Senior Member, an Editor of Wiley Software: Practice

and Experience journal and a program committee member of several

international conferences and workshops.

Nagender Kumar Suryadevara received the Ph.D.

degree from the School of Engineering and

Advanced Technology, Massey University, New

Zealand, in 2014. He has authored/co-authored

one book and over 40 papers in different

international journals/conferences and book

chapters. His research interests are in the domains

of wireless sensor network, Internet of Things, and

Time-Series data mining.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSEN.2019.2939182

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

