
2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2958400, IEEE Internet of
Things Journal

1

Application Offloading Strategy for Hierarchical
Fog Environment through Swarm Optimization

Mainak Adhikari1, Satish Narayana Srirama1,∗, Senior Member, IEEE, and Tarachand Amgoth2

Abstract—Nowadays, billions of Internet of Things (IoT) de-
vices generate various types of delay-sensitive tasks to process
within a limited time frame. By processing the tasks at the net-
work edge using distributed fog devices can efficiently overcome
the deficiency of the centralized cloud data center (CDC), i.e.
long latency and network congestion. Moreover, to overcome
the inefficiency of the local fog devices, i.e. limited processing
and storage capabilities, we investigate the collaboration between
distributed fog devices and centralized CDC, where the delay-
sensitive tasks can preferably be offloaded on the local fog
devices, whereas the resource-intensive tasks are offloaded on
the resource-rich CDC. However, one of the challenging task in
the fog-cloud environment is to find a suitable computing device
for each real-time task by considering trade-off between the
latency and cost. To meet the above-mentioned challenge, in this
paper, we introduce an optimal application offloading strategy
in hierarchical fog-cloud environment using accelerated particle
swarm optimization (APSO) technique. The proposed APSO-
based strategy finds an optimal computing device (i.e. fog device
or cloud server) for each real-time task using multiple Quality-of-
Service (QoS) parameters, namely cost and resource utilization.
The performance of the proposed algorithm is evaluated using
four different real-time data sets with various performance
matrices. The experimental results indicate that the proposed
strategy outperforms the existing schemes in terms of average
delay, computation time, resource utilization and average cost
by 18%, 21%, 27%, and 23%, respectively.

Index Terms—IoT; Multi-objective optimization; Fog compu-
ting; Delay-sensitive application; Application offloading; APSO
technique.

I. INTRODUCTION

With the emergence of the Internet of Things (IoT), billions
of heterogeneous physical objects are connected through a
network for collecting and sharing information, which can
improve various aspects of daily lives including smart trans-
portation, smart grid, smart city, smart home, smart agriculture,
smart water, and waste management, etc. [1]. The main
objectives of the IoT applications are to minimize the latency
and processing time while utilizing the computing resources
efficiently. Most of the physical devices in IoT are embedded
with sensors, and participate in applications, which require
processing data locally or offload to a suitable computing
device (i.e. distributed fog device or centralized cloud data
center (CDC)) [2]. Conventionally, most of these applications

* indicates the corresponding author.
1 Mobile & Cloud Lab, Institute of Computer Science, University of Tartu,

Estonia.
2Department of Computer Science and Engineering, Indian Institute of

Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004.
e-mails: mainak@ut.ee, satish.srirama@ut.ee, and

tarachand@iitism.ac.in.

are offloaded to the CDC which has enough resources for
processing and storage. However, the dramatic growth of the
IoT applications and sensors across the globe lead to huge
amounts of real-time data which is to be transferred to the
centralized CDC. The Cisco Global Cloud Index estimates that
the data produced by various physical objects and machines
would be 500 zetta bytes within 2019; however, the global
capacity to transmit the data to the centralized CDC is at most
10.4 zetta bytes [3]. As a result, offloading the applications to
the CDC can increase the burden of the network which causes
network congestion and increases the latency [4].

To tackle the above-mentioned challenges, there is an emer-
ging computing paradigm, known as fog computing, which
offers the cloud services at the edge of the network with
limited processing and storage capacity [5]. Fog Computing
has drawn extensive attention of the researchers for processing
delay-sensitive tasks locally [6]. With the help of the fog
computing, the real-time tasks are offloaded to the local fog
devices for getting better services with minimum latency. The
most popular and useful fog devices are Raspberry Pi, network
switches, routers and micro data centres etc. However, due to
the limited resource capacity, most of the resource-intensive
applications do not fit for processing in the fog devices and are
still offloaded to the CDC. However, offloading the data to the
fog devices incur minimum latency and cost as compared with
offloading to the centralized CDC [7]. Thus, the intuitive idea
is to offload the delay-sensitive real-time tasks to the local fog
devices that can meet the resource requirements of the tasks
and achieve the trade-off between cost and latency [8].

The IoT devices should not only check the resource availa-
bility and the workload of a fog device, but also check the la-
tency, and cost for processing and transmitting an application.
Consequently, the selection of a fog device is a multi-objective
optimization problem (MOP). MOP is used to find an optimal
solution using more than one optimization function [9], [10].
However, designing an efficient algorithm for finding an
optimal fog device using MOP strategy remains challenging
and has not been investigated widely. Hence, the main purpose
of this paper is to design an efficient algorithm for finding a
suitable fog device using multiple Quality-of-Service (QoS)
objectives in a dynamic IoT environment. Swarm intelligence
(SI) and evolutionary computation are shown to be powerful
methods for solving such a MOP efficiently [11]. Among
many others, accelerated particle swarm optimization (APSO)
is very attractive SI technique which can solve the MOP
more efficiently [12]. APSO is the modified version of par-
ticle swarm optimization (PSO) technique. The standard PSO
technique uses the best of the individuals and current global

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2958400, IEEE Internet of
Things Journal

2

best individual for finding an optimal solution; however, APSO
technique uses the current global best individual for finding an
optimal result which should increase the convergence speed
of the particles and reduces the randomness as the iteration
proceeds.

In this paper, we have designed a new multi-objective
offloading (MOO) strategy for hierarchical fog-cloud environ-
ment using APSO technique. The contribution of the work is
two folded; 1) Design a multi-objective optimization function
with a weighted-sum approach using two QoS parameters,
namely resource utilization, and total cost; 2) Next, finds an
optimal computing device using the multiple QoS objectives
using APSO technique with higher convergence speed. The
main goals of the work are to minimize the total cost and
latency while utilizing the computing resources efficiently.
We later evaluated the approach through multiple real-time
data sets. The data sets are generated from a real-time fog-
cloud environment where we have used mobile, tablet, and
Raspberry Pi as fog devices and Amazon Web Services as the
centralized CDC. The major contributions of this work are
summarized as follows.
– Developed a multi-tier fog-cloud model for offloading the

real-time tasks to the suitable computing devices as per their
resource requirements.

– Designed a MOP function, also known as fitness function
based on the multiple QoS objectives of the real-time IoT
applications, namely resource utilization and total cost.

– We further introduced an efficient task offloading strategy
on the multi-tier fog-cloud model using APSO technique
for improving the QoS parameters in terms of latency,
computation time, cost and resource utilization.

– Finally, we investigated the parameters of APSO technique
over multiple real-time data sets and fixed their parametric
values for further analyzing the proposed MOO strategy.
Moreover, we analyzed the performance of the proposed
method over three state-of-the-art algorithms using various
performance matrices.
The rest of the paper is organized as follows. Related

work of existing offloading methodologies in fog computing
with MOP strategy is discussed in Section II. The technical
overview of the multi-objective optimization along with the
APSO technique is discussed in Section III. The system model
of the work followed by the problem formulation is discussed
in Section IV. The proposed MOO strategy is discussed in
Section V. The performance analysis of the proposed strategy
is discussed in Section VI. Finally, the paper is concluded in
Section VII.

II. RELATED WORK

Application offloading strategy on fog-cloud environment
has attracted significant attention by researchers [13], [14]
and IT industry [15]. Liang et. al. have designed a Software-
defined networking based fog-cloud architecture for minimi-
zing the latency [16]. Zhao et. al. have proposed an IoT
application offloading strategy for minimizing the computation
time and energy consumption of the computing resources [17].
Fricker et. al. have designed an optimal offloading strategy

for balancing the loads among the active fog devices [18].
Zhang et. al. proposed an application-based offloading strategy
for minimizing the latency and energy consumption of the
fog devices [19]. Hasan et. al. [20] and Wang et. al. [21]
also designed efficient offloading strategies for minimizing
the energy usage and the processing time of the applications.
Tan et. al. have designed a delay-sensitive offloading strategy
for minimizing the overall computation time of the applica-
tions [22]. Similarly, He et. al. have developed a multi-tier
model for offloading the applications efficiently with mini-
mum latency [23]. Mansour et. al. have proposed an energy
efficient offloading algorithm for minimizing the energy and
computation time of the applications while processing [24].
Mahmud et. al. have designed a proft-aware application of-
floading strategy in fog environment, meeting multiple QoS
parameters for real-time applications [25]. Adhikari et. al.
have designed a priority-aware data offloading and scheduling
strategy in a hierarchical fog-cloud environment [26]. The
main goals of this work are to minimize the waiting time and
latency of the tasks while meeting their deadline. Brogi et. al.
have developed a single objective cost-aware data offloading
strategy with genetic algorithm in fog environment [27]. The
main objectives of the work are to minimize the computation
and communication cost of the real-time tasks with efficient
resource utilization. Most of the above-mentioned strategies
have used heuristics or dynamic algorithms for improving a
single QoS parameter.

Nowadays, few initiatives are tailored for optimizing multi-
ple scheduling parameters of IoT applications using different
swarm and evolutionary algorithms [28]. Jain et. al. [29] have
designed a multi-objective offloading strategy in edge-cloud
environment for minimizing the overall processing time and
cost of the applications. Sharif et. al. [30] have developed an
optimal resource allocation strategy in fog-cloud environment
for efficient resource utilization. Bitam et. al. [31] have desig-
ned a multi-objective scheduling strategy in fog environment
using Bee Swarm algorithm for minimizing the computation
time with efficient resource utilization. Shi et. al. [32] have
proposed an online offloading strategy for selecting the suit-
able computing devices for the real-time tasks to minimize
the transmission and processing time in fog-cloud domain.
However, the above-mentioned papers did not consider the two
important offloading objectives of the real-time tasks, namely
transmitting and processing cost and the resource utilization.

Similarly, Aryal et. al. have designed a genetic algorithm
(GA) based offloading strategy for optimizing multiple ob-
jectives of the real-time applications [33]. The main purpose
of this work is to minimize the total cost with efficient resource
utilization of the computing resources. Wan et. al. have deve-
loped a Particle Swarm Optimization (PSO)-aware application
offloading strategy in fog environment [34]. The main purpose
of this work is to optimize the energy consumption of the
overall network with minimum latency. Ezhilarasie et. al. have
proposed a GA-PSO based optimal offloading strategy in fog
computing [35]. The main goal of this work is to minimize
the latency and computation time while meeting the deadline
of the tasks.

From the review of the related work, it is found that most

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2958400, IEEE Internet of
Things Journal

3

of the single objective optimization strategies have minimized
the latency or energy consumption rate of the computing
devices with a heuristic or meta-heuristic technique. However,
in a complex distributed environment such as in fog compu-
ting, the offloading strategy needs to optimize multiple QoS
parameters for improving the efficiency of the model. This
lead to the multi-objective solutions, as discussed above. The
current work complements the state-of-the-art multi-objective
offloading strategies by applying APSO technique for solving
the MOP, with significant focus at accuracy and efficiency of
the environment. Thus, we have developed a multi-objective
offloading strategy in a multi-tier fog-cloud environment that
meets the multiple QoS parameters of the real-time tasks
such as resource utilization and cost. Moreover, the proposed
strategy deploys the tasks to the suitable computing devices
that can minimize the overall latency and computation time.

III. TECHNICAL OVERVIEW OF THE MOP STRATEGY AND
THE APSO TECHNIQUE

In this section, we discuss the overview of the MOP strategy
followed by the APSO technique in brief.

A. Overview of MOP

Nowadays, most of the real-world problems in a distributed
environment can be formulated mathematically with certain
goals or objectives which are optimized by various heuristic
or meta-heuristic strategies while meeting relevant constraints.
If there is more than one objective to optimize a problem, such
a problem is called MOP which is formulated as follows.

Minimize F(x, t) = f1(x, t), f2(x, t), f3(x, t), , fn(x, t)
T

Subject to:
gj(x) ≤ 0 : j = 1, 2, 3,, v
hi(x) = 0 : i = 1, 2, 3,, u
x ∈ θ
Here, x = (x1, x2, x3, x4, ..., xm)T , is a m-dimensional

decision vector in the decision space θ; F : θ → φ ⊆ Rn

is an objective vector which consists of n objective functions
and maps m-dimension vector space from θ to n-dimensional
object space. φ : gj(x) ≤ 0 and hi(x) = 0 represent inequality
and equality constraints respectively. In general, the objectives
of MOP are conflicting, thus a single best solution of all of
them may not exist. Hence, the researchers need to use Pareto
Optimality (PO) to resolve such problem. In a PO solution,
x1 dominates a solution x2, i.e. (x1 � x2) if and only if x1
is better than x2 in at least one objective, which is formulated
as follows.

F (x) = ∀j = 1,, n, {fj(x1) � fj(x2)}
F (x) = ∃j = 1,, n, {fj(x1) ≺ fj(x2)} (1)

Let us consider x1 and x2 are two decision vectors. The
decision vector x2 is said to be non-dominated if and only
if there is no other decision vector x1 such that x1 � x2. The
Pareto-Optimal Set (PS) consists of the set of all PO solutions
which is defined as follows.

PS = {x2 | ∃x1 : x1 � x2} (2)

The Pareto-optimal Front (PF) is the corresponding objective
function which is represented as follows.

PF = F{x2 | x2 ∈ PS} (3)

It is important to solve such real-world MOPs with or without
constraints as accurate as possible. However, due to the unavai-
lability of the computing resources with different constraints,
the true PF can hardly produce an accurate result. Thus, the
meta-heuristic strategies are used to find the non-dominated
solution set as accurate as possible to approximate the true
PF.

B. Overview of APSO Technique

PSO technique is designed based on the behavior of bird
or fish schooling in nature [36]. The PSO technique searches
the space of an objective function by adjusting the position of
the particles in a quasi-stochastic manner. Each particle has
been represented by its own velocity and position. A particle
i keeps track of its best position in space by Pbest which
is represented as (X∗i) = {X∗1 , X∗2 , X∗3 , ..., X∗n}. The global
best position among all Pbest is represented as gbest (G∗). The
velocity is defined as the movement of a particle which has
its own magnitude and direction, which is defined as follows.

vi(t+1) = vi(t)+αε1(G∗−Xi(t))+βε2(X∗(t)−Xi(t)) (4)

The position of a particle of PSO technique is represented as
follows.

Xi(t+ 1) = Xi(t) + vi(t+ 1) (5)

Here, vi and Xi represent velocity and position vector of the
ith particle respectively. ε1 and ε2 are two random uniform
variables whose values are in the interval [0,1]. The standard
PSO technique uses both the current gbest location and indivi-
dual best location pbest for finding the optimal position. The
pbest location is useful for PSO to increase the diversity and
quality of the solution. However, this diversity should increase
the randomness of the problem and there is no compelling
to use the individual best unless the optimization problem is
highly multimodal or nonlinear. Thus, the simplified version
of the PSO technique is to use the gbest location of a particle
to accelerate the convergence speed of the problem which is
called as APSO technique [12]. The velocity of particle i of
APSO technique is formulated as follows.

vi(t+ 1) = vi(t) + αε+ β(X∗ −Xi(t)) (6)

Here ε is a random vector whose value lies between [0, 1].
The updated position of a particle is simply represented by
Eq. (7). However, to increase the convergence of the particle
even further, the updated position of the particle in a single
step is represented as follows.

Xi(t+ 1) = (1− β)Xi(t) + βG∗ + αεt (7)

IV. SYSTEM MODEL

In this section, we elaborate the multi-tier fog-cloud model
followed by the execution model in details. Finally, we discuss
the problem statement for this work.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2958400, IEEE Internet of
Things Journal

4

A. Multi-tier Fog-Cloud Model

The proposed multi-tier fog-cloud model is shown in Fig.
1, which is composed of four tiers, i.e., the IoT device
layer, Low-capacity fog (LCF) device layer, High-capacity
fog (HCF) device layer, and centralized CDC layer. The IoT
layer consists of a set of real-time IoT devices and sensors,
which can generate various types real-time applications for
processing. The IoT devices have minimum processing and
storage capacity. The delay-sensitive IoT applications need to
deploy the real-time tasks on the local fog devices with enough
resource capacity that can process the task efficiently with
minimum latency. In this work, we classify the fog devices
into two levels based on their resource capacity, i.e. LCF
devices and HCF devices. Here, we assume that the LCF
devices including mobile devices, Tabs, Raspberry Pi, etc. have
limited processing capacity and are deployed nearer to the
IoT devices. The LCF devices are deployed on Tier 2 of the
model and minimize the latency of the tasks with minimum
processing and transmission cost. The HCF devices including
desktop, workstations, private cloud of the educational insti-
tute or industries have more processing capacity with higher
latency as compared with LCF devices. The HCF devices are
deployed in Tier 3 and have enough processing capacity for
processing the tasks with minimum latency and cost, when
compared with CDC. The fog devices of Tier 2 and Tier 3 are
represented as LF = {LF1, LF2, LF3, ..., LFn} and HF =
{HF1, HF2, HF3, ...,HFm} respectively. Finally, the Tier 4
consists of the centralized CDC which has enough resources
for processing any type of resource-intensive applications.

B. Execution Model

Let us consider that there are N IoT devices denoted by the
set I = {I1, I2, I3, ..., IN}. Each IoT device IN ∈ I generates
a real-time task Tn for further processing. The main focus of
this work is to find an optimal computing device for each task
based on the multiple QoS parameters. Here, we focus on two
primary objectives, namely total cost and resource utilization
of the computing devices while processing the tasks, which
are discussed below.

1) Resource Utilization Model: Given a set of fog devices
F = {F1, F2, F3, ..., Ff}, each element Fi ∈ F, 1 ≤ i ≤ f
represents a fog device in Tier 2 or Tier 3 based on its
resource capacity. The resource capacity of each fog device
is represented as Ui ∈ (UCi , U

mm
i), where UCi denotes the

maximum CPU capacity (in a unit of CPU hours) and Ummi

represents maximum memory usage (in the unit of GB) of
fog device i. Let, the CDC consists of h number of hete-
rogeneous cloud servers H = {H1, H2, H3, ...,Hh}, where
each server Hj ∈ H, 1 ≤ j ≤ h can run multiple resource-
intensive tasks in parallel order. Moreover, the maximum CPU
and memory capacity of a cloud server j is represented as
Uj ∈ (UCj , U

mm
j). The maximum workload (Wl) consumed

by a computing device l within a time interval t = (t1 − t2)
is represented as follows.

Wl(t) = α

t2∑
t=t1

UCl (t) + (1−α)

t2∑
t=t1

Umml (t),∀l ∈ (i, j) (8)

IoT	Sensors IoT	Sensors IoT	Sensors

LCF	Devices LCF	Devices LCF	Devices

Tire	2

Tire	4

Centralized
CDC

LTE	Communication

Fog	Gateway	
1

HCF	Devices HCF	Devices HCF	Devices

Tire	3WiFi

Fog	Gateway	
2

Fog	Gateway	
1

WiFi

Router Router

Fog	Gateway	
2

Tire	1

Fig. 1: Multi-tier fog-cloud Model

Here, α is a user defined constant whose value lies bet-
ween the range [0, 1]. The values of UCl and Umml lie in
the interval [0,100]. Assume that at a certain timestamp t,
k number of tasks are received by the IoT gateways for
offloading to the appropriate computing devices, i.e. T =
{T1, T2, T3, ..., TK}, where each task Tk ∈ T , 1 ≤ k ≤ K
should be offloaded to a suitable computing device based on
its resource requirements. Now, each task requests for specific
set of resources for processing in a computing device such as
{(RC1 , Rmm1), (RC2 , R

mm
2), (RC3 , R

mm
3), ..., (RCk , R

mm
k)} and

the requested workload (Ll) of the task k is defined as follows.

Lk(t) = α

t2∑
t=t1

RCk (t) + (1− α)

t2∑
t=t1

Rmmk (t),∀k ∈ K (9)

Let xkl be an indicator variable, which is equal to 1 if task
Tk is offloaded to a computing device l, i.e.,

xkl ∈ (0, 1),∀(k, l) (10)

Note that, k ∈ K, l ∈ (i, j) and there exists∑
k

xkl = 1,∀(k, l) (11)

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2958400, IEEE Internet of
Things Journal

5

Thus, each task needs to be offloaded to a suitable computing
device for further processing. Note that the overall CPU cores
consumed by a task Tk should be less than or equal to the
maximum CPU capacity of a computing device l, i.e.,

K∑
k=1

RCk (t).xkl ≤ UCl (t),∀(k, l, t) (12)

Similarly, the amount of memory blocks is consumed by the
tasks Tk should be less than or equal to the maximum memory
capacity of a computing device l, i.e.,

K∑
k=1

Rmmk (t).xkl ≤ Umml (t),∀(k, l, t) (13)

Thus, the overall workloads consumed by the task Tk must be
less than or equal to the maximum workload of a computing
device l, i.e.,

K∑
k=1

Lk(t).xkl ≤Wl(t),∀(k, l, t) (14)

Thus, the resource utilization of a computing device l for
processing the task Tk is defined as follows.

RUkl =
Lk(t)

Wl(t)
× 100,∀(k, l) (15)

2) Cost Model: The cost of a real-time task depends on the
processing time of the task on the selected computing device
with multiple resources and the latency for transmitting the
task from the source IoT device to the selected computing
device. The processing time of the task Tk depends on its size
(Sk) and the CPU capacity of the computing device l (CPCl),
i.e.,

Pkl =
Sk
CPCl

,∀(k, l) (16)

Thus, the processing cost for the CPU usage by the task Tk
is defined as follows.

COCkl =
Pkl × COC

τ1
,∀(k, l) (17)

where COC represents the CPU cost of a computing device
l for a unit time interval τ1. The memory of the computing
device l is consumed by the task Tk until the completion of
its processing. Thus, the memory cost of the application Tk
for primary data storage is defined as follows.

COmmkl =
Pkl × COmm

τ2
,∀(k, l) (18)

Here, COmm represents the memory cost of a computing
device l for a unit time interval τ2. So, the total processing
cost of the task Tk is represented as follows.

COkl = COCkl + COmmkl ,∀(k, l) (19)

The latency between the IoT devices k and the selected
computing device l depends on the bandwidth of the network
and distance. The latency between the devices k and l (LDkl)
is represented as follows.

LDkl = Pkl + SDkl,∀(k, l) (20)

Here SDkl and Pkl represent the serialization delay and pro-
pagation delay respectively. The propagation delay is the ratio
between the distance among the devices k and l (DTkl) and
the bandwidth of the network (Bkl), i.e. Pkl = DTkl

Bkl
, where

DTkl =
√

(Xk −Xl)2 + (Yk − Yl)2 in a two-dimensional
space (X,Y). However, the serialization delay is the ratio
between the sizes of the task Tk (Sk) to the transmission rate
of the network (TTkl) in bit per second i.e. SDkl = Sk

TTkl
.

Here, we assume that the LCF devices in Tier 2 are nearer to
the IoT devices. So, the latency between the IoT devices and
LCF devices is 0. The cost for latency is defined as follows.

COLDkl =
LDkl × COLD

τ3
,∀(k, l) (21)

Here, COLD represents the communication cost per unit time
to reach the task to the selected computing device l for a unit
time interval τ3. So, the total cost required for processing and
transmitting the task Tk is defined as follows.

TCOkl = COkl + COLDkl ,∀(k, l) (22)

The main objectives of the work are to maximize the resource
utilization of the computing devices and to minimize the total
processing and communication cost of the real-time tasks. The
mathematical formulation of the objectives of the proposed
work with the constraints are defined as follows.

Maximize RUkl (23a)
Minimize TCOkl (23b)

Subject to
K∑
k=1

RCk (t).xkl ≤ UCl (t), (23c)

K∑
k=1

Rmmk (t).xkl ≤ Umml (t), (23d)

K∑
k=1

Lk(t).xkl ≤Wl(t), (23e)

RUkl ≤ 100, (23f)∑
k

xkl = 1, (23g)

V. PROPOSED WORK

In this section, we design a Multi-Objective Offloading
(MOO) strategy to solve the formulated problems using
APSO technique. The MOO strategy finds a suitable com-
puting device for each real-time task which has sufficient
resources and requires minimum cost for processing the task.
Here, we divide the real-time tasks into two categories, na-
mely resource-intensive tasks and delay-sensitive tasks. The
resource-intensive tasks mostly concern about the higher ca-
pacity of the computing resources without concerning about
the latency and the cost. Such type of tasks prefer to execute
on the remote CDC or the HCF devices. However, the delay-
sensitive tasks mostly concern about the latency and cost.
Those tasks mostly execute in the local IoT devices or the
LCF devices for faster response. Here, we introduce two types
of QoS parameters for offloading each task, namely resource
utilization and cost. Here, we first determine the computation

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2958400, IEEE Internet of
Things Journal

6

time for running a task on both the local fog device and the
centralized CDC.

Case 1: Local Processing: In this scenario, the tasks
process in local IoT devices or offload to the LCF devices.
The computation time of the task Tk in the computing device
l is defined as follows.

CTkl = Pkl + LDkl,∀(k, l) (24)

As the task processes locally, so the required latency of that
task is 0, i.e. LDkl = 0. So, the computation time required by
the task is equal to its processing time, i.e. CTkl = Pkl + 0 =
Pkl.

Case 2: Remote Processing: In this scenario, the task is
offloaded to the HCF devices or the centralized CDC. Thus, the
tasks are transmitted through a long-term evolution network
which requires a latency. In such scenario, the computation
time of a task Tk consists of the latency and processing time
in the selected computing device l, i.e. CTkl = Pkl + LDkl.
As a result, dispatching the tasks to the HCF devices or the
CDC impose a long latency which causes higher completion
time. The detail of the proposed MOO strategy is discussed
below.

1) Representation of multi-objective Function: This phase
is responsible to generate a multi-objective optimization
function using a weighted-sum strategy based on two QoS
parameters, i.e. resource utilization and cost. The resource
utilization of the computing devices for processing a task
Tk is presented as RUkl = {RUk1, RUk2, RUk3, ..., RUkn}.
Similarly, the cost of the computing devices for pro-
cessing the task Tk is represented as TCOkl =
{TCOk1, TCOk2, TCOk3, ..., TCOkn}. The proposed multi-
objective function using the two QoS parameters is defined as
follows.

MOkl = ∆1RUkl + ∆2TCOkl,∀(k, l) (25)

Here, the QoS parameters are aggregated in a single objective
function, which is helpful for finding the optimal computing
devices in the network. In Eq. (24), the coefficients ∆1, and
∆2 represent the user defined constants to indicate the priority
of the QoS parameters. In this work, a general problem is
considered that gives equal preference to both the objectives.
Therefore, the summation of the weights of the coefficients is
equal to 1, i.e.

∑2
x=1 ∆x = 1. The pseudo code of this phase

is discussed in Algorithm 1.
2) Selection of optimal computing device: The main con-

tribution of this phase is to find an optimal computing device
for each real-time task based on multi-objective function.
The APSO technique is used to find the computing device
on fly with higher accuracy and minimum error. The multi-
objective functions of the n computing devices are presen-
ted as MOkl = {MOk1,MOk2,MOk3,MOk4, ...,MOkn}.
Here, the particles are presented by the values of the objective
functions of the computing devices. For minimum optimiza-
tion problem, the updated velocity of each particle using the
APSO technique is represented as follows.

vkl+1 = vkl + αε+ β(MO∗kl −MOkl),∀(k, l) (26)

Algorithm 1 Representation of multi-objective Function
INPUT: UCl , Umml , RCk , R

mm
k , Sk, CP

C
l

OUTPUT: MOkl
1: for l: 1 to n do
2: Wl(t) = α

∑t2
t=t1

UCl (t) + (1− α)
∑t2
t=t1

Umml (t)
3: end for
4: for k: 1 to K do
5: Lk(t) = α

∑t2
t=t1

RCk (t) + (1− α)
∑t2
t=t1

Rmmk (t)
6: end for
7: for k: 1 to K do
8: for l: 1 to n do
9: if (

∑K
k=1 Lk(t).xkl ≤Wl(t)) then

10: RUkl = Lk(t)
Wl(t)

× 100
11: end if
12: COkl = COCkl + COmmkl
13: COLDkl = LDkl×COLD

τ3
14: Total Cost TCOkl = COkl + COLDkl
15: Function MOkl = ∆1RUkl + ∆2TCOkl
16: end for
17: end for

Here, ε represents a random vector whose value lies between
[0, 1] and α, β are the user-defined constraints. MO∗kl and
MOkl represents the global-best position and the local-best
position of the particle in the previous iteration respectively.
However, the above-mentioned velocity function of the particle
is usually used as a single objective optimization problem. For
a multi-objective optimization problem, the above-mentioned
velocity function does not provide the prominent result. To
overcome such drawback of the APSO technique in measuring
the velocity function, we define a modified velocity function
which is defined as follows.

MOk(i, j) =
MOkj −MOki
MOmax −MOki

,∀(i, j) ∈ l (27)

Here, we consider two computational devices i and j, where
the position of the computing device j is in a better position in
the execution space than the computing device i. The modified
velocity function obtained by computing device i from j is
denoted as MOk(i, j). MOmax represents the maximal value
of the objective function. The distance between the computing
device i and j is represented as the euclidean distance which
is formulated below.

ED(MOi) =

√√√√ D∑
x=1

ED(MOkix −MOkjx),∀(i, j) ∈ l

(28)
where D represents the dimension of the objective Function
which is two for the above problem. Finally, we develop
a Pareto dominance strategy based on the modified velocity
function. For a population of the computing devices at the dth

iteration, taking the modified velocity function and the distance
as two measures. Here, we first select the non-dominated
computing devices in the population and put them into a PO
set. Next, for selecting a computing device from the current
population, we randomly select a computing device from the
set as an optimal computing device. Here, at each iteration,

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2958400, IEEE Internet of
Things Journal

7

Algorithm 2 Selection of optimal computing device
INPUT: n, α, β, ε
OUTPUT: l

1: for l: 1 to n do
2: MOkl = Initial Solution()
3: end for
4: while MOkl ≤ δ do
5: arg min(MOkl)
6: for i: 1 to n do
7: for j: 1 to n do
8: vkl+1 = vkl + αε+ β(MO∗kl −MOkl)

9: MOki, j =
MOkj−MOki

MOmax−MOki

10: ED(MOi) =
√∑D

x=1ED(MOkix −MOkjx)
11: if MOkjx > MOkix then
12: ED(MOkix,MOkjx) = (MOkjx −MOkix)
13: end if
14: Pareto dominance relationship for MOkl
15: dsi = (1− β)dsi−1 + βMO∗kl + αεi

16: end for
17: end for
18: Find an optimal computing device i
19: end while

each particle moves towards another particle whose velocity
value may be better than its personal best or even the global
best value in the previous iteration. We classify the process of
selection of computing device into three sets:

Set 1: The set of computing devices whose true value
at current iteration dth are better than the best position in
previous iteration (d − 1)th, i.e. S1 = {L : MOdk(i, j) ≤
MOd−1k(i, j)},∀(i, j) ∈ l, L ∈ (F,H)

Set 2: The set of computing devices whose true velo-
city values at current iteration dth are worse than in pre-
vious iteration (d − 1)th, i.e. S1 = {L : MOdk(i, j) >
MOd−1k(i, j)},∀(i, j) ∈ l, L ∈ (F,H)

Set 3: The set of computing devices whose true values
at current iteration dth are better than the global best at
the (d − 1)th iteration, i.e. S3 = {L : MOdk(i, j) >
MOg(i, j)},∀(i, j) ∈ l, L ∈ (F,H)

Finally, we define the optimal computing device at the dth

iteration, i.e. MOodk ≤ mini6=oMOd−1k(i, j). In the above
sets, Set 1 and Set 2 are mutually exclusive, denoting, the
set of computing devices whose personal best position can be
changed and the set of computing devices whose personal best
do not need to be updated at the dth iteration. Set 3 indicates
whether the global best can be changed or not. Finally, update
the positions of the computing devices based on the following
function.

dsi = (1− β)dsi−1 + βMO∗kl + αεi (29)

β is the user-defined constant and ε is a random vector whose
value lies in the range [0, 1]. Finally, the real-time tasks are
assigned to the selected computing devices in First Come First
Serve order. The pseudo code of this phase is presented in
Algorithm 2. The overall setup of the MOO strategy is shown
in Fig. 2.

Start

Design Variable

Design Objective

Design Constraints

RUkl = {RUk1, RUk2, RUk3,

RUk4, ..., RUkl}

TCOkl = {TCOk1, TCOk2,

TCOk3, TCOk4, ..., TCOkl}

𝐿𝑘ሺ𝑡ሻ ≤ 𝑊𝑙ሺ𝑡ሻ
𝑅𝑈𝑘𝑙 ≤ 100

𝐿𝐷𝑘𝑙 = 𝑃𝑘𝑙 + 𝑆𝐷𝑘𝑙

𝑅𝑈𝑘𝑙 =
𝐿𝑘ሺ𝑡ሻ

𝑊𝑙ሺ𝑡ሻ

Modelling Phase

Position and Velocity

Calculation

Use MOO Strategy

Pareto Frontiers

𝑀𝑂𝑘ሺ𝑖, 𝑗ሻ =
𝑀𝑂𝑘𝑗 −𝑀𝑂𝑘𝑖

𝑀𝑂𝑚𝑎𝑥 −𝑀𝑂𝑘𝑖

𝑑𝑠𝑖 = 𝑑𝑠𝑖−1 + 𝛽𝑀𝑂𝑘𝑙
∗ + 𝛼𝜖𝑖

Multi-objective optimization

Phase

Establish Evaluation

model of MOO Strategy

Selection of optimal

computational device

End
Decision Phase

Fig. 2: The Flowchart of MOO strategy

TABLE I: Simulation parameters

Parameter Description Values
Number of IoT devices 100
Number of HCF devices 10
Number of LCF devices 20
Number of cloud servers 4
CPU frequency of LCF devices 1.4 GHz
RAM Size of LCF devices 1 GB
CPU frequency of HCF devices 2.4 GHz
RAM Size of HCF devices 4 GB
CPU frequency of each cloud server 3.5 GHz
RAM Size of each cloud server 64 GB
The storage capacity of each cloud server 1 TB

VI. EMPIRICAL EVALUATION

In this section, we investigate the performance of the propo-
sed offloading strategy through extensive simulation run. In ad-
dition, we also analyze the parameters of the APSO technique
for further improving the performance of the proposed MOO
algorithm. We also verify the efficiency and feasibility of the
MOO algorithm with existing state-of-art algorithms, proposed
in [22], [23] and [24] on various performance matrices, i.e.
latency, computation time, resource utilization and average
cost.

A. Performance Setup

In the simulation, we consider 100 IoT devices as a form
of various temperature and moisture sensors for collecting the
data from the environment which are evaluated in the fog
devices or the cloud servers based on the resource availability

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2958400, IEEE Internet of
Things Journal

8

TABLE II: P -value analysis

Data sets D-1 D-2 D-3 D-4
D-1 0 3.87E-07 5.64E-08 2.65E-06
D-2 2.84E-09 0 6.87E-09 4,67E-04
D-4 1.76E-08 1.65E-06 0 1.76E-05
D-4 2.23E-05 5.32E-08 4.31E-06 0

TABLE III: Result analysis of synthetic data sets

Error of Data sets
Data sets Minimum Error Mean Error
D-1 3.12E-06 0.0241561
D-2 2.76E-08 0.0365423
D-3 1.56E-07 0.0342154
D-4 8.34E-08 0.021342

and priority of the tasks. The priority of each task is assigned
based on the urgency of its results for the IoT devices. Here,
we consider 10 HCF devices in terms of workstations and
high-performance laptops with minimum CPU frequency of
each logical core is 2.4 GHz and physical memory (i.e. RAM)
capacity is around 4 GB. The fog devices relate to a high-
speed short-term communication protocol, i.e. WiFi. In lower-
level, we consider 20 LCF devices with minimum CPU and
memory capacity in terms of Raspberry Pi and mobile devices.
The CPU frequency and memory capacity of such devices
are 1.4 GHz and 1 GB respectively. The low-capacity fog
devices are connected with the IoT devices with WiFi or
Bluetooth protocols. However, the IoT devices and the fog
devices communicate with the centralized CDC with long
term evolution protocols. The simulation parameters of the
proposed real-time environment are shown in Table I.

B. Data set Validation

During the evaluation process, we have generated four types
of data sets based on the processing and communication time
and cost of the real-time tasks on the selected computing de-
vices with their resource utilization. However, before running
the MOO strategy over the data sets, a data pre-processing
technique is used to convert the raw data into clear data sets.
In reality, the APSO technique does not support zero and
null values, therefore to run the APSO technique, a data pre-
processing technique is used for managing the zero and null
values from the original raw data set. The significance level
of the clear data sets with an unpaired t-test analysis is shown
in Table II. In statistics, the P value of the t-test is used to
find the significance level of the data sets. Conventionally, the
data sets are called significant if their P value is less than
0.05 and highly significant if P ≤ 0.001. From Table II, it is
observed that the P value between the data sets is less than
0.001, i.e. the data sets are used for performance analysis of
the proposed MOO algorithm are highly significant.

C. Parameter Analysis

In this section, we analyze the two important parameters of
the APSO-based MOO technique, i.e. α, and β and also fix the
population size of the algorithm for improving its performance.
Here, we consider the values of α, and β parameters are
in the range [0, 1] and the population size is within [0,

100]. During experimental analysis, we fix the values of other
parameters when finding the best possible value of a single
parameter, i.e. we fix the value of β and population size while
finding the appropriate value of α. The proposed strategy
is evaluated using 100 iterations for finding the fixed value
of each parameter and the minimum error is recorded with
1000 independent runs. The minimum error and mean error
of each parameter over different possible parametric values
are shown in Table III. The β parameter produces a minimum
error at point 0.65 and the α parameter produces a minimum
error at point 0.15. These values are finalized for further
evaluation of the proposed strategy. Similarly, the population
size of the proposed algorithm is evaluated over different data
sets and it is observed that it produces a minimum error at
point 60. Thus, the population size of the MOO strategy is
fixed at point 60. The final convergence speed of the MOO
strategy over the fixed values of the different parameters of the
APSO technique is presented in Table IV. Here, the minimum
error of the convergent rate of the MOO strategy is less than
the predefined threshold value 0.0001, which proves that the
algorithm should reach its target level for finding the optimal
position in the space. Moreover, the results also satisfy the
stability, convergence speed and the quality of the solution.

D. Comparative Analysis
We verify the feasibility of the proposed algorithm with

existing three state-of-the-art algorithms i.e. COG [24], MFC
[23] and OJD [22], with various performance matrices.

1) Average Delay (AD): Here, we first focus on the delay-
sensitive tasks and investigate the objective function for finding
the suitable computing device for each task. The proposed
MOO strategy decides whether it assigns the task locally or
offloads to the fog or CDC for further processing. The Boolean
variable xij = 0 represents that the task Tk is offloaded to
the computing devices l. For evaluation purpose, initially, we
consider a set of cloud servers for processing the real-time
tasks instead of local fog devices. The IoT devices and sensor
execute the tasks locally or offload them to the CDC. Fig.
3(a) shows the average delay (also known as latency) for
different types of tasks while processing in the remote CDC.
From this scenario, we observe that most of the delay-sensitive
tasks experienced a huge delay as compared with resource-
intensive tasks without fog devices. However, by increasing
the number of fog devices, the average delay is going to reduce
significantly as the tasks are offloaded to the local fog devices
which meet the resource capacity and produce minimum
delay. Fig. 3(b) represents the average delay for the fog-cloud
environment with 20 LCF and 10 HCF devices while varying
the number of tasks and Fig. 3(c) represents the average delay
for 100 delay-sensitive tasks while varying the number of fog
devices. With increasing the number of real-time tasks, the
average delay in cloud environment increased significantly as
compared with our multi-level fog-cloud model. Similarly, by
increasing the number of fog devices, the proposed model
reduces the average delay as compared with the centralized
CDC.

Next, we investigate the average delay of the tasks of the
proposed MOO strategy over the existing offloading algo-

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2958400, IEEE Internet of
Things Journal

9

TABLE IV: Parametric analysis of APSO technique

Data sets Error calculation of Beta parameter
Beta β= 0.15 β = 0.25 β = 0.35 β = 0.45 β = 0.55 β = 0.65 β = 0.75 β = 0.85 β = 1.0

D-1 Minimum 1.89E-07 2.09E-06 1.94E-05 1.45E-05 2.93E-05 4.78E-05 4.91E-06 0.04321 6.75E-05
Mean 0.013876 0.01323 0.01421 0.010542 0.016731 0.009541 0.021032 0.020091 0.024121

D-2 Minimum 2.09E-07 2.15E-06 1.65E-06 2.12E-05 4.76E-05 6.12E-05 8.01E-05 6.11E-06 7.10E-05
Mean 0.00985 0.01432 0.01432 0.01943 0.01984 0.019843 0.02314 0.21321 0.01041

D-3 Minimum 1.23E-07 1.04E-06 2.13E-05 3.12E-06 2.19E-06 7.16E-06 9.12E-05 4.12E-05 4.01E-06
Mean 0.01417 (0.01735 0.01932 0.02132 0.014312 0.02341 0.014323 0.019893 0.020121

D-4 Minimum 1.49E-07 1.87E-06 1.24E-05 3.95E-05 2.86E-06 1.96E-05 2.01E-05 2.91E-05 5.01E-05
Mean 0.01234 0.01761 0.02134 0.02013 0.013214 0.03984 0.02312 0.091234 0.02934

Error calculation of Beta parameter
Alpha α = 0.15 α = 0.25 α = 0.35 α = 0.45 α = 0.55 α = 0.65 α = 0.75 α = 0.85 α = 1.0

D-1 Minimum 2.98E-06 2.12E-05 8.92E-06 4.91E-06 2.01E-06 2.13E-07 1.54E-05 1.65E-05 3.76E-07
Mean 0.02314 0.02012 0.02098 0.01965 0.01956 0.01956 0.0198 0.01543 0.02314

D-2 Minimum 3.43E-05 4.10E-05 4.72E-06 5.09E-05 1.32E-06 7.56E-07 2.07E-05 1.87E-06 7.02E-05
Mean 0.02165 0.04012 0.01642 0.01983 0.02198 0.03972 0.012151 0.036521 0.01982

D-3 Minimum 2.15E-05 1.98E-06 5.77E-05 7.83E-05 1.98E-06 1.98E-08 1.98E-05 2.67E-06 2.98E-06
Mean 0.054311 0.02132 0.02915 0.02134 0.02315 0.02361 0.02019 0.02341 0.017631

D-4 Minimum 7.15E-06 3.97E-05 3.09E-07 3.15E-06 1.76E-06 2.54E-08 3.14E-06 2.95E-06 4.34E-05
Mean 0.08312 0.02019 0.0291 0.02054 0.05413 0.02014 0.02134 0.02983 0.04123

Error calculation of population size
Pop Size P=10 P=20 P=30 P=40 P=50 P=60 P=70 P=80 P=100

D-1 Minimum 2.91E-06 2.91E-06 9.01E-05 4.09E-06 1.42E-06 2.08E-07 2.01E-06 1.87E-05 3.01E-05
Mean 0.02182 0.02012 0.03973 0.02019 0.021342 0.01984) 0.01432 0.01983 0.02314

D-2 Minimum 4.19E-05 5.91E-06 4.17E-05 3.97E-06 1.77E-05 1.01E-06 8.92E-05 5.01E-05 2.13E-06
Mean 0.052134 0.01234 0.03214 0.02198 0.029813 0.01214 0.02134 0.02165 0.02918

D-3 Minimum 4.06E-06 2.89E-06 7.93E-06 5.01E-06 1.89E-06 9.01E-07 2.15E-05 1.89E-06 8.02E-05
Mean 0.051234 0.02174 0.02132 0.01982 0.031453 0.023145 0.012031 0.05312 0.01532

D-4 Minimum 2.01E-05 1.73E-06 8.92E-06 9.12E-05 1.81E-06 2.06E-07 1.99E-05 2.98E-05 3.98E-06
Mean 0.0321 0.02016 0.01912 0.03212 0.019832 0.002134 0.02019 0.01098 0.01983

Fig. 3: Average latency delay: (a) for delay-sensitive and resource-intensive tasks on CDC; (b) for various number of tasks;
(c) for various number of fog devices

rithms. The superiority of the MOO strategy over the existing
algorithms is shown in Fig. 4(a). The MOO strategy finds a
suitable computing device for each real-time task based on the
APSO technique which reduces the latency of the tasks.

2) Computation Time (ACT): Computation time is defined
as the amount of time required by a real-time task to complete
its execution within stipulated time. The computation time
depends on the resource capacity of the selected computing
device and the latency for transmitting the task. In previous
subsection, we have already discussed that the average delay
of the tasks is reduced for proposed system model due to
the MOO strategy. This minimizes the latency and the overall
computation time. Fig. 5(a) and 5(b) represents the average
computation time for various tasks and computational model in
fog-cloud environment, respectively. In our multi-tier model,

we have considered 20 LCF and 10 HCF devices while
varying the number of real-time tasks. With increasing the
number of tasks, the average delay in the cloud environment
significantly increases as compared with the proposed system
model. Similarly, by increasing the number of fog devices,
the proposed system model reduces the computation time as
compared with the existing fog-cloud environment. The main
reason being; as more delay-sensitive tasks are assigned locally
or they are offloaded to the local fog devices, it significantly
reduced the overall computation time.

In addition, we compared the average computation time of
the tasks using the proposed MOO strategy over the existing
offloading algorithms. The superiority of the MOO strategy
over the existing algorithms is shown in Fig. 4(b).

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2958400, IEEE Internet of
Things Journal

10

Fig. 4: Performance analysis: (a) Average delay; (b) Average computation time

Fig. 5: Average computation Time: (a) for various number of IoT applications; (b) for IoT applications using a various number
of fog devices

3) Resource Utilization (RU): Resource utilization of the
computing devices depend on the readability of the computing
resources and the amount of the resources used for processing
the current real-time tasks. Maximum resource utilization of
the computing devices also reduces the resource wastage. The
comparative analysis of the proposed MOO algorithm and the
existing state-of-the-art algorithms is shown in Fig. 6(a). The
MOO strategy finds an optimal computing device based on
the current resource availability and cost of the computing
resources. The MOO strategy uses the APSO technique for
offloading the real-time tasks efficiently and maximizes the
overall resource utilization of the computing devices.

4) Average Cost (AC): The average cost of the real-time
tasks on the selected computing devices is shown in Fig.
6(b). The main aim of the offloading strategies is to find an
optimal computing device that can minimize the transmission
and processing cost of the tasks. As a result, the tasks need
to be assigned to the local fog devices with a minimum delay
while meeting the resource requirements. To meet the above
challenge, the APSO technique helps to deploy each task to
the optimal fog device using multiple QoS objectives. This
minimizes the total transmission and processing cost of the
tasks. However, COG, MFC and OJD algorithms use a single
objective optimization strategy for finding optimal computing

TABLE V: Statistical analysis of different performance matri-
ces

Para-
meter

Data
sets Algo. Statistical Parameters

Best Worst Mean Std.

AD D-1

OJD 4.43E-01 9.43E-01 6.12E-01 5.76E-01
MFC 3.49E-01 8.62E-01 5.97E-01 4.97E-01
COG 2.11E-01 7.98E-01 5.15E-01 4.43E-01
MOO 1.44E-01 6.18E-01 4.89E-01 4.01E-01

ACT D-1

OJD 7.23E-01 9.40E-01 6.84E-01 7.32E-01
MFC 6.97E-01 8.87E-01 5.87E-01 5.41E-01
COG 6.34E-01 8.45E-01 5.43E-01 4.71E-01
MOO 2.84E-01 7.88E-01 4.01E-01 3.87E-01

RU D-1

OJD 5.43E-01 1.04E+00 8.12E-01 7.76E-01
MFC 5.01E-01 9.62E-01 7.97E-01 6.97E-01
COG 4.34E-01 8.98E-01 7.15E-01 6.43E-01
MOO 2.97E-01 7.18E-01 5.89E-01 5.01E-01

AC D-1

OJD 7.13E-01 9.21E-01 6.84E-01 7.32E-01
MFC 6.67E-01 8.54E-01 5.87E-01 5.41E-01
COG 6.24E-01 8.01E-01 5.43E-01 4.71E-01
MOO 2.64E-01 7.32E-01 3.01E-01 2.87E-01

device, that make the difference.
5) Results and Discussion: We later performed statistical

analysis between the performance of the proposed MOO
strategy and existing state-of-the-art algorithms in terms of
mean and standard deviation. The results show that the MOO
strategy performs better than the existing strategies over all

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2958400, IEEE Internet of
Things Journal

11

Fig. 6: Performance analysis: (a) Resource Utilization; (b) Average cost

the four real-time data sets. Table V presents the statistical
analysis for data set 1, as a representative. This analysis proves
that the MOO strategy finds the optimal computing device
efficiently for each real-time task with minimum error and
standard deviation as compared with the existing algorithms.
The improvement percentages of the average cost of the MOO
strategy are 14%, 19% and 22% more than COG, MFC, and
OJD algorithms respectively. MOO strategy maximizes the
resource utilization 18%, 24% and 27% as compared with the
existing COG, MFC, and OJD algorithms, respectively.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have designed a multi-tier fog-cloud
model for processing real-time tasks efficiently. Here, we
have formulated an optimal objective function with multiple
QoS parameters, namely total cost and resource utilization.
Moreover, an APSO-based offloading strategy, namely MOO
strategy has been designed to find an optimal computing
device for processing each real-time task. The main purpose
of introducing the APSO technique is to minimize the error
rate and increasing the accuracy of the offloading strategy. On
the basis of converging speed of the multiple QoS parameters
of the real-time tasks, our algorithm can be more adaptable
to find the suitable computing devices for the tasks. In the
experimental analysis section, initially, we investigated the
parameters of the APSO technique over various real-time data
sets and fixed their parametric values. Moreover, we evaluated
the performance of the proposed algorithms over existing state-
of-the-art algorithms using various performance metrics. The
analytical results show that the proposed strategy minimizes
the overall delay and cost of the tasks while increasing the
resource utilization of the computing devices as compared with
state-of-the-art algorithms. The experimental results indicate
that the proposed strategy outperforms the existing schemes in
terms of average delay, computation time, resource utilization
and average cost by 18%, 21%, 27%, and 23%, respectively.

In the future work, we plan to design an energy efficient fog-
cloud model for meeting multiple QoS parameters of the real-
time IoT applications. Moreover, we plan to introduce different

advanced machine learning strategies, namely reinforcement
learning and deep reinforcement learning for improving the
performance and accuracy of the offloading strategies in a
complex fog-cloud environment.

ACKNOWLEDGEMENT

This work has been partially supported by the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No. 825040 (RADON), Estonian Cen-
tre of Excellence in IT (EXCITE) funded by the European
Regional Development Fund, and DST(SERB), India, Sanction
No. EEQ/2018/000888.

REFERENCES

[1] S. S. Shah, M. Ali, A. W. Malik, M. A. Khan, and S. D. Ravana, “vfog:
A vehicle-assisted computing framework for delay-sensitive applications
in smart cities,” IEEE Access, vol. 7, pp. 34 900–34 909, 2019.

[2] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet of Things journal, vol. 1, no. 1,
pp. 22–32, 2014.

[3] C. Perera, P. P. Jayaraman, A. Zaslavsky, P. Christen, and D. Georga-
kopoulos, “Context-aware dynamic discovery and configuration of things
in smart environments,” in Big Data and Internet of Things: A Roadmap
for Smart Environments. Springer, 2014, pp. 215–241.

[4] R. Buyya, S. N. Srirama, G. Casale et al., “A manifesto for future
generation cloud computing: research directions for the next decade,”
ACM computing surveys (CSUR), vol. 51, no. 5, p. 105, 2018.

[5] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality
of experience (qoe)-aware placement of applications in fog computing
environments,” Journal of Parallel and Distributed Computing, vol. 132,
pp. 190–203, 2019.

[6] X. Hou, Z. Ren, W. Cheng, C. Chen, and H. Zhang, “Fog based
computation offloading for swarm of drones,” in IEEE International
Conference on Communications (ICC). IEEE, 2019, pp. 1–7.

[7] A. Brogi and S. Forti, “Qos-aware deployment of iot applications
through the fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1185–1192, 2017.

[8] M. Asif-Ur-Rahman, F. Afsana, M. Mahmud, M. S. Kaiser, M. R.
Ahmed, O. Kaiwartya, and A. James-Taylor, “Towards a heterogeneous
mist, fog, and cloud based framework for the internet of healthcare
things,” IEEE Internet of Things Journal, 2018.

[9] H.-L. Liu, L. Chen, K. Deb, and E. D. Goodman, “Investigating the
effect of imbalance between convergence and diversity in evolutionary
multiobjective algorithms,” IEEE Transactions on Evolutionary Compu-
tation, vol. 21, no. 3, pp. 408–425, 2018.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2958400, IEEE Internet of
Things Journal

12

[10] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
Nsga-ii,” in International Conference on Parallel Problem Solving From
Nature. Springer, 2000, pp. 849–858.

[11] S. Jiang, S. Yang, Y. Wang, and X. Liu, “Scalarizing functions
in decomposition-based multiobjective evolutionary algorithms,” IEEE
Trans. on Evolutionary Computation, vol. 22, no. 2, pp. 296–313, 2018.

[12] X.-S. Yang, S. Deb, and S. Fong, “Accelerated particle swarm optimiza-
tion and support vector machine for business optimization and applica-
tions,” in International Conference on Networked Digital Technologies.
Springer, 2011, pp. 53–66.

[13] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing:
Fundamental, network applications, and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1826–1857,
2018.

[14] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing
for iot: Review, enabling technologies, and research opportunities,”
Future Generation Computer Systems, vol. 87, pp. 278–289, 2018.

[15] Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo, “Traffic and
computation co-offloading with reinforcement learning in fog computing
for industrial applications,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 2, pp. 976–986, 2018.

[16] K. Liang, L. Zhao, X. Chu, and H.-H. Chen, “An integrated architecture
for software defined and virtualized radio access networks with fog
computing,” IEEE Network, vol. 31, no. 1, pp. 80–87, 2017.

[17] X. Zhao, L. Zhao, and K. Liang, “An energy consumption oriented
offloading algorithm for fog computing,” in International Conference
on Heterogeneous Networking for Quality, Reliability, Security and
Robustness. Springer, 2016, pp. 293–301.

[18] C. Fricker, F. Guillemin, P. Robert, and G. Thompson, “Analysis of an
offloading scheme for data centers in the framework of fog computing,”
ACM Transactions on Modeling and Performance Evaluation of Com-
puting Systems (TOMPECS), vol. 1, no. 4, p. 16, 2016.

[19] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang, “Energy-efficient offloading for mobile
edge computing in 5g heterogeneous networks,” IEEE access, vol. 4,
pp. 5896–5907, 2016.

[20] R. Hasan, M. Hossain, and R. Khan, “Aura: An incentive-driven ad-
hoc iot cloud framework for proximal mobile computation offloading,”
Future Generation Computer Systems, vol. 86, pp. 821–835, 2018.

[21] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. on Communications, vol. 64, no. 10, pp. 4268–4282, 2016.

[22] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job dispatching and
scheduling in edge-clouds,” in INFOCOM 2017-IEEE Conference on
Computer Communications, IEEE. IEEE, 2017, pp. 1–9.

[23] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang, “Multitier
fog computing with large-scale iot data analytics for smart cities,” IEEE
Internet of Things Journal, vol. 5, no. 2, pp. 677–686, 2018.

[24] H. Shah-Mansouri and V. W. Wong, “Hierarchical fog-cloud computing
for iot systems: A computation offloading game,” IEEE Internet of
Things Journal, 2018.

[25] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Profit-
aware application placement for integrated fog-cloud computing envi-
ronments,” Journal of Parallel and Distributed Computing, vol. 135, pp.
177–190, 2020.

[26] M. Adhikari, M. Mukherjee, and S. N. Srirama, “DPTO: A Deadline
and Priority-aware Task Offloading in Fog Computing Framework
Leveraging Multi-level Feedback Queueing,” IEEE Internet of Things
Journal, pp. 1–1, 2019.

[27] A. Brogi, S. Forti, C. Guerrero, and I. Lera, “Meet genetic algorithms
in monte carlo: Optimised placement of multi-service applications in
the fog,” in Int. Conf. on Edge Computing (EDGE). IEEE, 2019, pp.
13–17.

[28] M. Adhikari and S. N. Srirama, “Multi-objective accelerated particle
swarm optimization with a container-based scheduling for internet-
of-things in cloud environment,” Journal of Network and Computer
Applications, vol. 137, pp. 35–61, 2019.

[29] C. Jian, M. Li, and X. Kuang, “Edge cloud computing service com-
position based on modified bird swarm optimization in the internet of
things,” Cluster Computing, pp. 1–9, 2018.

[30] M. U. Sharif, N. Javaid, M. J. Ali, W. A. Gilani, A. Sadam, and
M. H. Ashraf, “Optimized resource allocation in fog-cloud environment
using insert select,” in International Conference on Network-Based
Information Systems. Springer, 2018, pp. 611–623.

[31] S. Bitam, S. Zeadally, and A. Mellouk, “Fog computing job scheduling
optimization based on bees swarm,” Enterprise Information Systems,
vol. 12, no. 4, pp. 373–397, 2018.

[32] H. Shi, Y. Feng, R. Luo, and J. Zheng, “Multi-objective optimization
for iot devices association in fog-computing based ran,” in Intl. Conf.
on Internet of Things as a Service. Springer, 2018, pp. 340–347.

[33] R. G. Aryal and J. Altmann, “Dynamic application deployment in fede-
rations of clouds and edge resources using a multiobjective optimization
ai algorithm,” in 2018 Third International Conference on Fog and Mobile
Edge Computing (FMEC). IEEE, 2018, pp. 147–154.

[34] J. Wan, B. Chen, S. Wang, M. Xia, D. Li, and C. Liu, “Fog computing
for energy-aware load balancing and scheduling in smart factory,” IEEE
Trans. on Industrial Informatics, vol. 14, no. 10, pp. 4548–4556, 2018.

[35] R. Ezhilarasie, M. S. Reddy, and A. Umamakeswari, “A new hybrid
adaptive ga-pso computation offloading algorithm for iot and cps context
application,” Journal of Intelligent & Fuzzy Systems, no. Preprint, pp.
1–9, 2019.

[36] N. Lynn, M. Z. Ali, and P. N. Suganthan, “Population topologies for
particle swarm optimization and differential evolution,” Swarm and
evolutionary computation, vol. 39, pp. 24–35, 2018.

Mainak Adhikari is currently working as a Post
Doctorate Research Fellow at University of Tartu,
Estonia. He has completed his Ph.D in Cloud Com-
puting from IIT(ISM) Dhanbad, India in 2019. He
has obtained his M.Tech.From Kalyani University
in the year 2013. He earned his B.E.Degree from
West Bengal University of Technology in the year
of 2011. His area of research includes Internet of
Things, Fog Computing, Cloud Computing, Server-
less Computing and Evolutionary algorithm. He has
Contributed numerous research Articles in various

national and inter-national journal and Conference.

Satish Narayana Srirama is a Research Profes-
sor and the head of the Mobile & Cloud Lab at
the Institute of Computer Science, University of
Tartu, Estonia and a Visiting Professor at Univer-
sity of Hyderabad, India. He received his PhD in
computer science from RWTH Aachen University,
Germany. His current research focuses on cloud
computing, mobile web services, mobile cloud, In-
ternet of Things, fog computing, migrating scientific
computing and enterprise applications to the cloud
and large-scale data analytics on the cloud. He is

IEEE Senior Member, an Editor of Wiley Software: Practice and Experience,
a 49 year old Journal, was an Associate Editor of IEEE Transactions in
Cloud Computing and a program committee member of several international
conferences and workshops. Dr. Srirama has co-authored over 130 refereed
scientific publications in international conferences and journals.

Tarachand Amgoth received B.Tech in Computer
Science and Engineering from JNTU, Hyderabad
and M.Tech in Computer Science Engineering from
NIT, Rourkela in 2002 and 2006 respectively and
Ph.D. form Indian Institute of Technology (ISM),
Dhanbad in 2015. Presently, he is working as an
Assistant professor in the Department of Computer
Science and Engineering, Indian Institute of Techno-
logy (ISM), Dhanbad. His current research interest
includes wireless sensor networks, cloud computing,
Fog/Edge computing, serverless computing and In-

ternet of Things.

