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Abstract—In recent years cloud computing has raised sig- To counter the problem with additional communication
ni cant interest in the scientic community. Running scientic  latencies, we propose remodeling and scheduling the scien-
experiments in the cloud has its advantages such as elasticity, tjc applications (also applicable for enterprise apptioas),
scalability and software maintenance. However, the communica-  especially work ows, in a way that increases the intra-amste
tion latencies added by the virtualization, the technology behind communication while reducing inter-instance communarati
the cloud's service provisioning in general, is observed to be the P . : :

o A 2 > o so that the applications will t nicely to the cloud. This
major hindrance for migrating scienti c computing applications speci cally taplzgets at our study Wi%;] work ow Schedulirﬁfgpto

to the cloud. The problem escalates further when we consider .. 4 .
scienti c work ows, where signi cant data is exchanged across ~ 'educe data transmission during the work ow execution by

different tasks. So to migrate scienti ¢ work ows to the cloud, we  €Xploiting graph partitioning approaches. Partitioniregpis to
propose a way to reduce the data communication by partitioning ~ nd the most bene cial way to run the work ow components
and scheduling the work ow and adapting a peer-to-peer data  in such a way, that the communication between the instances
sharing among the nodes. Different size Montage work ows were is reduced. Graph partitioning has been studied extemsivel
considered for the analysis of the approach. From the study, we and there are several algorithms one can consider [8]. As par

observed that the partitioning along with the peer-to-peer le  of the study we have adapted multilevel k-way partitioning
sharing reduced the data communication in cloud up to 80%. algorithm [9].

Keywords—Scienti ¢ work ows, graph partitioning, cloud, Scientic workows such as Montage [10], Cyber-
Montage, METIS, peer-to-peer. Shake [11] or SIPHT [12] can benet from such a study.
For the analysis provided in this paper, we considered Mon-
tage [10], an astronomy application that was created by the
. INTRODUCTION NASA/IPAC Infrared Science Archive. We used graph parti-
tioning library METIS [8], Pegasus with Condor for work ow
execution and peer-to-peer le management with Mule on
Pegasus. A detailed analysis is also provided quantitative
showing the gain in data transmission reduction. Rest of the
paper is organized as follows.

Scienti ¢ computing is a eld of study that applies com-
puter science to solve scienti ¢ problems from domains sagh
astronomy, genomics, material science, bioinformatios)pmu-
tational chemistry etc. It is usually associated with lasgale
computer modeling and simulation and it often requiresdarg
amounts of computer resources. Cloud computing suits well  Section Il, discusses the limitations of scienti c compmgfi
in solving these high performance computing (HPC) problemson the cloud. Section Il later introduces Montage sciemti
with its promise of provisioning virtually in nite resoues. For  work ow. Section IV discusses in detail, the approach of
that reason, a lot of people, especially scientists, aiagrio  partitioning and scheduling scientic work ows for cloud
migrate their applications, in most cases, scienti c warws,  migration along with detailed performance analysis. $ecti
to the cloud. V provides the related work, while section VI concludes the

Signi cant research [1], [2], [3] has been performed in paper with future research directions.

migrating scienti c computing applications to the cloud. A
number of science clouds [4], [5], [6] have been established
in recent years, in which scientists have run many simuiatio
and applications and measured their performance to eealuat Scienti c computing is usually associated with large scale
the applicability of doing science on the cloud. Howevege th computer modeling and simulation and thus requires large
idea of running scienti c computing applications on thewdo amounts of computer resources. Traditionally, once thensci
has not been well received by all quarters of the scienti ctic computing applications are developed, they are exedut
computing community, as the performance of cloud still lagson the Grid infrastructures, clusters and super computers.
behind when compared to grids or using computer clusters dWwhile these infrastructures are highly ef cient in perfongi
rectly. The communication latencies added by the virtadilim  compute-intensive parallel scientic computing applicat,
technology is observed to be the major hindrance for exeguti they provide little control to the user in general and arevitga
scienti c computing applications on the cloud [1], [7]. The biased by the availability of the computational resources.
communication latencies not only increase the executimesi The introduction of commercial cloud infrastructures sash

but also raise the utility computing costs. Amazon EC2 and GoGrid allowed users to have access to

II. LIMITATIONS OF SCIENTIFIC COMPUTING ON THE
CLouD



computer clusters fairly easily and shifted the focus fromfrom communication. The NAS CG problem of Class B runs
traditional approach to cost-to-value of the experiments. CG algorithm multiple times and each algorithm makes 75
iterations. Each iteration consists of two parts, caltoiteand

Moreover, with the availability of open source cloud m'agﬁmmunication. The times spent MPI_Send (darker/blue)
i

frastructure software such as Eucalyptus, Open Nebula a . : :
OpenStack, it has become simple to establish private clou d MPI_Wait - (lighter/red) are shown on Figure 1. The

and to test the applications well before migrating them to, ' spent on the calculation part in one CG iteration is
X pp! grating approximately 26 and 24 milliseconds for cluster and cloud
the public clouds. Private cloud lets us rst to investigéte

respectively. The time spent on the communication part are

Iimitati(_)ns of the CIOUde gnd tweak the applications beforevery different: 2.5 and 13 milliseconds. This makes CG time
deploying them on public infrastructure. We have created OUfor 8 processes on the cloud about 50% slower. The reason

own private cloud, SciCloud [5], established with Eucalypt ; o . :
technology on XEN hypervisor, to study this approach. SCi_for such high transmission latency in the cloud case is due to

Cloud has a maximum capacity of around 350 bBrocessor cor the virtualization technology. Moreover, we also have obsg
. ; pacity J 550 p Rat MP applications are very sensitive to the number of VMs
at its disposal. Recently we also have joined an OpensStac

! : - . er computer. Also the latencies and processing capabibtie
based private cloud to the SciCloud, which is basically deed much worse when multiple virtual machines are allocated per

one machine core. This leaves a lot of research scope at the

ically adding more instances from the public clouds when the, .- i ation technology to address these problems [1]
need arises makes the use of private clouds more interesting '

SciCloud has customised machine images with support for

several typical scienti c computing and simulation toolsch .

as Python with NumPy, SciPy, and Scilab. Moreover, scripts

have been developed, which prepare the complete deployment Work ows have lately become a standard for managing

for MPI (Message Passing Interface - used for creating lghral and representing complicated scienti ¢ computations [18]

applications) applications on SciCloud. provides an abstracted view over the experiment that isgbein
We have performed detailed analysis with several benchperformed [15]. Each computation may contain thousands of

mark applications such as NASA Advanced SupercomputinélaSks that are executed, in an order, on top of programs such

Parallel Benchmarks (NAS PB) and custom matrixcvector ™ SOy & SR T Ta0 B T B e e ite
multiplication implementations to observe the executidn o ging P 9

scienti ¢ computing applications on different cloud platins. structured set of steps to overcome a scienti ¢ problem. The

We compared the results with experiments performed withouf P!ty 10 map complex computations to a series of taskswallo
the cloud platform. The idea was to identify and measure e work ows to be runnable on grids and clouds and thergfore

the true latency costs added by moving applications to thgcientist are not held back by computational resources any
cloud. Both the cloud and cluster experiments ran on the sa ore.

physical hardware. We have run CG and EP (Embarrassingly Every work ow has its unique arrangement, but it usually
Parallel) problems from NAS PB. CG is an iterative algorithm consists one of the ve basic work ow structures: process,
for solving systems of linear equations. The general idea Opjpeline, data distribution, data aggregation or datasteiei

CG is to perform an initial inaccurate guess of the solutionyytion [16]. Process is one of the simplest structures, whic
and then improve the accuracy of the guess at each followingskes some input to produce an output. Pipeline consists of
iteration using different matrix and vector operations.HR  several processes and is the most common part in work ows.
benchmark, two—dlmensmnal statistics are accumulatech fr _Data distribution takes some input and outputs multipleadat
a large number of Gaussian pseudo-random numbers, WhiGRat is consumed by various of tasks. In some cases data
are generated according to a particular scheme that is welkistribution is used to divide a large dataset to smallesstsh
suited for parallel computation. This problem is typical of for easier processing for the next tasks. Data aggregation
many Monte Carlo applications [13]. The former is used toacquires for input, multiple outputs from other jobs, and
evaluate transmission delays: latency and bandwidthewhé  produces a combined data product. Data redistributionds th
latter is used for testing processor performance. combination of data aggregation and distribution, whidteta
multiple inputs and outputs numerous datasets.

M ONTAGE AND SCIENTIFIC WORKFLOWS

processors 1 2 4 8 16

CG on cluster 167.5 83 65 55 31 . . .

CGonodloud 1611 824 681 74 1567 There are several scienti ¢ work ows which are popular
EPoncluster 1434 861 422 20.3 among the respective communities such as CyberShake a seis

EPoncloud 1305 651 336 169 mic hazard analyzer, SIPHT a bioinformatic work ow dealing

TABLE I: Execution times (sec) of CG and EP from NAS PB With the search of untranslated RNAs, Epigenomics [17], a
genome sequencing work ow and etc. Of these, Montage
is a popular astronomy application that was created by the

Table | summarizes the results. The performance gaiNASA/IPAC Infrared Science Archive. The open source pro-
achieved by adding more machines to the setup is comparabigam is made for generating custom mosaics of the sky using
in both the cloud and cluster cases. However, the CG times rigmages in the Flexible Image Transport System (FITS) format
signi cantly with the number of processors on the cloudrtsta Montage graphs can vary in size, for example, a 1.0 degree

ing at 8 instances. The EP times did not show any slowdowisquare mosaic contains of approximately 387 tasks and 84

on the cloud. To uncover the reasons for such high run timemput images. Figure 2 shows a small, twenty node montage

the experiments were run with MPE Pro ler that shows MPIwork ow along with a note of the tasks being performed across
function calls and hence allows distinguishing calculagio the layers.



(a) cluster: 2.5ms (b) cloud: 13.0ms

Fig. 1: Communication pattern of a CG iteration with 8 nodastlze cluster and cloud. The time intervals of the iteratiares
shown under the respective pro ling diagrams.

FITS le s later reduced by the mShrink job, which outpute th
shrunken le ( 4.2 MB) to mJPEG that converts the image
to JPEG format. Based on these input and output sizes, we
can construct a weighted graph of the Montage work ow. The
graph is used in the partitioning and scheduling the work ow
which is discussed further in the next subsections.

mProjectPP - Image reprojection

mbDiffFit - Fit a plane to image

mConcatFit - Merging of
parameter files

From the Montage scenario, we can see that in scientic
work ows, a lot of data is exchanged across several jobs and
if the work ow is migrated to and executed in an environment

mBgModel - Image correction

mBackground - Background

correction

mimgTbl - Metadata extraction

mAdd - Coaddition of the
reprojected images

mShrink - Shrinking the FITS file

mJPEG - JPEG conversion

which is not ideal for data transmission, such as cloud, it
increases the execution times as well as the utility comput-
ing costs. However, cloud with its well known features like
elasticity and on-demand resource provisioning, makesekli

for migrating the work ows and also gives the scientists a
new dimension - cost to value of the experiments. So, to t
the scienti c work ows for the cloud environment and at the
same time deal with the transmission latencies problens, it i

a good idea to schedule the job execution in such a way that
increases the intra-instance communication while reduttie

Fig. 2: Montage Work ow inter-instance communication.

The rst task of the work ow is mProjectPP. The number
of these jobs is dependent on the number of FITS images (each
one is 2.1 MB) provided. The outputs, each approximately
8.4 MB of size, are re-projected images and area images In general any work ow (scienti ¢ or enterprise) can be
that are a fraction of the image that is in the nal mosaic.represented as a directed acyclic graph (DAG)= (V;E),

IV. PARTITIONING AND SCHEDULING SCIENTIFIC
WORKFLOWS

overlapping images and outputs the data (less than a KRB0  performed in the work ow and edgek V V. Edges
bytes) to mConcatFit. After tting the images, the job outpu encode data dependencies anduf,v;) 2 E, tasksv; and
the data of a size 2.9 KB to mBgModel, which applies a v; are neighbors andg; is directly dependent on the output
correction to each image for a better global tand sends0  of v;. The weight of the edgey;; denotes the amount of
bytes of data to the next job. The next job is mBackgrounddata transferred fron to v;. The work ow can be executed
where background correction is applied to each image. Afteon a cluster or a set of instances rented from the cloud based
that, the mimgThbl, which receives4.2 MB of data from each on the utility computing model. To reduce the inter-ins&nc
mBackground job, extracts the metadata from the images antbmmunication in the deployment cluster, we have to partiti
creates an image metadata table which is used by several oththe work ow, so that the sum of the weights of the edges
programs. The mAdd takes for input approximatel8.4 MB  connecting to vertices in different groups is minimizedtekf

of data. It is the most computation heavy job which co addgartitioning the work ow-graph to approximately equal etz
the re-projected images to form the nal mosaic in the FITSparts, we can assign the partitioned subsets of the workaw t
format and outputs also an area imag&.4 MB of size. The run on the cluster.



A. Partitioning the work ow Execution Engine (DAGMan}kExecutes the tasks that

The partitioning problem is de ned as follows: Partition are de ned in the work ow.

the vertices of the graph into approximately equal partitions Task Manager (Condor Scheddylanages the tasks
such that the sum of the weights of edges that are connected to and their execution.
vertices in different parts is minimized. The k-way pactiting

problem can be formulated to: Given a graphe (V; E) with Monitoring Component (Pegasus Monitordhe com-

: ponent that monitors all the processes, creates the logs
Vi\ V, = fori 6 j;jVij = n=k; and[ Vi = V, and the etc.

sum of the weights of edges & whose incident vertices Pegasus in turn utilizes Condor, a specialized workload
belong to different subsets is minimized. The partitiondfg  yanagement system for compute-intensive jobs [21]. Users
V is generally represented by a partitioning ved®arwith a just have to submit the job to Condor and the rest of the
lengthn. So for every node 2 V, P[v] is an integer between ia5ks such as job queuing, prioritizing, monitoring, ete a

1 andk that shows to which partition vertex belongs. all taken care by Condor. Condor consists of the following

It is known that graph partitioning problem is NP-complete. main daemons: condamastercondor startd condor starter,
Graphs and graph partitioning are used in numerous areas @ndor collector, condor negotiatoy condor scheddandcon-
computing such as social networks, scienti ¢ and disteiout dor_shadow The condor masteris the daemon that is respon-
computing, biological networks, etc [18]. METIS is a set of sible for starting and managing other daemons and it runs
serial programs for partitioning graphs and the algorithmsn every machine in the Condor pool. A condor pool is the
implemented in METIS are based on the multilevel recursivecluster of machines where the jobs are run. Tbedor startd
bisection, multilevel k-way, and multi-constraint pdditing IS the daemon that advertises information about the current
schemes [8]. As part of the study we used multilevel k-waymachine and enables the machine to run or stop jobs in the
partitioning [9] for creating homogenous groups, which isCondor poolCondor starteris activated byondor startdand
the default and probably the best partitioning algorithm adt handles the managing and starting of a j6bndor collector
per METIS. Moreover, METIS's multilevel k-way partitiongn  is the daemon that collects all the information such as gsdat
algorithm provides additional capabilities, when compare sent by other daemons (ClassAd) to this daemon. ddre
to multilevel recursive bisection [19], such as minimize th dor_negotiatordaemon matches the jobs to the machines from
resulting subdomain connectivity graph, enforce contiguo the information it gets from the collector amndor schedd
partitions, minimize alternative objectives, etc. submits the jobs to the queue. Thendor shadowruns on

every machine, where the job is executing and it is resptasib

The basic idea behind the multilevel k-way partitioning ¢q |ogging and requesting for le transfers when the job has
algorithm can be summarized as follows. First the graprbompleted.

G = (V;E) is coarsened down to a small number of vertices _ _
(coarsening phase). During the coarsening phase a pragress ~ To submit a work ow to Pegasus one has to provide the
of smaller graphs is created from the original graph. No& th following les:

each coarser graph has both the connectivity and the ratio
grap Y Directed Acyclic Graph in XML (DAX) le- This is

of the initial graph. After coarsening, the next stage is the ; Y ;
partitioning phase, where a k-way partitioning of the ceats the_ le that contains the description of the jobs and
graph is calculated, which is computed using a multilevel their dependencies.

bisection algorithm. After that the coarsest graph is paried Transformation Cata]og le- Describes all the exe-
(initial partitioning phase) the result is projected bacwards cutables that the work ow needs to run the jobs.
the original graph (uncoarsening phase). To improve thé na . ) i
partitioning, it is re ned during the projection back to the Replica catalog le- A le that contains mappings to
original graph [9]. the les that the work ow needs.

, Sites catalog le- This le describes all the sites

B. Scheduling the work ow where the work ow tasks are going to be executed.
Once the work ow is partitioned, we used Pegasus frame-

work, for scheduling and submitting jobs to run on top of C. Montage and Pegasus on cloud
multiple instances on cloud. Pegasus is a popular framework
for mapping complex scienti ¢ work ows onto distributed sy
tems [20]. Pegasus has numerous features such as poytabili
reliability, scalability, etc. With Pegasus, work ows caasily

To observe the migration of scientic work ows to the
at:loud, we partitioned the Montage work ow, 0.2 degree sguar
mosaic, with 8 input images, into 3 groups. We later executed

be run in different environments such as grids, clouds, ¢camp t3hir\1,(\;3\;|s( ?r‘?; ot?)ttarrrz?ng:?#tdolfnzt;[gcfﬁa?silsn?r;esgrﬁﬁﬁa ':cgrgrses
clusters and so on (portable), jobs that fail are reschedule

to run again (reliable), and Pegasus can run different sith.e d'ﬁeref.“ nodes durm'g. th'e complete worlk ow execution,
work ows (scalable) on top of different type of resources.  With and without the partitioning and scheduling, acroseeh
different runs. From the analysis, we observed that theaedu

The main components of Pegasus are: tion in the data transmission is not so signi cant even after
partitioning and the data transmission have always vared i

Mapper (Pegasus MapperMakes a runnable work- quantity (as shown in gure 3).

ow from an abstract work ow. It also searches for
the software and computational resources where the A thorough analysis revealed that one of the bottlenecks of
work ow should be executed. running Pegasus with Condor in the cloud is the le sharing
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Fig. 3: Data transfer comparisons between random schedulif~i9. 4: The nal setup of the work ow execution in the cloud
and partitioning with METIS. The values are shown for 3 (3 instances) with peer-to-peer le sharing
random runs where the gain with partitioning is ambiguous
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an API for the transformations and several scripts which
- all the communication goes through the central manageautomatize the complete procedure.

This means to execute a task on a node the input is_rst First the work ow le is transformed to a le format that is
copied from the centralized le system or a Network File accepted by METIS { in gure 5), i.e., a text le, where each

System (NFS) [22] and the output is copied back to the; ) . . i
NFS once the execution is nished, via the central manage?Ine contams.the weights and connections O.f a 5”79'9 node.
' After converting the work ow to a text le, it is partitioned

Work ow partitioning in this scenario will not help to redec : X X
the communication between the instances, because it do¥dtn the METIS tookkit (2 in gure 5). The output of the
%ilrtltlonlng is again a text le, where on each line is an gae

not matter anymore where the jobs are being run, ever ina to which de bel t0. Th out le i
data exchange goes always through the central node. Th owing to which group a node belongs to. he output e 1S
ransformed again to an abstract work ow [e3(in gure 5),

type of centralized approach is lot more logical in grid andwhere under each job, the machine where it is going to run is

supercomputing environments. . . :
P puting speci ed (executionPool), as speci ed below.
Scienti ¢ work ows are traditionally designed for grids en , T
clusters, where instances are dynamically allocated aad af <Profile namespace="hints .
revoked once the subtasks are completed. So no informatidffy="€xecutionPool">mainnode</profile>
is retained on the nodes and the results are stored in the after the creation of the abstract work ow, where each

centralized le system. However, when executing the wok 0 jop5 js assigned to a compute node (scheduled), the work ow
on dedicated infrastructure as in the case of cloud, it is g executed on the cloud4( in gure 5). For example, for

good idea to store the intermediary results of the work ow planning a work ow to run on top of three instances, we used
task executions on the nodes, so that the next tasks do nfe following command:

have to download the data again from the central repository.
This would signi cantly reduce the amount of data that is pegasus plan n

exchanged across different nodes, which is crucial for kinecc conf pegasus.propertie®
migration. sites mainnode, workerl, worker#
output site local n
D. Pegasus execution in peer-to-peer (P2P) manner (Sjt_agingb S_itte mainnoden
To solve this problem, the peer-to-peer le manager (Mule) dr;( smu3 gz]';\lg .r:(m| n
for Pegasus [23] was considered. The le manager has three noclear_wp n
componentsreplica index servicea cache daemgnand a submitn

client Instead of storing the les on the central manager, the
peer-to-peer le manager allows storing all the necessdeg

on each compute node. On each node where a computatign
occurs, the cache daemon stores the copies of the les th
the job uses or outputs. To know where the les are locate
the replica index server is used, where all the location$ef t
les are listed. Replica catalog has both logical le namelan
the URL of a le. So if a machine needs some data, it rst
checks the replica catalogs list and then retrieves it. feigu

The experiments were later performed again, with 0.2, 1.0
d 2.0 degree Montage work ows, this time introducing the
ule. With the developed API and scripts we can partition
any custom size Montage work ow and run it in the cloud
with ease. During the analysis we observed that only with
the implementation of the P2P le sharing on top of Pegasus,
the overall data communication in the cluster was already
displays the nal setup - Pegasus with Condor integratedh wit reduced over 50%.’ even without introducing the partitignin
P2P sharing. For example, running a 1.0 degree Montage work ow V\_nthout

P2P on three compute nodes results approximately 4 gigabyte
With the introduction of Mule for Pegasus, the completeof data exchange and with the P2P implementation only 2
migration procedure is shown in gure 5. We have developedgigabytes was exchanged.



Fig. 5: The complete scienti c work ow migration procedure

IS

1:40:48

/ Lo

- 1:12:00

Datatransfers

~
w
o

GigaBytes

w

Gigabytes
(=2}

v

0:57:36

—— Data Transfer

IS

0:43:12
15 —m—-Time

W RANDOM
3 I 0:28:48

o METIS

1
: 05 / 0:14:24
1 0 T 0:00:00
0 1 2 3 4 5 6 7
o : : Cluster Size

0.2 1.0 2.0
Degrees

Fig. 7: Work ow execution across varying cluster sizes
Fig. 6: Data transfer comparisons between random schegdulin
and partitioning with METIS. The values are shown for
Montage 0.2, 1.0 and 2.0 degree problems.
mosaic will always have approximately 8, 84 and 312 input
images, respectively. This xes the number of tasks perfdm
during the work ow execution and the amount of data being
From the analysis we could also observe that, the overabxchanged. So, if we can nd the ideal number of partitions
communication between the instances was reduced up #@r one particular size of problem, the amount is applicable
60% with the help of partitioning the work ow with METIS. any other input with similar problem sizes.
With the P2P approach and the partitioning the overall data
communication was reduced up to 80%. For example, the data To decide the ideal number of partitions, we considered
transfer on the 2.0 degree work ow case was reduced fron® particular problem size (2.0 degree Montage is discussed
15.5GBto 7.5 GB with the help of Mule, which further got here) and tried to partition the work ow into different size
reduced to 2.8 GB with both partitioning and Mule. Figure and measured the execution times and the data transmission |
6 displays the data communication of different size Montagdencies. Figure 7 shows the work ow execution across vayin
work ows. cluster sizes. From the gure we can observe that partitigni
to 4 groups is ideal, in terms of execution time, achieved
parallelization and incurred utility computing costs, fibiat
particular problem. So for every input of the same size the
While the results show that there is signi cant reduction same cluster size could be utilized. However, this analigsis
in transmission latencies while executing the work ow, oneexhaustive enough and is applicable only when it is common to
problem still remains is how to decide the ideal number ofconsider particular problem sizes, which is generally olesk
groups into which the work ow can be partitioned. For any in scienti ¢ work ows.
parallelizable application, there is only to a certain letee
parallelization is cost effective, beyond which the paiah-
tion overhead itself will eclipse the achieved gain. Thisis
analysis which is application speci c and also depends putn
and problem size, type of instances etc. However, the pmoble
size of scienti ¢ work ows can be generalized in certain eas

E. Finding ideal number of partitions

Once the ideal cluster size has been identi ed, we migrated
the work ow to the Amazon cloud (on 4nl.smallinstances)
and executed it for the 2.0 degree Montage. Figure 8 shows the
data communication latencies, for both the cases where-work
ow is scheduled randomly and where work ow is adapted
for cloud migration by partitioning and scheduling. Theadat

To be more speci ¢, if we consider the Montage work ow, communication in the Amazon cluster with the 2.0 degree
we can consider different input sizes for the problem. FoMontage work ow was reduced after partitioning nearly by
example, as already mentioned, 0.2, 1.0 and 2.0 degreeesquar 70%.



estimate, partition and schedule work ows [29] onto exémut
sites with storage constraints, to improve the overalliret
They partitioned the work ow into sub-work ows as it redute
the complexity of work ow mapping. For example, an entire
CyberShake work ow hasl:9 10° tasks. In contrast our
work schedules separate work ow tasks to the running sites
individually, because Montage work ow cases used for the
tests, does not contain so many tasks. Similarly, M. Tanaka
and O. Tatebe used METIS to minimize the data movement
between the nodes [30]. In their case they used a Pwrake
parallel work ow system, whereas we considered work ow
execution using Pegasus toolkit with P2P implementation.

Regarding, running scienti ¢ work ows in the cloud and
the challenges of it; Juve and Deelman studied the problem an

Fig. 8: Data communication across 4 nodes in Amazon EC3tate that the bene ts of running scienti ¢ work ows are for

while performing 2.0 degree Montage work ow execution

V. RELATED WORK

Alexandru losup et al. [24] studied the performance of
cloud services for scienti c computing tasks. They statat th
cloud holds great promise for the scienti c computing com-
munity as it can be a cheap alternative to supercomputers a
specialized clusters, more reliable platform than gridsj a
more scalable platform than the largest commodity cluster
Their motivation was that the potential of clouds for sdient
computing has been largely unexplored. They evaluate th
performance of four commercial cloud platforms, Amazon
EC2, GoGrid, Elastic Hosts and Mosso and compare thei
performance for Many-Task Computing based scienti ¢ com-
puting workloads. They conclude that current clouds need a

order of magnitude in performance improvement to be useful

to the scientic community and propose improvements for
supporting scienti ¢ computing workloads in the cloud.

As previously mentioned, signi cant research [25], [24],
[26] has been performed in migrating scienti c computing
applications to the cloud. Most of these studies, similanuo
results [1], iterate that virtualization is the major hiadce for
migrating scienti c computing or, in general, high perfaarnce
computing applications to the cloud. Some of these stu@is [
are quite extensive and are more detailed when compared
our work. However, when SciCloud [5] was established in

2010, this was one of the rst questions we asked ourselves:

what are the major hindrances for migrating scienti ¢ cortapu
ing applications to the cloud? With the discussed experigjen
and our access to private cloud infrastructure, we couldrigle
measure the latencies added by virtualization. For exanmple
see the clear network latencies added by the virtualizatien
restricted the cloud instances to start on single physiodken
in a cluster. This sort of deployment guarantees are notegffe
by public clouds.

In the area of work ow partitioning Catalyrek et al. used
a heuristic called DPTA (data placement and task assignme
tool) to optimize the execution of scientic work ows in
the cloud [27]. They achieved up to 38% of reduction in
communication costs. They enhanced a multilevel hypegptgra
partitioning tool called PaToH [28]. However, in our anadys
we considered METIS for partitioning. Correspondingly,e@h
and Deelman developed a system on top of the Pegasus

example lease based provisioning, elasticity and the stippo
for legacy applications [31]. They too agree that a lot of kvor
is needed to be done to bring the performance up to the
level of grids. For this analysis, they have compared diffier
environments to run scienti ¢ work ows, e.g., EC2 [32] and
Open Science Grid [33]. According to them a lot of effort has
gone into improving running work ows in the cloud - many
scientists have been developing multiple algorithms tae tak
vantage of the pricing model and elasticity of infrasinoe

ri(lfnuds. One can say that nowadays there is not anymore a
Jdrastic difference between running work ows on the grid or

on the cloud, both have their advantages and disadvantages.
Elowever, the most common challenges or disadvantages of
running work ows in the cloud are for example system ad-
pinistration, complexity, data management and cost.

VI.

Migrating scienti ¢ applications/work ows to the cloud is
interesting in terms of achieved advantages such as efgstic
scalability, utility computing backed new perception ofsto
to-value of experiments etc. However, cloud also has certai
limitations, which actually con nes its performance foriest-

ti c/HPC calculations, such as virtualization and the coomia
cation latencies added by it. So migrating scienti ¢ apation

to the cloud needs a fresh perspective, which can take bene t
from cloud's advantages and yet can counter its limitations
gaﬂs leaves signi cant scope for new frameworks, tools and
methodologies speci cally targeting at cloud migration.

n CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a way for reducing
the data communication of scienti ¢ work ows between the
computation nodes in the cloud. The communication reduc-
tion is achieved with work ow partitioning using the METIS
toolkit and for the partitioning we used the multilevel kyva
algorithm. We observed that the data transfer between the
nodes was not reduced after partitioning, in the centrdlize
le system case, where all the data goes through one node,

which is prominent in scienti c experiments performed on

traditional infrastructure such as clusters, grids andesugm-

&uters. However, to overcome this problem, especially with

cloud migration being the nal goal, we adapted the peer-to-
peer data sharing principle on top of Pegasus. For that wek use
Mule, which allows all the compute nodes to communicate

with each other.

With the adaptation of P2P sharing alone the data transfer
tm the cluster was reduced over 50%. After the partitioning



with METIS and rescheduling the work ows in the cloud, we [12]
observed a communication reduction up to 60%. For example
in the 1.0 degree Montage work ow, the data communication[13]
was reduced from 4 gigabytes of data exchange to 2 gigabytes
with the peer-to-peer model alone. After partitioning therky ~ [14]
ow with METIS, the communication was further reduced
down to 700 megabytes. So, with the P2P approach and
partitioning, we managed to reduce the data communicatiops;
in the cluster up to 80%.

Regarding the future work, the discussed partitioning meth!®!

ods result in homogeneous partitions, considering onlyldia
transfer across the nodes. We are planning to extend thie part
tioning also to include the amount of processing performed o[17]
each node. This should result in homogeneous partitiorts bot

in terms of processing as well as data transfer. We are alda8]
interested in non-homogeneous partitions, where eachipart

can result in different size, still optimizing the commuation
latencies. These sorts of non-homogeneous partitionsatan t (291
advantage of heterogeneity of cloud instances. Howevat; sc (20]
ing such a system would be very dif cult and we are currently
in the process of designing an ideal deployment con guratio
for such a system based on in-coming loads, using the linear
programming models, especially for enterprise work ows.  [21]
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