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Abstract—In recent years cloud computing has raised sig-
ni�cant interest in the scienti�c community. Running scienti�c
experiments in the cloud has its advantages such as elasticity,
scalability and software maintenance. However, the communica-
tion latencies added by the virtualization, the technology behind
the cloud's service provisioning in general, is observed to be the
major hindrance for migrating scienti�c computing applications
to the cloud. The problem escalates further when we consider
scienti�c work�ows, where signi�cant data is exchanged across
different tasks. So to migrate scienti�c work�ows to the cloud, we
propose a way to reduce the data communication by partitioning
and scheduling the work�ow and adapting a peer-to-peer data
sharing among the nodes. Different size Montage work�ows were
considered for the analysis of the approach. From the study, we
observed that the partitioning along with the peer-to-peer �le
sharing reduced the data communication in cloud up to 80%.

Keywords—Scienti�c work�ows, graph partitioning, cloud,
Montage, METIS, peer-to-peer.

I. I NTRODUCTION

Scienti�c computing is a �eld of study that applies com-
puter science to solve scienti�c problems from domains suchas
astronomy, genomics, material science, bioinformatics, compu-
tational chemistry etc. It is usually associated with largescale
computer modeling and simulation and it often requires large
amounts of computer resources. Cloud computing suits well
in solving these high performance computing (HPC) problems,
with its promise of provisioning virtually in�nite resources. For
that reason, a lot of people, especially scientists, are trying to
migrate their applications, in most cases, scienti�c work�ows,
to the cloud.

Signi�cant research [1], [2], [3] has been performed in
migrating scienti�c computing applications to the cloud. A
number of science clouds [4], [5], [6] have been established
in recent years, in which scientists have run many simulations
and applications and measured their performance to evaluate
the applicability of doing science on the cloud. However, the
idea of running scienti�c computing applications on the cloud
has not been well received by all quarters of the scienti�c
computing community, as the performance of cloud still lags
behind when compared to grids or using computer clusters di-
rectly. The communication latencies added by the virtualization
technology is observed to be the major hindrance for executing
scienti�c computing applications on the cloud [1], [7]. The
communication latencies not only increase the execution times
but also raise the utility computing costs.

To counter the problem with additional communication
latencies, we propose remodeling and scheduling the scien-
ti�c applications (also applicable for enterprise applications),
especially work�ows, in a way that increases the intra-instance
communication while reducing inter-instance communication,
so that the applications will �t nicely to the cloud. This paper
speci�cally targets at our study with work�ow scheduling to
reduce data transmission during the work�ow execution by
exploiting graph partitioning approaches. Partitioning helps to
�nd the most bene�cial way to run the work�ow components
in such a way, that the communication between the instances
is reduced. Graph partitioning has been studied extensively
and there are several algorithms one can consider [8]. As part
of the study we have adapted multilevel k-way partitioning
algorithm [9].

Scienti�c work�ows such as Montage [10], Cyber-
Shake [11] or SIPHT [12] can bene�t from such a study.
For the analysis provided in this paper, we considered Mon-
tage [10], an astronomy application that was created by the
NASA/IPAC Infrared Science Archive. We used graph parti-
tioning library METIS [8], Pegasus with Condor for work�ow
execution and peer-to-peer �le management with Mule on
Pegasus. A detailed analysis is also provided quantitatively
showing the gain in data transmission reduction. Rest of the
paper is organized as follows.

Section II, discusses the limitations of scienti�c computing
on the cloud. Section III later introduces Montage scienti�c
work�ow. Section IV discusses in detail, the approach of
partitioning and scheduling scienti�c work�ows for cloud
migration along with detailed performance analysis. Section
V provides the related work, while section VI concludes the
paper with future research directions.

II. L IMITATIONS OF SCIENTIFIC COMPUTING ON THE
CLOUD

Scienti�c computing is usually associated with large scale
computer modeling and simulation and thus requires large
amounts of computer resources. Traditionally, once the scien-
ti�c computing applications are developed, they are executed
on the Grid infrastructures, clusters and super computers.
While these infrastructures are highly ef�cient in performing
compute-intensive parallel scienti�c computing applications,
they provide little control to the user in general and are heavily
biased by the availability of the computational resources.
The introduction of commercial cloud infrastructures suchas
Amazon EC2 and GoGrid allowed users to have access to



computer clusters fairly easily and shifted the focus from
traditional approach to cost-to-value of the experiments.

Moreover, with the availability of open source cloud in-
frastructure software such as Eucalyptus, Open Nebula and
OpenStack, it has become simple to establish private clouds
and to test the applications well before migrating them to
the public clouds. Private cloud lets us �rst to investigatethe
limitations of the clouds and tweak the applications before
deploying them on public infrastructure. We have created our
own private cloud, SciCloud [5], established with Eucalyptus
technology on XEN hypervisor, to study this approach. Sci-
Cloud has a maximum capacity of around 350 processor cores
at its disposal. Recently we also have joined an OpenStack
based private cloud to the SciCloud, which is basically usedfor
the analysis provided in this paper. The possibility of dynam-
ically adding more instances from the public clouds when the
need arises makes the use of private clouds more interesting.
SciCloud has customised machine images with support for
several typical scienti�c computing and simulation tools such
as Python with NumPy, SciPy, and Scilab. Moreover, scripts
have been developed, which prepare the complete deployment
for MPI (Message Passing Interface - used for creating parallel
applications) applications on SciCloud.

We have performed detailed analysis with several bench-
mark applications such as NASA Advanced Supercomputing
Parallel Benchmarks (NAS PB) and custom matrix-vector
multiplication implementations to observe the execution of
scienti�c computing applications on different cloud platforms.
We compared the results with experiments performed without
the cloud platform. The idea was to identify and measure
the true latency costs added by moving applications to the
cloud. Both the cloud and cluster experiments ran on the same
physical hardware. We have run CG and EP (Embarrassingly
Parallel) problems from NAS PB. CG is an iterative algorithm
for solving systems of linear equations. The general idea of
CG is to perform an initial inaccurate guess of the solution
and then improve the accuracy of the guess at each following
iteration using different matrix and vector operations. InEP
benchmark, two-dimensional statistics are accumulated from
a large number of Gaussian pseudo-random numbers, which
are generated according to a particular scheme that is well-
suited for parallel computation. This problem is typical of
many Monte Carlo applications [13]. The former is used to
evaluate transmission delays: latency and bandwidth, while the
latter is used for testing processor performance.

processors 1 2 4 8 16
CG on cluster 167.5 83 65 55 31
CG on cloud 161.1 82.4 68.1 74 156.7
EP on cluster 143.4 86.1 42.2 20.3
EP on cloud 130.5 65.1 33.6 16.9

TABLE I: Execution times (sec) of CG and EP from NAS PB

Table I summarizes the results. The performance gain
achieved by adding more machines to the setup is comparable
in both the cloud and cluster cases. However, the CG times rise
signi�cantly with the number of processors on the cloud, start-
ing at 8 instances. The EP times did not show any slowdown
on the cloud. To uncover the reasons for such high run times
the experiments were run with MPE Pro�ler that shows MPI
function calls and hence allows distinguishing calculations

from communication. The NAS CG problem of Class B runs
CG algorithm multiple times and each algorithm makes 75
iterations. Each iteration consists of two parts, calculation and
communication. The times spent inMPI_Send (darker/blue)
and MPI_Wait (lighter/red) are shown on Figure 1. The
time spent on the calculation part in one CG iteration is
approximately 26 and 24 milliseconds for cluster and cloud
respectively. The time spent on the communication part are
very different: 2.5 and 13 milliseconds. This makes CG time
for 8 processes on the cloud about 50% slower. The reason
for such high transmission latency in the cloud case is due to
the virtualization technology. Moreover, we also have observed
that MPI applications are very sensitive to the number of VMs
per computer. Also the latencies and processing capabilities are
much worse when multiple virtual machines are allocated per
one machine core. This leaves a lot of research scope at the
virtualization technology to address these problems [1].

III. M ONTAGE AND SCIENTIFIC WORKFLOWS

Work�ows have lately become a standard for managing
and representing complicated scienti�c computations [14]. It
provides an abstracted view over the experiment that is being
performed [15]. Each computation may contain thousands of
tasks that are executed, in an order, on top of programs such
as Pegasus or Kepler. One can say that a scienti�c work�ow
is the method of bringing data and processes together into a
structured set of steps to overcome a scienti�c problem. The
ability to map complex computations to a series of tasks allows
the work�ows to be runnable on grids and clouds and therefore,
scientist are not held back by computational resources any
more.

Every work�ow has its unique arrangement, but it usually
consists one of the �ve basic work�ow structures: process,
pipeline, data distribution, data aggregation or data redistri-
bution [16]. Process is one of the simplest structures, which
takes some input to produce an output. Pipeline consists of
several processes and is the most common part in work�ows.
Data distribution takes some input and outputs multiple data
that is consumed by various of tasks. In some cases data
distribution is used to divide a large dataset to smaller subsets
for easier processing for the next tasks. Data aggregation
acquires for input, multiple outputs from other jobs, and
produces a combined data product. Data redistribution is the
combination of data aggregation and distribution, which takes
multiple inputs and outputs numerous datasets.

There are several scienti�c work�ows which are popular
among the respective communities such as CyberShake, a seis-
mic hazard analyzer, SIPHT a bioinformatic work�ow dealing
with the search of untranslated RNAs, Epigenomics [17], a
genome sequencing work�ow and etc. Of these, Montage
is a popular astronomy application that was created by the
NASA/IPAC Infrared Science Archive. The open source pro-
gram is made for generating custom mosaics of the sky using
images in the Flexible Image Transport System (FITS) format.
Montage graphs can vary in size, for example, a 1.0 degree
square mosaic contains of approximately 387 tasks and 84
input images. Figure 2 shows a small, twenty node montage
work�ow along with a note of the tasks being performed across
the layers.



(a) cluster: 2.5ms (b) cloud: 13.0ms

Fig. 1: Communication pattern of a CG iteration with 8 nodes on the cluster and cloud. The time intervals of the iterationsare
shown under the respective pro�ling diagrams.

Fig. 2: Montage Work�ow

The �rst task of the work�ow is mProjectPP. The number
of these jobs is dependent on the number of FITS images (each
one is � 2.1 MB) provided. The outputs, each approximately
� 8.4 MB of size, are re-projected images and area images
that are a fraction of the image that is in the �nal mosaic.
Next job mDiffFit calculates the difference for each pair of
overlapping images and outputs the data (less than a KB� 250
bytes) to mConcatFit. After �tting the images, the job outputs
the data of a size� 2.9 KB to mBgModel, which applies a
correction to each image for a better global �t and sends� 470
bytes of data to the next job. The next job is mBackground,
where background correction is applied to each image. After
that, the mImgTbl, which receives� 4.2 MB of data from each
mBackground job, extracts the metadata from the images and
creates an image metadata table which is used by several other
programs. The mAdd takes for input approximately� 8.4 MB
of data. It is the most computation heavy job which co adds
the re-projected images to form the �nal mosaic in the FITS
format and outputs also an area image,� 8.4 MB of size. The

FITS �le is later reduced by the mShrink job, which outputs the
shrunken �le (� 4.2 MB) to mJPEG that converts the image
to JPEG format. Based on these input and output sizes, we
can construct a weighted graph of the Montage work�ow. The
graph is used in the partitioning and scheduling the work�ow,
which is discussed further in the next subsections.

From the Montage scenario, we can see that in scienti�c
work�ows, a lot of data is exchanged across several jobs and
if the work�ow is migrated to and executed in an environment
which is not ideal for data transmission, such as cloud, it
increases the execution times as well as the utility comput-
ing costs. However, cloud with its well known features like
elasticity and on-demand resource provisioning, makes it ideal
for migrating the work�ows and also gives the scientists a
new dimension - cost to value of the experiments. So, to �t
the scienti�c work�ows for the cloud environment and at the
same time deal with the transmission latencies problem, it is
a good idea to schedule the job execution in such a way that
increases the intra-instance communication while reducing the
inter-instance communication.

IV. PARTITIONING AND SCHEDULING SCIENTIFIC
WORKFLOWS

In general any work�ow (scienti�c or enterprise) can be
represented as a directed acyclic graph (DAG),G = ( V; E),
whereV = v1; v2; : : : ; vn are the tasks (units of computation)
performed in the work�ow and edgesE � V � V . Edges
encode data dependencies and if(vi ; vj ) 2 E , tasksvi and
vj are neighbors andvj is directly dependent on the output
of vi . The weight of the edge,Wi;j denotes the amount of
data transferred fromvi to vj . The work�ow can be executed
on a cluster or a set of instances rented from the cloud based
on the utility computing model. To reduce the inter-instance
communication in the deployment cluster, we have to partition
the work�ow, so that the sum of the weights of the edges
connecting to vertices in different groups is minimized. After
partitioning the work�ow-graph to approximately equal sized
parts, we can assign the partitioned subsets of the work�ow to
run on the cluster.



A. Partitioning the work�ow

The partitioning problem is de�ned as follows: Partition
the vertices of the graph intok approximately equal partitions
such that the sum of the weights of edges that are connected to
vertices in different parts is minimized. The k-way partitioning
problem can be formulated to: Given a graphG = ( V; E) with
jV j = n, partition V into k subsets,V1; V2; : : : ; Vk such that
Vi \ Vj = � for i 6= j; jVi j = n=k; and [ i Vi = V , and the
sum of the weights of edges ofE whose incident vertices
belong to different subsets is minimized. The partitioningof
V is generally represented by a partitioning vectorP, with a
lengthn. So for every nodev 2 V , P[v] is an integer between
1 andk that shows to which partition vertexv belongs.

It is known that graph partitioning problem is NP-complete.
Graphs and graph partitioning are used in numerous areas of
computing such as social networks, scienti�c and distributed
computing, biological networks, etc [18]. METIS is a set of
serial programs for partitioning graphs and the algorithms
implemented in METIS are based on the multilevel recursive-
bisection, multilevel k-way, and multi-constraint partitioning
schemes [8]. As part of the study we used multilevel k-way
partitioning [9] for creating homogenous groups, which is
the default and probably the best partitioning algorithm as
per METIS. Moreover, METIS's multilevel k-way partitioning
algorithm provides additional capabilities, when compared
to multilevel recursive bisection [19], such as minimize the
resulting subdomain connectivity graph, enforce contiguous
partitions, minimize alternative objectives, etc.

The basic idea behind the multilevel k-way partitioning
algorithm can be summarized as follows. First the graph
G = ( V; E) is coarsened down to a small number of vertices
(coarsening phase). During the coarsening phase a progression
of smaller graphs is created from the original graph. Note that
each coarser graph has both the connectivity and the ratio
of the initial graph. After coarsening, the next stage is the
partitioning phase, where a k-way partitioning of the coarsest
graph is calculated, which is computed using a multilevel
bisection algorithm. After that the coarsest graph is partitioned
(initial partitioning phase) the result is projected back towards
the original graph (uncoarsening phase). To improve the �nal
partitioning, it is re�ned during the projection back to the
original graph [9].

B. Scheduling the work�ow

Once the work�ow is partitioned, we used Pegasus frame-
work, for scheduling and submitting jobs to run on top of
multiple instances on cloud. Pegasus is a popular framework
for mapping complex scienti�c work�ows onto distributed sys-
tems [20]. Pegasus has numerous features such as portability,
reliability, scalability, etc. With Pegasus, work�ows caneasily
be run in different environments such as grids, clouds, campus
clusters and so on (portable), jobs that fail are rescheduled
to run again (reliable), and Pegasus can run different size
work�ows (scalable) on top of different type of resources.

The main components of Pegasus are:

� Mapper (Pegasus Mapper): Makes a runnable work-
�ow from an abstract work�ow. It also searches for
the software and computational resources where the
work�ow should be executed.

� Execution Engine (DAGMan): Executes the tasks that
are de�ned in the work�ow.

� Task Manager (Condor Schedd): Manages the tasks
and their execution.

� Monitoring Component (Pegasus Monitord): The com-
ponent that monitors all the processes, creates the logs
etc.

Pegasus in turn utilizes Condor, a specialized workload
management system for compute-intensive jobs [21]. Users
just have to submit the job to Condor and the rest of the
tasks such as job queuing, prioritizing, monitoring, etc. are
all taken care by Condor. Condor consists of the following
main daemons: condormaster,condor startd, condor starter,
condor collector, condor negotiator, condor scheddandcon-
dor shadow. Thecondor masteris the daemon that is respon-
sible for starting and managing other daemons and it runs
on every machine in the Condor pool. A condor pool is the
cluster of machines where the jobs are run. Thecondor startd
is the daemon that advertises information about the current
machine and enables the machine to run or stop jobs in the
Condor pool.Condor starter is activated bycondor startdand
it handles the managing and starting of a job.Condor collector
is the daemon that collects all the information such as updates
sent by other daemons (ClassAd) to this daemon. Thecon-
dor negotiatordaemon matches the jobs to the machines from
the information it gets from the collector andcondor schedd
submits the jobs to the queue. Thecondor shadowruns on
every machine, where the job is executing and it is responsible
for logging and requesting for �le transfers when the job has
completed.

To submit a work�ow to Pegasus one has to provide the
following �les:

� Directed Acyclic Graph in XML (DAX) �le- This is
the �le that contains the description of the jobs and
their dependencies.

� Transformation catalog �le- Describes all the exe-
cutables that the work�ow needs to run the jobs.

� Replica catalog �le- A �le that contains mappings to
the �les that the work�ow needs.

� Sites catalog �le - This �le describes all the sites
where the work�ow tasks are going to be executed.

C. Montage and Pegasus on cloud

To observe the migration of scienti�c work�ows to the
cloud, we partitioned the Montage work�ow, 0.2 degree square
mosaic, with 8 input images, into 3 groups. We later executed
the work�ow on three cloud instances using Pegasus. Figure
3 shows the total amount of data that is transmitted across
the different nodes during the complete work�ow execution,
with and without the partitioning and scheduling, across three
different runs. From the analysis, we observed that the reduc-
tion in the data transmission is not so signi�cant even after
partitioning and the data transmission have always varied in
quantity (as shown in �gure 3).

A thorough analysis revealed that one of the bottlenecks of
running Pegasus with Condor in the cloud is the �le sharing



Fig. 3: Data transfer comparisons between random scheduling
and partitioning with METIS. The values are shown for 3
random runs where the gain with partitioning is ambiguous

- all the communication goes through the central manager.
This means to execute a task on a node the input is �rst
copied from the centralized �le system or a Network File
System (NFS) [22] and the output is copied back to the
NFS once the execution is �nished, via the central manager.
Work�ow partitioning in this scenario will not help to reduce
the communication between the instances, because it does
not matter anymore where the jobs are being run, every
data exchange goes always through the central node. This
type of centralized approach is lot more logical in grid and
supercomputing environments.

Scienti�c work�ows are traditionally designed for grids and
clusters, where instances are dynamically allocated and are
revoked once the subtasks are completed. So no information
is retained on the nodes and the results are stored in the
centralized �le system. However, when executing the work�ow
on dedicated infrastructure as in the case of cloud, it is a
good idea to store the intermediary results of the work�ow
task executions on the nodes, so that the next tasks do not
have to download the data again from the central repository.
This would signi�cantly reduce the amount of data that is
exchanged across different nodes, which is crucial for the cloud
migration.

D. Pegasus execution in peer-to-peer (P2P) manner

To solve this problem, the peer-to-peer �le manager (Mule)
for Pegasus [23] was considered. The �le manager has three
components:replica index service, a cache daemon, and a
client. Instead of storing the �les on the central manager, the
peer-to-peer �le manager allows storing all the necessary �les
on each compute node. On each node where a computation
occurs, the cache daemon stores the copies of the �les that
the job uses or outputs. To know where the �les are located
the replica index server is used, where all the locations of the
�les are listed. Replica catalog has both logical �le name and
the URL of a �le. So if a machine needs some data, it �rst
checks the replica catalogs list and then retrieves it. Figure 4
displays the �nal setup - Pegasus with Condor integrated with
P2P sharing.

With the introduction of Mule for Pegasus, the complete
migration procedure is shown in �gure 5. We have developed

Fig. 4: The �nal setup of the work�ow execution in the cloud
(3 instances) with peer-to-peer �le sharing

an API for the transformations and several scripts which
automatize the complete procedure.

First the work�ow �le is transformed to a �le format that is
accepted by METIS (1 in �gure 5), i.e., a text �le, where each
line contains the weights and connections of a single node.
After converting the work�ow to a text �le, it is partitioned
with the METIS toolkit (2 in �gure 5). The output of the
partitioning is again a text �le, where on each line is an integer
showing to which group a node belongs to. The output �le is
transformed again to an abstract work�ow �le (3 in �gure 5),
where under each job, the machine where it is going to run is
speci�ed (executionPool), as speci�ed below.

<profile namespace="hints"
key="executionPool">mainnode</profile>

After the creation of the abstract work�ow, where each
job is assigned to a compute node (scheduled), the work�ow
is executed on the cloud (4 in �gure 5). For example, for
planning a work�ow to run on top of three instances, we used
the following command:

pegasus� p l an n
�� con f pegasus . p r o p e r t i e sn
�� s i t e s mainnode , worker1 , worker2n
�� ou tpu t� s i t e l o c a l n
�� s t a g i n g� s i t e mainnoden
�� d i r submi t n
�� dax m3 dag . xml n
�� noc leanup n
�� submi tn

The experiments were later performed again, with 0.2, 1.0
and 2.0 degree Montage work�ows, this time introducing the
Mule. With the developed API and scripts we can partition
any custom size Montage work�ow and run it in the cloud
with ease. During the analysis we observed that only with
the implementation of the P2P �le sharing on top of Pegasus,
the overall data communication in the cluster was already
reduced over 50%, even without introducing the partitioning.
For example, running a 1.0 degree Montage work�ow without
P2P on three compute nodes results approximately 4 gigabytes
of data exchange and with the P2P implementation only 2
gigabytes was exchanged.



Fig. 5: The complete scienti�c work�ow migration procedure

Fig. 6: Data transfer comparisons between random scheduling
and partitioning with METIS. The values are shown for
Montage 0.2, 1.0 and 2.0 degree problems.

From the analysis we could also observe that, the overall
communication between the instances was reduced up to
60% with the help of partitioning the work�ow with METIS.
With the P2P approach and the partitioning the overall data
communication was reduced up to 80%. For example, the data
transfer on the 2.0 degree work�ow case was reduced from
� 15.5 GB to� 7.5 GB with the help of Mule, which further got
reduced to� 2.8 GB with both partitioning and Mule. Figure
6 displays the data communication of different size Montage
work�ows.

E. Finding ideal number of partitions

While the results show that there is signi�cant reduction
in transmission latencies while executing the work�ow, one
problem still remains is how to decide the ideal number of
groups into which the work�ow can be partitioned. For any
parallelizable application, there is only to a certain level the
parallelization is cost effective, beyond which the paralleliza-
tion overhead itself will eclipse the achieved gain. This isan
analysis which is application speci�c and also depends on input
and problem size, type of instances etc. However, the problem
size of scienti�c work�ows can be generalized in certain cases.

To be more speci�c, if we consider the Montage work�ow,
we can consider different input sizes for the problem. For
example, as already mentioned, 0.2, 1.0 and 2.0 degree square

Fig. 7: Work�ow execution across varying cluster sizes

mosaic will always have approximately 8, 84 and 312 input
images, respectively. This �xes the number of tasks performed
during the work�ow execution and the amount of data being
exchanged. So, if we can �nd the ideal number of partitions
for one particular size of problem, the amount is applicableto
any other input with similar problem sizes.

To decide the ideal number of partitions, we considered
a particular problem size (2.0 degree Montage is discussed
here) and tried to partition the work�ow into different sizes
and measured the execution times and the data transmission la-
tencies. Figure 7 shows the work�ow execution across varying
cluster sizes. From the �gure we can observe that partitioning
to 4 groups is ideal, in terms of execution time, achieved
parallelization and incurred utility computing costs, forthat
particular problem. So for every input of the same size the
same cluster size could be utilized. However, this analysisis
exhaustive enough and is applicable only when it is common to
consider particular problem sizes, which is generally observed
in scienti�c work�ows.

Once the ideal cluster size has been identi�ed, we migrated
the work�ow to the Amazon cloud (on 4m1.smallinstances)
and executed it for the 2.0 degree Montage. Figure 8 shows the
data communication latencies, for both the cases where work-
�ow is scheduled randomly and where work�ow is adapted
for cloud migration by partitioning and scheduling. The data
communication in the Amazon cluster with the 2.0 degree
Montage work�ow was reduced after partitioning nearly by
� 70%.



Fig. 8: Data communication across 4 nodes in Amazon EC2
while performing 2.0 degree Montage work�ow execution

V. RELATED WORK

Alexandru Iosup et al. [24] studied the performance of
cloud services for scienti�c computing tasks. They state that
cloud holds great promise for the scienti�c computing com-
munity as it can be a cheap alternative to supercomputers and
specialized clusters, more reliable platform than grids, and
more scalable platform than the largest commodity clusters.
Their motivation was that the potential of clouds for scienti�c
computing has been largely unexplored. They evaluate the
performance of four commercial cloud platforms, Amazon
EC2, GoGrid, Elastic Hosts and Mosso and compare their
performance for Many-Task Computing based scienti�c com-
puting workloads. They conclude that current clouds need an
order of magnitude in performance improvement to be useful
to the scienti�c community and propose improvements for
supporting scienti�c computing workloads in the cloud.

As previously mentioned, signi�cant research [25], [24],
[26] has been performed in migrating scienti�c computing
applications to the cloud. Most of these studies, similar toour
results [1], iterate that virtualization is the major hindrance for
migrating scienti�c computing or, in general, high performance
computing applications to the cloud. Some of these studies [24]
are quite extensive and are more detailed when compared to
our work. However, when SciCloud [5] was established in
2010, this was one of the �rst questions we asked ourselves:
what are the major hindrances for migrating scienti�c comput-
ing applications to the cloud? With the discussed experiments,
and our access to private cloud infrastructure, we could clearly
measure the latencies added by virtualization. For example, to
see the clear network latencies added by the virtualization, we
restricted the cloud instances to start on single physical node
in a cluster. This sort of deployment guarantees are not offered
by public clouds.

In the area of work�ow partitioning Çatalÿurek et al. used
a heuristic called DPTA (data placement and task assignment
tool) to optimize the execution of scienti�c work�ows in
the cloud [27]. They achieved up to 38% of reduction in
communication costs. They enhanced a multilevel hyper-graph
partitioning tool called PaToH [28]. However, in our analysis
we considered METIS for partitioning. Correspondingly, Chen
and Deelman developed a system on top of the Pegasus to

estimate, partition and schedule work�ows [29] onto execution
sites with storage constraints, to improve the overall runtime.
They partitioned the work�ow into sub-work�ows as it reduced
the complexity of work�ow mapping. For example, an entire
CyberShake work�ow has1:9 � 105 tasks. In contrast our
work schedules separate work�ow tasks to the running sites
individually, because Montage work�ow cases used for the
tests, does not contain so many tasks. Similarly, M. Tanaka
and O. Tatebe used METIS to minimize the data movement
between the nodes [30]. In their case they used a Pwrake
parallel work�ow system, whereas we considered work�ow
execution using Pegasus toolkit with P2P implementation.

Regarding, running scienti�c work�ows in the cloud and
the challenges of it; Juve and Deelman studied the problem and
state that the bene�ts of running scienti�c work�ows are for
example lease based provisioning, elasticity and the support
for legacy applications [31]. They too agree that a lot of work
is needed to be done to bring the performance up to the
level of grids. For this analysis, they have compared different
environments to run scienti�c work�ows, e.g., EC2 [32] and
Open Science Grid [33]. According to them a lot of effort has
gone into improving running work�ows in the cloud - many
scientists have been developing multiple algorithms to take
advantage of the pricing model and elasticity of infrastructure
clouds. One can say that nowadays there is not anymore a
drastic difference between running work�ows on the grid or
on the cloud, both have their advantages and disadvantages.
However, the most common challenges or disadvantages of
running work�ows in the cloud are for example system ad-
ministration, complexity, data management and cost.

VI. CONCLUSIONS ANDFUTURE WORK

Migrating scienti�c applications/work�ows to the cloud is
interesting in terms of achieved advantages such as elasticity,
scalability, utility computing backed new perception of cost-
to-value of experiments etc. However, cloud also has certain
limitations, which actually con�nes its performance for scien-
ti�c/HPC calculations, such as virtualization and the communi-
cation latencies added by it. So migrating scienti�c application
to the cloud needs a fresh perspective, which can take bene�t
from cloud's advantages and yet can counter its limitations.
This leaves signi�cant scope for new frameworks, tools and
methodologies speci�cally targeting at cloud migration.

In this paper, we have proposed a way for reducing
the data communication of scienti�c work�ows between the
computation nodes in the cloud. The communication reduc-
tion is achieved with work�ow partitioning using the METIS
toolkit and for the partitioning we used the multilevel k-way
algorithm. We observed that the data transfer between the
nodes was not reduced after partitioning, in the centralized
�le system case, where all the data goes through one node,
which is prominent in scienti�c experiments performed on
traditional infrastructure such as clusters, grids and supercom-
puters. However, to overcome this problem, especially with
cloud migration being the �nal goal, we adapted the peer-to-
peer data sharing principle on top of Pegasus. For that we used
Mule, which allows all the compute nodes to communicate
with each other.

With the adaptation of P2P sharing alone the data transfer
on the cluster was reduced over 50%. After the partitioning



with METIS and rescheduling the work�ows in the cloud, we
observed a communication reduction up to 60%. For example
in the 1.0 degree Montage work�ow, the data communication
was reduced from 4 gigabytes of data exchange to 2 gigabytes
with the peer-to-peer model alone. After partitioning the work-
�ow with METIS, the communication was further reduced
down to 700 megabytes. So, with the P2P approach and
partitioning, we managed to reduce the data communication
in the cluster up to 80%.

Regarding the future work, the discussed partitioning meth-
ods result in homogeneous partitions, considering only thedata
transfer across the nodes. We are planning to extend the parti-
tioning also to include the amount of processing performed on
each node. This should result in homogeneous partitions both
in terms of processing as well as data transfer. We are also
interested in non-homogeneous partitions, where each partition
can result in different size, still optimizing the communication
latencies. These sorts of non-homogeneous partitions can take
advantage of heterogeneity of cloud instances. However, scal-
ing such a system would be very dif�cult and we are currently
in the process of designing an ideal deployment con�guration
for such a system based on in-coming loads, using the linear
programming models, especially for enterprise work�ows.
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[28] Ü. Çatalÿurek and C. Aykanat, “Patoh (partitioning tool for hyper-
graphs),” inEncyclopedia of Parallel Computing. Springer, 2011, pp.
1479–1487.

[29] W. Chen and E. Deelman, “Partitioning and scheduling work�ows
across multiple sites with storage constraints,” inParallel Processing
and Applied Mathematics. Springer, 2012, pp. 11–20.

[30] M. Tanaka and O. Tatebe, “Work�ow scheduling to minimize
data movement using multi-constraint graph partitioning,” in12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGrid 2012). IEEE CS, 2012, pp. 65–72.

[31] G. Juve and E. Deelman, “Scienti�c work�ows in the cloud,” in Grids,
Clouds and Virtualization. Springer, 2011, pp. 71–91.

[32] Amazon Inc., “Amazon elastic compute cloud (amazon ec2),” [accessed
05-May-2014]. [Online]. Available: http://aws.amazon.com/ec2/

[33] G. Juve, M. Rynge, E. Deelman, J.-S. Vockler, and G. B. Berriman,
“Comparing futuregrid, amazon ec2, and open science grid for scienti�c
work�ows,” Computing in Science & Engineering, vol. 15, no. 4, pp.
20–29, 2013.


