
NEWT - A fault tolerant BSP framework on Hadoop
YARN

Ilja Kromonov, Pelle Jakovits, Satish Narayana Srirama
Institute of Computer Science, University of Tartu, J. Liivi 2, Tartu, Estonia

{kromon, jakovits, srirama}@ut.ee

Abstract—The importance of fault tolerance for the parallel
computing field is ever increasing, as the mean time between
failures is predicted to decrease significantly for future highly
parallel systems. The current trend of using commodity hardware
to reduce the cost of clusters forces users to ensure that their
applications are fault tolerant. When it comes to embarrassingly
parallel data-intensive algorithms, MapReduce has gone a long
way in simplifying the creation of such applications. However, this
does not apply to iterative communication-intensive algorithms
common in the scientific computing domain. In this work we
propose a new programming model inspired by Bulk Synchronous
Parallel (BSP) for creating new a fault tolerant distributed
computing framework. We strive to retain the advantages that
MapReduce provides, yet efficiently support a larger assortment
of algorithms, such as the aforementioned iterative ones.

I. INTRODUCTION

In recent years cloud-based platforms have emerged as
alternatives to supercomputers and grids for high performance
computing needs. With the illusion of infinite resources, cloud
computing allows one to loan computation time on demand
with a flexible pay-as-you-use billing model. However, ap-
plications are placed in an environment associated with a
high risk of hardware failure. This is amplified by the use
of commodity equipment by many cloud service providers
to lessen the cost of data center components, meaning that
fault tolerance is of utmost importance for any long-running
applications in this environment.

For these reasons, Hadoop MapReduce framework has
found widespread use in the cloud-based distributed computing
field. It provides fault tolerance by replicating both data and
computation. Originally introduced by Google in 2004 [1], it
excels at solving data-heavy embarrassingly parallel problems,
however, has trouble with more sophisticated algorithms [2]
as MapReduce was simply not designed to support them. Its
processes were designed to be stateless, ensuring that all input
blocks are eligible for each of the available processes without
affecting the outcome. This concept ensures that failure of one
of the nodes does not affect the sequential consistency of the
program and is at the core of the MapReduce fault tolerance
mechanism.

For more sophisticated algorithms one can use Message
Passing Interface (MPI) - an established standard, which
throughout the years has become the de facto way of writing
parallel programs. While allowing for a large degree of flexibil-
ity, MPI code tends to be error prone and difficult to debug and
maintain, especially with the possibility of deadlocks and race
conditions. Unfortunately, as of MPI version 3, fault tolerance
is still not part of the MPI standard. Managing faults is left

to specific implementations, typically requiring extra work to
make applications fault tolerant.

Another alternative is using frameworks based on the Bulk
Synchronous Parallel [3] (BSP) computing model, designed
for parallel iterative algorithms. BSP computations consist of
a series of supersteps, each divided into three stages:

• Concurrent computation (using only local data)

• Communication

• Barrier synchronization

One of the main advantages of this scheme is elimination
of race conditions and deadlocks, by avoiding circular data
dependencies. The resulting structure of programs presents
an easily obtainable overview of the implemented algorithm’s
granularity, giving a estimate of the expected parallel runtime
and performance.

For these reasons we consider the Bulk Synchronous
Parallel model to be an ideal basis for a parallel computing
framework, which can have all the properties that make it as
viable for integration with the cloud environment as one based
on MapReduce, while providing a message passing paradigm
familiar to MPI programmers, without many of the issues
involved. Unfortunately, the existing BSP solutions either
do not provide the fault tolerance required by long running
applications or are designed for specific type of applications,
such as graph computations and thus require extra effort for
adapting other kind of applications to them.

Thus, we propose a BSP-inspired programming model
which enables transparent stateful fault-tolerance for programs
that follow this model and provides better support for a wider
range of algorithms than the current solutions To validate the
approach, we created a framework following this model and
implemented a number of typical iterative scientific computing
algorithms on it.

II. PROPOSED SOLUTION

The goals of the proposed solution are to provide automatic
fault recovery, retain the program state after fault recovery,
provide a convenient programming interface and support (iter-
ative) scientific computing applications.

Before defining the model, the first thing to note is that in
more complex iterative programs, each iteration may consist
of more than one distinct BSP superstep. To accommodate
the continuation of the recovered program at the correct stage
of the iteration, without storing the entire address space, it



makes sense to write it as a finite state machine (FSM). In
the resulting FSM each such stage is equivalent to one of the
states. This leads us to view programs under the BSP model as
suitable for an abstract computer, which consists of a mutable
state, message queues, label to function map, label of the next
function and a communicator for sending messages. Following
pseudocode describes the inner workings of such a machine:
state← initialState
next← initialLabel
while true do
next← execute(next, state, comm)
barrier(comm)
if next == none then

break
end if

end while

The execute call runs the function defined by label next
and returns the label of the next function in the sequence. The
mutation of state and sending/receiving of messages (through
communicator comm) is achieved as a side-effect of these
functions. There is a need for communication primitives that
cover the semantics of sending and receiving messages. These
primitives are made accessible through the communicator.
The barrier initiates communication and synchronizes all
machines as per the BSP model.

The given generic program structure allows for the state,
label of the next stage and incoming message queue to be
stored into a persistent storage between calls of execute for
later recovery. This initialization of the recovered process can
be achieved seamlessly by replacing the initial state with the
state from the latest checkpoint and the processes that did not
fail can complete the recovery by simply replacing their current
state. A program has to define the state and a mapping of labels
to functions, which describe the program flow. The return value
of each of these functions is the label of the next function.

To validate this approach, we created a proof-of-concept
prototype implementing the given model, which is built on top
of Hadoop YARN [4] for resource management, scheduling
and Hadoop Distributed File System (HDFS), and Apache
MINA [5] for interprocess communication.

III. EXPERIMENTS AND CONCLUSIONS

We implemented Conjugate Gradient (CG) and Partitioning
Around Medoids (PAM) algorithms on the prototype. We com-
pared the prototype to BSPonMPI - a BSPlib implementation,
which we determined in previous work [6] to perform as good
as MPI for the given algorithms.

k-medoids clustering
p BSPonMPI NEWT
1 597.05 578.05
2 326.42 344.17
4 174.97 196.84
8 91.70 108.04
16 110.67 114.20

conjugate gradient
p BSPonMPI NEWT
1 136.11 123.69
2 76.52 81.24
4 41.98 64.32
8 24.91 53.18
16 27.54 75.19

TABLE I. RUNNING TIME COMPARISON BETWEEN NEWT AND
BSPONMPI (IN SECONDS).

In the scalability trials each of the algorithms was given
input of size that was kept constant (a sparse system of
8000000 linear equations for CG and 80000 points across 32

clusters for PAM) and only varied the number of processes
p. The results in table I for NEWT include a 10-15 second
overhead that is induced by YARN for initialization and
allocation of process containers. Despite this, the scaling on
a coarse-grained parallel algorithm, such as PAM, is nearly
identical to the BSPonMPI implementation, suggesting that
structuring the algorithm according to the model does not
impose a significant overhead.

We also measured how long it takes to write and restore
checkpoints to HDFS. For PAM it took between 5 to 30ms
to write checkpoints consisting of 300000 2D points. In
case of CG, the average was 30s for a 400MB checkpoint.
Reading PAM checkpoints took approximately 300ms and 400
megabyte CG checkpoint from HDFS took 13 seconds on
average. Apart from the time it takes to read the checkpoints
from HDFS, the recovery overhead includes the requesting
of new containers from the YARN resource manager and the
restarting of socket connections between processes.

When it comes to fine-grained parallel algorithms, such as
CG, where the computation of one superstep on average took
under 100 milliseconds, the communication part of the runtime
significantly outweighs the computation part as the number of
parallel processes grows, resulting in subpar scaling on the
current version of the prototype. Since the BSPonMPI imple-
mentation performs much better, the likely culprit is the latency
from the current prototype’s implementation of message pass-
ing and barrier synchronization, where one possible solution
is building the framework top of an MPI implementation that
is compatible with the YARN environment.

It indicates that the currently chosen communication library
Apache MINA may not be the best candidate for such appli-
cations. The currently ongoing work of supporting MPI on a
YARN cluster may address this issue, such as Hamster [7], but
this requires additional investigation.

ACKNOWLEDGMENT

This work is supported by European Regional Development
Fund through EXCS, IT Academy, Estonian Science Founda-
tion grant ETF9287 and Target Funding SF0180008s12.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[2] S. N. Srirama, P. Jakovits, and E. Vainikko, “Adapting scientific comput-
ing problems to clouds using mapreduce,” Future Gener. Comput. Syst.,
vol. 28, no. 1, pp. 184–192, Jan. 2012.

[3] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[4] Apache Software Foundation. (2013, Jun.) Hadoop YARN. [Online].
Available: http://hadoop.apache.org/

[5] ——. (2013, Jun.) MINA. [Online]. Available: http://mina.apache.org/
[6] P. Jakovits, S. Srirama, and I. Kromonov, “Viability of the bulk syn-

chronous parallel model for science on cloud,” in High Performance
Computing & Simulation. International Conference on, 2013, (In print).

[7] (2013, Jun.) Hamster: Hadoop and mpi on the same cluster. [Online].
Available: https://issues.apache.org/jira/browse/MAPREDUCE-2911


