

Ome Srirama

Chair of Information Systems
LuFG Cooperation Systems

Aachen University of Technology
Prof. Dr. Wolfgang Prinz

Master Thesis

Concept, implementation and performance testing of a
mobile Web Service provider for Smart Phones

of

Satish Narayana Srirama

Matriculation Number: 247512

Aachen, 26th July 2004

Supervised by:
Prof. Dr. Wolfgang Prinz
Dipl.-Ing. Martin Gerdes (EED Research)

I assure, that this work has been done solely by me without any further help from others except
for official attendance by the Chair of Information Systems. The literature used in the study is
listed completely in the bibliography.

Aachen,

(Satish Narayana Srirama)

To my beloved father, Dr. Lakshminarayana Srirama,
and mother, Lolakshi Srirama.

SSN

 2

ABSTRACT
 Web Services are loosely coupled, standard-based, reusable, distributed software
components that are programmatically accessible over standard Internet protocols. Web
Services range from simple requests, such as stock quotes or user authentication, to more
complex tasks, such as comparing and purchasing items over the Internet.
 With the 2.5G (Interim Generation) mobile communication technologies in the cellular
domain like GPRS/EDGE, the speed of wireless data transmission have increased significantly,
which gives a large scope for the Web Services even in the cellular domain and thereby
enabling the implementation of distributed applications even on Smart Phones.
 This thesis studies and discusses the usage and feasibility of mobile terminals in the
Web Services domain as both Web Service requestors and Web Service providers in detail,
with main focus on �Mobile Terminals as Web Service providers�.

 For the study of mobile terminals as Web Service requestors, the mobile terminal,
which uses SOAP over HTTP for the service access, is observed and compared for
performance issues with different other standard distributed protocols like Java RMI1.
 Similarly for the study of mobile terminals as Web Service providers, a standard Web
Service provider was developed for Smart Phones, upon which different Web Services can be
deployed. Once such a Web Service provider is deployed on the Smart Phone, the means of
identification and addressing of the deployed services on the mobile Web Service provider, that
allow the Web Services to be accessible also from outside the mobile network operator�s
network domain, are studied in detail. The thesis also discusses the applications of such a
mobile Web Service provider, and some example Web Services were developed to prove the
feasibility of such a �Mobile Host�.

Furthermore, the study addresses different performance issues of such a mobile Web
Service provider developed for Smart Phones, like total processing time, transmission time,
memory load etc., under both the single and concurrent accesses of the Web Service clients.

As a whole the study shows that the Smart Phones can be used in Web Services domain
as both Web Service providers and clients. Finally, the thesis discusses some of the areas where
there is scope for further research in the mobile Web Services domain.

1 Sun TM�s Java Remote Method Invocation (RMI). More details can be found at http://java.sun.com

 3

 4

Table of Contents

ABSTRACT 2

1 INTRODUCTION... 6
1.1 MOTIVATION ... 6
1.2 OVERVIEW... 6

2 STATE OF THE ART... 8
2.1 WEB SERVICES .. 8

2.1.1 Web Services overview... 8
2.1.2 WS Architecture... 9

2.1.2.1 WS Components .. 10
2.1.2.2 WS Operations ... 10
2.1.2.3 SOAP - Simple Object Access Protocol.. 11
2.1.2.4 WSDL - Web Services Description Language .. 16
2.1.2.5 UDDI - Universal Description, Discovery and Integration .. 19

2.2 WIRELESS TECHNOLOGIES ... 21
2.2.1 HSCSD .. 22
2.2.2 GPRS... 22

2.3 CURRENT STATUS OF MOBILE WEB SERVICES FOR SMART PHONES 23
2.4 KSOAP � LIGHTWEIGHT SOAP TOOLKIT... 23

3 ARCHITECTURES.. 28
3.1 MOBILE TERMINAL AS WEB SERVICE REQUESTOR.. 28
3.2 MOBILE TERMINAL AS WEB SERVICE PROVIDER (�MOBILE HOST�)...................................... 29

3.2.1 Basic architectural setup.. 29
3.2.2 Mobile terminal access .. 30

3.2.2.1 HSCSD.. 30
3.2.2.2 GPRS... 31

3.2.3 Alternative scenarios.. 33
3.2.3.1 Virtual mobile Web Service provider ... 33
3.2.3.2 Searching for IP at NAT... 35
3.2.3.3 Workaround with session maintenance ... 35

4 POSSIBLE APPLICATIONS WITH MOBILE WEB SERVICE PROVIDERS 38
4.1 MOBILE PHOTO ALBUM SERVICE .. 38
4.2 LOCATION (GPS) DATA PROVISIONING... 39
4.3 MOBILE GAMING.. 40
4.4 TRANSPORTATION AND LOGISTICS... 41

5 �SSNSERVER� � MOBILE WEB SERVICE PROVIDER .. 46
5.1 TYPES OF JAVA FOR MOBILE PHONES.. 46

5.1.1 PersonalJava ... 46
5.1.2 J2ME � Java 2 Platform, Micro Edition ... 47

5.2 HTTP (HYPERTEXT TRANSFER PROTOCOL) ... 48
5.2.1 HTTP message format.. 49

5.2.1.1 HTTP Request message.. 49
5.2.1.2 HTTP Response message ... 50

5.3 ARCHITECTURE AND FEATURES OF THE MOBILE HOST... 51

1. Introduction

 5

5.4 IMPLEMENTATION DETAILS.. 55
5.4.1 General features of the Mobile Host... 55
5.4.2 Package hierarchy ... 55
5.4.3 Mobile Web Service provider ... 56
5.4.4 Services developed ... 58
5.4.5 Mobile Host GUI ... 61

6 PERFORMANCE ANALYSIS... 64
6.1 MOBILE TERMINAL AS WEB SERVICE CLIENT... 64

6.1.1 Test setup... 64
6.1.2 Test cases... 65
6.1.3 Experimental results .. 65

6.1.3.1 Evaluation of the exchanged data ... 66
6.1.3.2 Response times .. 68

6.1.4 Observations.. 68
6.2 MOBILE TERMINAL AS WEB SERVICE PROVIDER .. 69

6.2.1 Test setup... 69
6.2.2 Traces architecture .. 69
6.2.3 Experiments & results .. 71
6.2.4 Observations.. 84

7 FUTURE RESEARCH DIRECTIONS .. 86
7.1 PROXY ARCHITECTURE .. 86
7.2 BEEP FOR SOAP MESSAGE TRANSMISSION ... 86

8 CONCLUSION ... 88

LIST OF FIGURES 90

LIST OF TABLES 92

APPENDIX A - TEST CASE IMAGES 94

APPENDIX B � SOME FACTS AND FINDINGS 96

BIBLIOGRAPHY 98

 6

1 Introduction

1.1 Motivation
 Traditionally, Internet servers - particularly Web servers - mainly serve static content.
Since quite some time now, the development goes into the direction of dynamic content, thus
enabling personalization of Web pages, as well as more complex interaction as required for
example for on-line commerce and electronic banking. The latest trends in the field of Web
interaction are Web Services. Web Services are software components that can be accessed over
the Internet using established Web mechanisms and protocols such as SOAP and HTTP. Public
interfaces of Web Services are defined and described using Extensible Markup Language
(XML) based definitions. Examples of Web Services range from simple requests, such as stock
quotes or user authentication, to more complex tasks, such as comparing and purchasing items
over the Internet. Powerful integrated development environments allow an easy, fast and
flexible development and deployment process for enhanced applications based on physically
and logically distributed network resources.

 With the 2.5G (Interim Generation) mobile communication technologies in the cellular
domain like GPRS/EDGE, the speed of wireless data transmission has increased significantly,
reaching up to 144 kbps, thereby enabling better applications and usage of mobile devices in
different application domains.

 Based on these developments it is a logical next step to turn mobile devices into
wireless Web Service requestors and even providers, and by this enabling communication via
open XML Web Service interfaces and standardized protocols also on the radio link, where
today still proprietary and application- and terminal-specific interfaces are required. This leads
to manifold opportunities to mobile operators, wireless equipment vendors, third-party
application developers, and the end users. It is easy to imagine that in the future mobile
applications based on Web Service clients will generate a large percentage of all Web Service
requests, and on top of that mobile devices will even be used as Web Service providers in
specific application areas.

1.2 Overview
 The main objective of the thesis is to study the usage and feasibility of mobile terminals
in the Web Services domain as both service clients and service providers, with main focus on
�Mobile Terminals as Web Service providers�. With this intention, a rudimentary Web Service
provider was developed for Smart Phones and thoroughly tested for the performance issues.
The results have proved the feasibility of a Web Service provider on a (high end) mobile
terminal.

 With the intent described above the thesis has been accomplished and reported in the
following chapters:

Chapter 2: State of the art
 The chapter discusses the state of the art for the thesis. It first discusses generally Web
Services technologies and standards like SOAP, WSDL etc., and then briefly the current
wireless technologies used in the study. The chapter also discusses the current status of mobile
Web Services and available lightweight SOAP parsers.

1. Introduction

 7

Chapter 3: Architectures
The chapter describes the basic architectures of the mobile Web Services, with the

mobile terminal as both Web Service provider and Web Service client. The chapter then
describes different methods and architectures for identifying and addressing the Web Services
deployed on the mobile Web Service provider. Apart from these, the chapter also discusses
alternative scenarios considered during the study.

Chapter 4: Possible applications with mobile Web Service providers
 The chapter discusses some of the numerous possible applications utilizing mobile Web
Service providers deployed on Smart Phones.

Chapter 5: �SSNServer� � Mobile Web Service Provider
 The chapter describes the used design architectures and technologies, and explains the
implementation details of the �SSNServer�, i.e. the mobile Web Service provider that has been
developed.

Chapter 6: Performance analysis
 The chapter first gives a description of the performance analysis conducted in the
mobile Web Service environment with mobile terminals as Web Service clients and providers,
and then explains the experiments conducted and the analyzed results in detail.

Chapter 7: Future research directions
 The chapter gives a brief description of different areas opening further research
potential.

Chapter 8: Conclusion
 The chapter summarizes the results of the work for this thesis.

 8

2 State of the art
The following chapter discusses the state of the art forming the basis for this thesis. The

chapter first discusses Web Services technologies, and then briefly explains the current wireless
technologies used in the study. The chapter also discusses the current status of mobile Web
Services and available lightweight SOAP parsers.

2.1 Web Services
The following sub chapter gives overview of the Web Services technology and

standards like SOAP, WSDL and UDDI.

2.1.1 Web Services overview
�Loosely coupled, standard-based reusable software components that semantically
encapsulate discrete functionality and are distributed and programmatically accessible
over standard Internet protocols.� [19]

 A Web Service is a software function, identified by a URI, whose public interfaces and
bindings are defined and described using WSDL1 (Web Services Description Language, based
on XML2(Extensible Markup Language)). The definition of a Web Service can be exported to a
file, published to a lookup service, and discovered by other software systems. These systems
may then interact with the Web Service in a manner prescribed by its definition, using XML
based messages conveyed by Internet protocols.

 The Web Service architecture defined by the W3C enables application-to-application
communication over the Internet. Web Services allow access to software components through
standard Web technologies, regardless of platforms, implementation languages, etc.
Hence, Web Services are self-contained, modular applications that can be:

• Described using a service description language, such as the Web Services Description
Language.

• Published by registering descriptions and access policies with a well-known registry
like UDDI3 (Universal Description, Discovery and Integration) registry.

• Found by sending queries to that registry and receiving the binding details of the
service(s) that fit the parameters of the query.

• Bound by using the information contained in the service description to create a callable
service instance or proxy.

• Invoked over a network by using the information contained in the binding details of the
service description.

• Composed with other services into new services and applications.

1 WSDL - specification available at http://www.w3.org/TR/wsdl
2 XML - specification available at http://www.w3.org/XML/
3 UDDI - specification available at http://www.uddi.org/

2. State of the art

 9

Service providers deploy Web Services on the Internet. The functions provided by a
given Web Service are described using the Web Services Description Language (WSDL).
Service providers can publish deployed services on the Web. A service broker can help service
providers and service requestors to �find each other� and set up a business relationship.
Therefore the service requestor can use an API to ask the service broker about the services it
needs. When the service broker returns results (that means available service descriptions), the
service requestor can use those results to bind to a particular service.

All of the communications we've discussed here can take place over SOAP1 (Simple
Object Access Protocol). SOAP is an XML-based protocol that allows applications to invoke
methods on remote objects. Detailed discussion of SOAP is deferred to the later parts of this
chapter at section 2.1.2.3.

2.1.2 WS Architecture

The basic architecture for Web Services is built upon its three components: Service
Requestor (Client), Service provider and Service Registry. The architecture is shown in Figure
2.1 with its components and the pattern of communication between these components.

Figure 2.1: Basic operational relationships between Web Service components
The service provider publishes its Web Services in the service registry with the WSDL

of the services. The service requestor searches (�Find�) the UDDI registry for the services, and
the UDDI compatible service registry returns the respective WSDL. Using the WSDL, the
service requestor communicates with the service provider using SOAP for the provided Web
Service.

The following sub sections discuss Web Service components and operations, and then
explain briefly the standards and protocols involved in this architecture.

1 SOAP - specification available at http://www.w3.org/TR/SOAP

Service Provider

Service Registry
(WSDL,UDDI)

Service Requester
(Client)

BindPublish

Find

Service Provider

Service Registry
(WSDL,UDDI)

Service Requester
(Client)

BindPublish

Find

2.1. Web Services

 10

2.1.2.1 WS Components

The following sub section gives a brief description of the Web Service components of
the basic Web Service architecture shown in Figure 2.1.

Service:

The service is an application that is provided to a service requestor, who in turn has to
fulfill the prerequisites specified by the service provider. Its implementation is deployed on a
network-accessible platform. It is described through a service description language. Its
description and access policies have been published to a registry.

Service provider:

From a business perspective; it is the owner of the service, and from an architectural
perspective; it is the platform that provides access to the service.

Service registry:

The service registry is a searchable repository of service descriptions, where service
providers publish their services and service requestors find services and obtain binding
information for these services.

Service requestor (Client):
From a business perspective; it is the business that requires certain functions to be

fulfilled and from an architectural perspective; it is the application or client that is looking for
and invoking a service.

2.1.2.2 WS Operations

The following subsection gives a brief description of the Web Service operations
introduced in the basic Web Service architecture shown in Figure 2.1.

Publish / Unpublish:

Service providers advertise (publish) the availability of their service to one or more
service registries, or remove (unpublish) their service.

Find:

Service requestors, or service brokers on behalf of service requestors, interact with one
or more service registries to discover (find) a set of services that they need for their
applications.

Bind:
Service requestors negotiate with service providers to access and invoke services.

Figure 2.2 shows the basic activities performed at the service provider and the service
requestor. The activities are shown in the form of activity diagrams for service provider and the
service requestor.

2. State of the art

 11

Define the Web Service to
be provided

Implement the Web Service
to be provided

Deploy the Web Service

Publish the Web Service with
a Registry Service

Wait for client requests

Service Provider

Identify the required
Web Service

Find the Web Service

Bind to the Service Provider

Send the request to the
Web Service

Receive the response from
the Web Service

Service Requestor(Client)

Define the Web Service to
be provided

Implement the Web Service
to be provided

Deploy the Web Service

Publish the Web Service with
a Registry Service

Wait for client requests

Service Provider

Identify the required
Web Service

Find the Web Service

Bind to the Service Provider

Send the request to the
Web Service

Receive the response from
the Web Service

Service Requestor(Client)

Figure 2.2: Activity diagrams of service provider and service requestor

The following sub sections discuss the standards and protocols involved in this basic
Web Services architecture like SOAP, WSDL and UDDI.

2.1.2.3 SOAP - Simple Object Access Protocol

SOAP provides a simple and lightweight mechanism for exchanging structured and
typed information between peers in a decentralized, distributed environment using XML. It is a
simple XML based protocol that lets applications exchange information over different
protocols like HTTP1, FTP2, BEEP3, etc. The discussion of SOAP over different protocols is
deferred to chapter 7.2.

A SOAP message is an XML document that consists of a mandatory SOAP envelope,
an optional SOAP header, and a mandatory SOAP body. The SOAP message structure is
shown in Figure 2.3.

1 HTTP (Hypertext Transfer Protocol), specification available at
http://www.w3.org/Protocols/rfc2616/rfc2616.html
2 FTP (File Transfer protocol), specification is available at http://www.ietf.org/rfc/rfc0959.txt
3 BEEP (Blocks Extensible Exchange Protocol), specification available at http://www.ietf.org/rfc/rfc3288.txt

2.1. Web Services

 12

SOAP Envelope

SOAP Header (Optional)
Header entry

Header entry

SOAP Body
Body entry

Body entry

Fault entry (Optional)

SOAP Envelope

SOAP Header (Optional)
Header entry

Header entry

SOAP Body
Body entry

Body entry

Fault entry (Optional)

SOAP Envelope

SOAP Header (Optional)
Header entryHeader entry

Header entryHeader entry

SOAP Body
Body entry

Body entry

Fault entry (Optional)

SOAP Body
Body entryBody entry

Body entryBody entry

Fault entry (Optional)Fault entry (Optional)

Figure 2.3: SOAP message structure

The Envelope is the root element of the XML document representing the SOAP
message. The Header is a generic mechanism for adding features to a SOAP message in a
decentralized manner without prior agreement between the communicating parties. SOAP
defines a few attributes that can be used to indicate who should deal with a feature and whether
the feature is optional or mandatory. The Body is a container for mandatory information
intended for the recipient of the SOAP message. SOAP defines an optional element for the
body, which is the Fault element used for reporting errors. Each of these parts, of the SOAP
message is described in detail in the following sub sections.

The following XML structure of the SOAP 1.1 message gives an idea of the SOAP
message.

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Header>
 ...
 ...
 </SOAP-ENV:Header>

 <SOAP-ENV:Body>
 ...
 ...
 <SOAP-ENV:Fault>
 ...
 ...
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>
The SOAP encodingStyle global attribute is used to indicate the serialization rules used

in a SOAP message. The children of the SOAP envelope can explicitly override this value. The

2. State of the art

 13

serialization rules are defined in the SOAP specification, which is identified by the URI1
http://schemas.xmlsoap.org/soap/encoding/. The version of the SOAP message can be
identified with the value of the namespace. If a different namespace is used, the application
must generate an error and discard the message. SOAP version 1.2 uses
�http://www.w3.org/2003/05/soap-envelope� for namespace and uses
�http://www.w3.org/2003/05/soap-encoding� for the encodingStyle.

The two versions of SOAP (SOAP 1.1, SOAP 1.2) are almost the same, and the
differences between the two versions are available at �http://www.w3.org/TR/soap12-part0/�.
SOAP 1.1 is widely being used, as of now and for the thesis study, this protocol was used.

SOAP Envelope
 The SOAP envelope element is mandatory and it is the root element of the XML based
SOAP message. The element itself defines the XML document as the SOAP message. The
SOAP envelope contains:

• The �Envelope� element.

• The envelope�s namespace declaration with value
http://schemas.xmlsoap.org/soap/envelope/.

• The encodingStyle attribute explained earlier.

• It can also have additional attributes like xsd (XML Schema2 definition), xsi (XML
Schema-instance) etc. If present, such additional attributes must be namespace-
qualified3.

• The element may also contain additional sub elements. If present these elements must
be namespace-qualified and must follow the SOAP body element.

• An optional Header element.

• A mandatory Body element.

SOAP Header
SOAP provides a flexible mechanism for extending a message in a decentralized and

modular way without prior knowledge between the communicating parties. Typical examples
that can be incorporated as the header entries are authentication information, transaction
management details, payment details etc.

The Header element is optional. The Header element is the first immediate child
element of the SOAP envelope element, if at all it exists. All immediate child elements of the
Header element are called header entries. The SOAP encodingStyle attribute may be used to
indicate the encoding style used for the header entries.

The following example shows a Header for element �Transaction�, including the
attribute �mustUnderstand� of value �1�, the attribute �actor� of value
http://mercury.westend.com/wizard/Testbed/, and the value 2442.

1 Uniform Resource Identifiers (URI) are short strings that identify resources in the Web like documents, images,
downloadable files, services, electronic mailboxes, and other resources.
2 More details of XML schema are available at http://www.w3.org/XML/Schema
3 More details of XML namespaces and qualified names at http://www.w3.org/TR/REC-xml-names/

2.1. Web Services

 14

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Header>
 <t:Transaction xmlns:t="http://mercury.westend.com/wizard/SmartServ/"
 SOAP-ENV:mustUnderstand="1"
 xmlns:actor="http://mercury.westend.com/wizard/Testbed/" >
 <t:id> 2442 </t:id>
 </t:Transaction>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>
 ...
 ...
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The SOAP �actor� attribute is used to indicate the recipient of a header element. The
value of the SOAP actor attribute is a URI.

A SOAP message travels from the originator to the destination, by passing through
different SOAP intermediaries along the message path. A SOAP intermediary is an application
that is capable of both receiving and forwarding SOAP messages. The header entry can be for a
specific intermediary that can only process the header entry. The �actor� attribute is useful in
such a scenario.

 The SOAP attribute �mustUnderstand� is used to indicate whether a header entry is
mandatory or optional for the recipient to process. The allowed values for the attribute are �0�
and �1�, with �0� being default value. A value of �1� indicates that the recipient must
understand the header entry. If not, the processing of the message should fail at the recipient.

SOAP Body
 The SOAP �Body� element provides a simple mechanism for exchanging the
mandatory information intended for the destination recipient of the SOAP message. Generally
the Body element contains marshaled RPC calls and error reports.

 In the SOAP envelope element, the Body element is mandatory. If a Header element is
present, then the Body element must immediately follow the Header element, otherwise it is the
first child element of the SOAP envelope element.

 All immediate child elements of the Body element are called body entries, and each
body entry is encoded as an independent element within the SOAP body element. A body entry
is identified by its fully qualified element name, consisting of the namespace URI and the local
name. The SOAP �encodingStyle� attribute is used to indicate the encoding style used for the
body entries. As explained earlier, the �encodingStyle� attribute can have a different value
from the value specified in the SOAP envelope element.

 The following example XML code describes the Body element in detail. The message is
the SOAP request message for a small service providing the price of an item.

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

2. State of the art

 15

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
>

 <SOAP-ENV:Body
 SOAP-ENV:encodingStyle="http://mercury.westend.com/wizard/encoding/">
 <ps:GetPrice xmlns:ps="http://mercury.westend.com/wizard/ws/prices">
 <ps:Item xsi:type="xsd:string"> Sony Ericsson P800 </ps:Item>
 </ps:GetPrice>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

 The message�s Body element specifies that the body entry is the �ps:GetPrice�, with a
request for the price of the �Item� with value �Sony Ericsson P800�. The type of the parameter
(�Item�) is specified to be string, using the �xsi:type� attribute value �xsd:string�. The response
of such a SOAP request is as shown in the following example.

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
>

 <SOAP-ENV:Body
 SOAP-ENV:encodingStyle="http://mercury.westend.com/wizard/encoding/">
 <ps:GetPriceResponse xmlns:ps="http://mercury.westend.com/wizard/ws/prices">
 <ps:Price xsi:type="xsd:int"> 583 </ps:Price>
 </ps:GetPrice>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>
 The SOAP response message has a similar structure as the SOAP request message. The
Body of the response message shown in the above example returns the price of the Item, which
is 583 (Euro, but currency is not defined in this example). The type of the response is specified
to be �xsd:int�.

 The SOAP specification defines one body entry, the �Fault� entry, which is used for
reporting errors. More details of the entry are given in the following sub section.

SOAP Fault
An error could occur in processing the SOAP message, at any SOAP intermediary along

the message path. The error could occur both during the application processing of the Body
element, and at the processing of the SOAP message itself like processing the Header entries.

The SOAP fault element is used to specify the error information within a SOAP
message. If a Fault element is present, it must appear as a child element of the Body element. A
Fault element can only appear once in a SOAP message.
The SOAP fault element has the following sub elements:

• <faultcode>: The faultcode programmatically identifies the fault. It is mandatory in the
Fault entry and its value is a qualified name. The SOAP specification defines some
standard fault codes for basic SOAP faults.

2.1. Web Services

 16

• <faultstring>: A human readable explanation of the fault. It is also mandatory in the
Fault entry. It gives some information explaining the nature of the fault.

• <faultactor>: The element specifies where (at which SOAP intermediary along the
message path) the fault has occurred. The value of the faultactor is a URI.

• <detail>: The detail element is used for carrying application specific error information
related to the Body element. It is mandatory when the contents of the Body element
could not be processed successfully. It is not used to carry information about error
information belonging to header entries. The element can be used to distinguish whether
the Body element was processed or not in case of a fault situation since the absence of
the detail element in the Fault entry indicates that the fault is not related to processing of
the Body element.

As explained earlier, the faultcode identifies the fault. SOAP defines some standard faultcodes,
which must be used in the respective situations. The faultcode is a qualified name. The value to
the left of the �.� is a more generic fault code value than the value to the right. The standard
fault codes are:

• VersionMismatch: when an invalid namespace is found for the SOAP envelope
element.

• MustUnderstand: when the immediate child element of the Header element, with the
MustUnderstand attribute set to "1", was not understood by the intermediary processing
the SOAP message.

• Client: The Client error indicates that the message was incorrectly formed or did not
contain the appropriate information for processing the SOAP message. For example, the
message could lack the correct authentication information or payment information.

• Server: The Server indicates that the process of the message failed not because of the
message details but because of the server processing the SOAP message. The situation
could arise in a case where the server requires another processor for processing the
message, and the respective processor is unavailable at that particular instance. The
processing of the SOAP message could be successful at a later instance of time.

2.1.2.4 WSDL - Web Services Description Language

WSDL is an XML based specification defining how to describe web services. WSDL
describes Interface information describing all available public functions, data type information
for all message requests and message responses, binding information about the transport
protocol to be used and address information for locating the specified Web Service etc.

Using WSDL, a client can locate a Web Service and invoke any of its publicly available
functions. The process can also be automated, enabling applications to easily integrate with
new services with little or no manual code and interaction.

For defining a standard Web Service, the WSDL specification uses the following six
major elements. The elements are shown in Figure 2.4. All of these elements are briefly
described below.

2. State of the art

 17

<definitions>

<types>
�.(definition of types)
</types>

<binding>
�.(definition of binding)
</binding >

<message>
�.(definition of message)
</message >

<portType>
�.(definition of portType)
</portType >

<service>
�.(definition of service)
</service >

</definitions>

<definitions>

<types>
�.(definition of types)
</types>

<types>
�.(definition of types)
</types>

<binding>
�.(definition of binding)
</binding >

<binding>
�.(definition of binding)
</binding >

<message>
�.(definition of message)
</message >

<message>
�.(definition of message)
</message >

<portType>
�.(definition of portType)
</portType >

<portType>
�.(definition of portType)
</portType >

<service>
�.(definition of service)
</service >

<service>
�.(definition of service)
</service >

</definitions>

Figure 2.4: The structure of WSDL document

• <definitions>: The definitions element must be the root element of all WSDL
documents. It defines the name of the Web Service and contains all other service
elements described here.

• <types>: The types element describes all the data types exchanged between the Web
Service requestor and the Web Service provider. It defines the complex data types
corresponding to the user defined data types for the services. If the service uses only
XML schema built-in simple types, such as strings and integers, the types element is not
required.

• <message>: The message element defines the input and output parameters of the
publicly available functions of a service. It defines the name of the message and
contains zero or more message part elements.

• <portType>: The portType element is the most important element of the WSDL
document. It defines a Web Service, the operations that can be performed, and the
messages that are involved for the service.

• <binding>: The binding element defines the message format and protocol details for
each portType.

• <service>: The service element defines the address for invoking the specified Web
Service. Generally, this is a URL for the SOAP service being invoked.

The following example WSDL helps in better understanding the above discussed
elements. It has been generated for a small calculator service, which has only one method -
�add� - that adds the two double numbers specified as the parameters (i1, i2).

2.1. Web Services

 18

We go through the example WSDL element by element. First we discuss the definition
of the messages. The WSDL defines two messages for the method �add�; �addRequest� and
�addResponse�. The �addRequest� contains two parameters �i1�,�i2� of type �xsd:double� as
message parts. The �addResponse� message has only one parameter �addReturn�, also of type
�xsd:double�.

<wsdl:definitions
targetNamespace="http://localhost:8080/axis/Test/Calculator.jws"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:impl="http://localhost:8080/axis/Test/Calculator.jws"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:message name="addRequest">
 <wsdl:part name="i1" type="xsd:double"/>
 <wsdl:part name="i2" type="xsd:double"/>
 </wsdl:message>
 <wsdl:message name="addResponse">
 <wsdl:part name="addReturn" type="xsd:double"/>
 </wsdl:message>
 ...
 ...

</wsdl:definitions>

The WSDL for the service uses a portType named �Calculator�. The portType uses the
above defined messages, �addRequest� and �addResponse�, as the input and output messages
for the operation. The operation is of pattern type �Request-response�. WSDL supports four
basic patterns of operation:

• One-way: The operation can receive a message but will not return a response. The
operation therefore has a input message element and no output message element.

• Request-response: The operation receives a message and sends a response. The
operation therefore has one input element, followed by one output message element. To
encapsulate errors, an optional fault element can also be specified.

• Solicit-response: The operation can send a request and will wait for a response.
• Notification: The operation can send a message, but will not wait for a response

The portType element for the above-described example is given below.

<wsdl:portType name="Calculator">
 <wsdl:operation name="add" parameterOrder="i1 i2">
 <wsdl:input message="impl:addRequest" name="addRequest"/>
 <wsdl:output message="impl:addResponse" name="addResponse"/>
 </wsdl:operation>
</wsdl:portType>
 As discussed earlier, the binding element specifies the protocol details of each
portType. Since we are considering mainly Web Services using SOAP in the thesis study, the
example uses SOAP binding.
 The binding element has two attributes, name and type. The name attribute specifies the
name of the binding, and the type attribute specifies the portType being bound. The example
uses the above-described portType �impl:Calculator�, where the impl specifies the XML name
space to which the portType belongs.

2. State of the art

 19

 The (wsdl)soap:binding has two attributes �style� and �transport�. The style attribute
can be either �rpc� or �document� indicates whether the operation is a remote procedure call
(RPC) or a document-oriented operation.. The example uses �rpc�. The transport attribute
specifies the transport protocol used for SOAP. The example uses HTTP to carry SOAP. As
stated earlier, the transport protocol can also be FTP or BEEP etc.

 The operation element of the WSDL defines each of the operations the port exposes.
For each action, the corresponding SOAP action is to be specified1. The operation also requires
how the input and output are encoded. The encoding style used here is
�http://schemas.xmlsoap.org/soap/encoding/�.

<wsdl:binding name="CalculatorSoapBinding" type="impl:Calculator">
 <wsdlsoap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="add">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="addRequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://DefaultNamespace" use="encoded"/>
 </wsdl:input>
 <wsdl:output name="addResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://localhost:8080/axis/Test/Calculator.jws"
 use="encoded"/>
 </wsdl:output>
 </wsdl:operation>

 </wsdl:binding>
 The service element maps the port (�Calculator�) with binding
(�impl:CalculatorSoapBinding�) to a specific address, where the Web Service client can
request the Web Service. The service element for the example is shown below.

 <wsdl:service name="CalculatorService">
 <wsdl:port binding="impl:CalculatorSoapBinding" name="Calculator">
 <wsdlsoap:address
 location="http://localhost:8080/axis/Test/Calculator.jws"/>
 </wsdl:port>
 </wsdl:service>

2.1.2.5 UDDI - Universal Description, Discovery and Integration

UDDI is a platform-independent framework for describing services, discovering
businesses, and integrating business services throughout the Internet. It provides a standardized
method for publishing and discovering information about Web Services. It mainly focuses on
the process of discovery in the service-oriented architecture, and uses WSDL to describe
interfaces to the Web Services.

UDDI provides for several different application areas and use cases, depending on the
perspectives and requirements of who is using it. From a business developer's perspective,
UDDI is similar to an Internet search engine for business enablers. A business developer can

1 But for the example described, the WSDL is generated directly by apache Axis, SOAP implementation, which
does not use the SOAPaction attribute.

2.1. Web Services

 20

browse one or more UDDI registries to view different businesses that expose Web Services,
and the specifications of those services (i.e. the WSDL documents). Software developers can
use the �UDDI Programmers API� to query the registry to discover services matching different
criteria. Both business developers and software developers can also publish new business
entities and services at the UDDI registry.

The information that makes up a registration consists of five data structure types. This
separation by information types provides simple partitions to assist in the rapid location and
understanding of the different elements of a registration. These data structures, that are passed
as input and output parameters of major API messages to and from the UDDI registries, are
briefly1 described below. All these data structures are expressed in XML.

• Business Entity: The Business Entity structure represents the basic information of the
business. The information includes contact information, categorization, identifiers,
descriptions, and relationships to other businesses of the service provider. The UDDI
also allows companies to establish relationships with one another. Even in such a case,
both the companies should have their respective Business Entity structures. The XML
element for this data structure is <businessEntity>.

• Publisher Assertion: The Publisher Assertion structure is used to establish public
relationships between two Business Entity structures. A relationship between two
Business Entity structures is visible to the public only when both companies have
created the same assertion with two separate Publisher Assertion documents
independently. Thus, a company can claim a business relationship only if its partner
asserts the same relationship. The XML element for this data structure is
<publisherAssertion>.

• Business Service: A Business Entity contains one or more Business Service structures.
A Business Service represents a single, logical service classification. A
<businessService> element is used to describe a set of services provided by the
business. The description of the Business Service includes information like how to bind
the Web Service, type of the Web Service etc.

• Binding Templates: A Business Service contains one or more Binding Templates. A
Binding Template contains the technical descriptions of the Web Services represented
by the Business Service structure. It also contains the access point URL of the Web
Service, but does not contain the service specification details. It is represented by
<bindingTemplate>. It is similar to the <service> element of the WSDL described
earlier.

• TModels: A TModel, the <tModel> element, is an abstract description of a particular
specification or behavior to which the Web Service adheres. For example a TModel can
be defined to represent a portType defined by the WSDL. Then a business service
implementing the portType can be specified by associating the TModel with one of the
binding templates of the business service.

1 Detailed description of the specification and the data structures at http://uddi.org/pubs/DataStructure-V2.03-
Published-20020719.htm

2. State of the art

 21

The following Figure 2.5 shows the relationships of the basic UDDI data structures.
Detailed description of UDDI and data structures is beyond the scope of this document and can
found at [1].

Business Entity

contact information,
categorization, identifiers

Business Service

Grouping of logical
services

Binding Template

Technical information and
URL access point

Publisher Assertion

Relationship between
companies

tModel

Specification implemented
by Web Service

Business Entity

contact information,
categorization, identifiers

Business Entity

contact information,
categorization, identifiers

Business Service

Grouping of logical
services

Business Service

Grouping of logical
services

Binding Template

Technical information and
URL access point

Binding Template

Technical information and
URL access point

Publisher Assertion

Relationship between
companies

Publisher Assertion

Relationship between
companies

tModel

Specification implemented
by Web Service

tModel

Specification implemented
by Web Service

Figure 2.5: Relationships of UDDI data structures

The basic Web Services are implemented as explained in previous subsections. Many
Web Services are already being provided on the Internet based on this fundamental
architecture. But to make Web Services available to mobile terminals, many new aspects and
details have to be considered in the mobile environment.

The following sub chapter gives a brief description of the current wireless technologies
and platforms that can be used in the Web Services domain, so that mobile Web Services
become a reality.

2.2 Wireless technologies
Today's second-generation GSM1 networks deliver high quality and secure mobile

voice and data services like SMS2, circuit switched Internet access etc., with full roaming
capabilities and across the world. The GSM platform is a widely successful wireless technology
and it is the world's leading mobile standard.

But, with the advent of the 2.5-generation (Interim Generation) technologies like GPRS
and EDGE, and 3G technologies like UMTS3, higher transmission rates are achieved in the
wireless domain. The following subsections give a brief description of the technologies used
for this thesis, like the HSCSD, GPRS etc.

1 GSM (Global System for Mobile Communications), more details can be found at
http://www.gsmworld.com/index.shtml
2 SMS - Short Message Service
3 UMTS, Universal Mobile Telecommunication System, more details available at
http://www.umtsworld.com/technology/overview.htm

2.2. Wireless technologies

 22

2.2.1 HSCSD

High Speed Circuit Switched Data (HSCSD)1 is an enhancement of CSD2 (Circuit
Switched Data) data services of current GSM networks. HSCSD allows the access of non-voice
services with about 3 times higher data rates than CSD. With this technology subscribers are
able to send and receive data from their portable computers or mobile devices at a speed of up
to 28.8 kbps.

The HSCSD solution enables higher rates by using multiple channels for the data
transmission. The HSCSD allows access to company LANs, send and receive e-mails, access
the Internet, etc.

2.2.2 GPRS

The General Packet Radio Service (GPRS3) is a non-voice value added service that
allows information to be sent and received across a mobile telephone network. The General
Packet Radio Service is an extension to second generation GSM. It provides short connection
setup times and packet switched connections. GPRS offers faster data transmission via a GSM
network within a range of 9.6Kbits to 115Kbits. The available bandwidth can be shared among
different users. The high bandwidth is achieved by combining up to eight time slots at the radio
interface, where the data is transported in a packet-oriented way.

Since GPRS allows information to be transmitted more quickly, immediately and
efficiently across the mobile network, it is a more powerful and less costly mobile data service
compared to SMS and Circuit Switched Data. GPRS facilitates instant connections, whereby
information can be sent or received immediately as the need arises, subject to radio coverage.
No dial-up modem connection is necessary4. Hence GPRS users are called as �always
connected�. GPRS will fully enable all the Internet applications of the desktop like web
browsing, chatting etc. to be feasible over the wireless network.

With the third generation technologies like UMTS (Universal Mobile

Telecommunication System), which specifies 3G IP broadband mobile networks that will offer
data rates between 156 Kbps and 2Mbps, better transmission rates can be achieved. UMTS
networks - and planned service concepts - are currently in the establishment phase.

As the main intension of this study was the Web Service technology and its potential
deployment and use cases in available mobile networks, the current established 2.5G
technologies, mainly GPRS, are used for the study.

So overall goal of this thesis is to study the Web Services technology as potential
solution for mobile applications in current 2.5G GPRS networks.

1 More details about HSCSD at http://www.gsmworld.com/technology/hscsd/index.shtml
2 More details about Circuit Switched Data at http://en.wikipedia.org/wiki/Circuit_switching
3 More details about GPRS � General Packet Radio Service at
http://www.gsmworld.com/technology/gprs/index.shtml
4 But (for notebooks e.g.) you still need a wireless modem, that puts your IP connection on top of the GPRS radio
service.

2. State of the art

 23

The following subchapter discusses current status of the mobile Web Services domain
for the Smart Phones.

2.3 Current status of mobile Web Services for Smart Phones
As far as the Web Service requestors for mobile devices are concerned, quite some

research was already done and some standard services are already being provided on the
Internet. But the mobile Web Service provision is a totally new concept where much research is
yet to be done.

With the intention of finding a lightweight Web Service provider, which could fit on the
Smart Phone, extensive search of the Internet led to the conclusion, that not even a basic Web
server was available for the Smart Phones to-date, which could be remodeled for the basic Web
Service architecture on the mobile terminal. The only server found was a c++ implementation,
SmallServ1 at Symbian, which is not very feasible for the Web Service architecture remodeling
because of its proprietary coding.

As a result, a dedicated Web Service provider has been developed for the Smart Phones,
to be used for the study of mobile Web Service provision. The details of the mobile Web
Service provider are deferred to chapter 5.
The dedicated mobile Web Service provider required means for handling of the SOAP requests
from the WS clients. Today there are different parsers available for Java2 implementations,
from different organization, for processing of SOAP requests, like Xerces3 from Apache,
JAXP4 from Sun, Xalan5 from Apache etc. But, as the service provider was targeted at mobile
terminals with limited resources, the parser should have a small memory footprint. With this
intent, after an extensive search and analysis of different resources in the WWW, the kSOAP
toolkit from enhydra.org was selected.

The following subchapter explains kSOAP, a lightweight SOAP toolkit used in
developing the mobile Web Service provider.

2.4 kSOAP � Lightweight SOAP toolkit
kSOAP6 is an open source API for SOAP parsing. It is based on kXML. kSOAP

provides a SOAP parser with special type mapping and marshalling mechanisms. Both kSOAP
and kXML are thin, easy to use, and well documented, and hence they can be used for
resource-constrained devices like mobile phones. The kSOAP parser understands the data-type
information in SOAP messages and automatically converts the SOAP message to Java data
objects, similar to �normal� SOAP parsers. The parser provides programming transparency
between a Java program and a SOAP message. A programmer just feeds Java objects into a

1 SmallServ is a simple Http Server for Symbian OS at
http://www.symbian.com/developer/techlib/apps/smallserv.html
2 The programming language used for the development of mobile Web Service provider, stated earlier, is Java.
More details are discussed in the later chapters. Since the implementation was in Java, the thesis considers mostly
Java supported tools.
3 More details about Xerces parser at http://xml.apache.org/xerces2-j/index.html
4 JAXP � Java API for XML Processing, more details at http://java.sun.com/xml/jaxp/
5 More details about Xalan parser for Java at http://xml.apache.org/xalan-j/index.html
6 More details about kSOAP at http://ksoap.enhydra.org/index.html

2.4. kSOAP � Lightweight SOAP toolkit

 24

SOAP writer, sends the message, waits for the server response, and then reads Java objects
directly from the SOAP parser.

The following subsections describe kXML and kSOAP briefly.

kXML
 kXML1 is a lightweight, open source XML parser2. Because of its small footprint, it is
especially suited for Applets3 or Java applications running on mobile devices. Generally there
are two types of parsers in the XML domain for extracting and manipulating the data from the
XML documents.

• DOM (Document Object Model): Using DOM mechanism, the whole XML document
is parsed into a tree structure, which can be traversed to manipulate and extract the data
from the XML document. The DOM provides a rich set of functionality. However, it
has some serious limitations, as the whole document should be in memory, which
requires significant amount of runtime memory, and the whole document is to be read
before constructing the tree, which requires significant amount of time.

• SAX (Simple API for XML): SAX is an event based parsing model. When a XML
document is being parsed, the SAX parser generates events, and these events are to be
caught and handled by the event listener. The events are generated at different instances
like start and end of the document, start and end of an element etc. The parser is also
called a �push parser�, as the parser pushes the events to the listener, which catches and
handles them. SAX requires less memory.

 kXML uses a DOM parser with some modifications. It uses XML pull parser
mechanism. Using the pull parser, the application can pull the next event from the parser. When
the parser is "pull"-based, the application is in control of, when and where it asks the parser for
the next event. The advantage is, that the processing state can be implemented much more
natural in local variables and recursions. If we want to parse a small fragment of data, may be
at the middle of the document, the data already parsed need not reside in memory, in contrast to
�normal� DOM, where all the data resides in memory.

 Key features of kXML are[10]:

• XML Namespace support
• "Relaxed" mode for parsing HTML or other SGML formats
• Small Memory footprint
• A Pull-based parser for simplified parsing of nested / modularized XML structures
• XML writing support including namespace handling
• Optional kDOM
• Optional WAP support

kSOAP object structure
In a SOAP message, as discussed earlier, an XML element's xsi:type attribute specifies

the data type of the element's content. For example, <myValue xsi:type="xsd:int">123</myValue>
specifies an integer value of 123, and <myValue xsi:type="xsd:string">123</myValue> specifies a

1 More details of kXML and pull parser are available at http://kxml.enhydra.org/project/aboutProject/index.html
2 An introduction to XML parsers is available at http://www.javacommerce.com/tutorial/xmldev/
3 Applet is a Java programmed applications, which can be included in HTML page.

2. State of the art

 25

string value of "123". kSOAP automatically supports the mapping of the following SOAP types
to Java types., as shown in Table 2.1.

SOAP type Java type

xsd:int java.lang.Integer

xsd:long java.lang.Long

xsd:string java.lang.String

xsd:boolean java.lang.Boolean

Table 2.1: Default data type mapping of kSOAP

When a kSOAP parser encounters an element, the parser reads the XML element into a Java
object according to the following rules:

• If the SOAP element is one of the default primitive types as shown in Table 2.1, it is
converted to a Java object of a matching type.

• If the SOAP element has no children (a primitive element) but has an unknown
primitive type, it is converted to a SoapPrimitive1 object. The element's SOAP type
information can be retrieved from the SoapPrimitive.getNamespace() and
SoapPrimitive.getName() methods. The element's String value can be accessed from the
SoapPrimitive.toString() method.

• If the SOAP element has children (a complex element), it is converted to an object
implementing KvmSerializable interface. The kSOAP package provides SoapObject, as
the interface's convenience implementation. Similar to SoapPrimitive objects, the
element's original SOAP type information can be retrieved from the
SoapObject.getNamespace() and SoapObject.getName() methods. The object holds both
user defined and unknown complex types.

• The child elements of a complex element are converted to properties inside the parent�s
SoapObject, according to the rules defined already. Each property also has an associated
PropertyInfo object containing information such as the SOAP element name and the
property's Java object type.

A SoapObject can also have other SoapObjects as properties. For example, a complex
node, which has another complex element as the child, is converted to form such an object. The
following Figure 2.6 shows an example Java structure obtained by parsing a SOAP message.

1 A detailed description of classes and methods of kSOAP API is available as Javadoc at
http://ksoap.enhydra.org/software/documentation/api/

2.4. kSOAP � Lightweight SOAP toolkit

 26

1

2

3

1

2

3

Figure 2.6: The SoapObject structure of a parsed SOAP message[9]

 The first property is a complex element, which had another complex element as
parameter. So it forms a complex tree structure of the SoapObject. The second property is a
SoapPrimitive object. The third property is directly serialized to a Java object, as it is an
element of default primitive type.

Marshalling
To automate the SOAP type-mapping process, the following tasks must be prepared for the
SOAP parser.

• The SOAP parser must know the mapping relationship between the user defined SOAP
types to user defined Java types. This is implemented by adding matching type pairs of
SOAP types and Java types to the parser�s ClassMap object.

• Since all SOAP types are presented in plain ASCII text strings, the parser must know
how to convert the string to a desired Java object. The parser converts the string to a
Java object through a user defined marshal object like MarshalDate for java.util.Date,
MarshalFloat for java.lang.Float etc., which implements the kSOAP�s marshal interface.
The marshall object is then registered with the parser's corresponding custom SOAP
and Java type pair in the ClassMap object.
The marshal object also defines the rules for serialization and deserialization of the data

objects. The marshal interface�s writeInstance() and readInstance() methods are overloaded
respectively for serializing and deserializing the Java object. More details of the serialization
and deserialization are discussed at the implementation details in chapter 5.

2. State of the art

 27

The SOAP types like xsd:float, xsd:base64 etc are all handled with their respective
marshal objects.

Summary:
 The chapter discussed the state of the art forming the basis of the thesis. The chapter
first discussed the Web Services technology; it�s components, operations and the standards
SOAP, WSDL and UDDI. Then it discussed the current wireless technologies used in the study
like HSCSD, GPRS etc. The chapter also discussed the current status of mobile Web Services
domain and then the kSOAP, a lightweight SOAP toolkit used in developing the mobile Web
Service provider.

 28

3 Architectures
This chapter first describes the basic architectures of the mobile Web Services

environment, with the mobile terminal as both Web Service provider and Web Service client.
Then it describes different methods and architectures for identifying and addressing the Web
Services deployed on the mobile Web Service provider. Apart from these, the chapter also
discusses alternative1 scenarios considered during the thesis.

3.1 Mobile terminal as Web Service requestor
The basic architectural setup of Web Services with the mobile terminal as client is

shown in the Figure 3.1. In this architecture, the Web Service client is implemented on the
mobile terminal. Other than the Web Service requestor, which would be on the mobile
terminal, the remaining Web Service components and operations in this architecture are all the
same as explained in the basic Web Services architecture in chapter 2.1.2.

Service Provider

Service Registry
(WSDL,UDDI)

BindPublish

Find

Java capable Mobile
Terminal (P800)

Service Provider

Service Registry
(WSDL,UDDI)

BindPublish

Find

Java capable Mobile
Terminal (P800)

Figure 3.1: Basic architectural setup of mobile Web Service client

The architecture was tested with a WS client implemented on the Sony Ericsson P8002
Smart Phone. The implementation and performance analysis details are deferred to chapter 6.1.

1 Some of these architectures are implemented and verified during the thesis study, and others are left at the
conceptual level. The reasons are described in detail at the discussion of these architectures.
2 P800 was the Smart Phone from Sony Ericsson, which was used for the implementation of the mobile Web
Services. The details of the Smart Phone are available at http://www.sonyericsson.com/P800/main.htm

3. Architectures

 29

3.2 Mobile terminal as Web Service provider (�Mobile Host�)

3.2.1 Basic architectural setup

Similar to the architecture of mobile terminal as Web Service requestor, the basic
architecture of the mobile terminal as Web Service provider can be established as shown in
Figure 3.2 with the Web Service provider being implemented on the Smart Phone.

Even though the Web Service provider is implemented on the Smart Phone, the
standard WSDL can be used to describe the services, and the standard UDDI registry can be
used for publishing and unpublishing the services. This was identified in the study as the Web
Service provider was successfully implemented on the mobile terminal with the same general
architecture as on any standard desktop system, even under the low-resource considerations of
the Smart Phone. The only differences between the ordinary service provider and the Mobile
Host1 would be the number of features supported and the speed of the service provisioning.
This has been studied in detail and the results are presented in performance analysis discussed
in chapter 6.

Service Registry
(WSDL,UDDI)

Service Requester
(Client)

BindPublish

Find

Java capable Mobile
Terminal (P800)

Service Registry
(WSDL,UDDI)

Service Requester
(Client)

BindPublish

Find

Java capable Mobile
Terminal (P800)

Figure 3.2: Basic architectural setup of Mobile Host

 Within the context of the thesis it is always assumed that the client knows the exact
location (URI) of the service and the service description. By this the search of the UDDI
registry(ies) by the client with the help of the service broker, and the evaluation of any WSDL
service description(s), is always bypassed in order to focus more on the main goals of the
thesis, i.e. concept, implementation and performance analysis of the mobile Web Service
provider for Smart Phones.

1 From now on the two words �mobile Web Service provider� and �Mobile Host� are used interchangeably
through out the document.

3.2. Mobile terminal as Web Service provider (�Mobile Host�)

 30

3.2.2 Mobile terminal access

Once a Web Service is developed & deployed with the Web Service provider
implemented on a mobile terminal (MT), the mobile terminal, that is registered and connected
within the mobile operator network, requires some means of identification and addressing, that
allows the Web Service to be accessible also from outside the mobile network operator�s
network domain.

Generally, computers and devices in a TCP/IP network are identified using an IP
address1. Networks using the TCP/IP protocol route messages (IP envelopes) using their IP
destination address. The IP address, that is required for the data transfer to and from Smart
Phones (as for any other IP communication client as Web servers, Intranet workstations, etc.) is
assigned during the communication configuration phase. Typically, the IP address assigned to
mobile devices using GPRS is only temporarily available, and is known only within the mobile
operator�s network, which makes it difficult to use the IP number in the client applications.

The following subsections give a detailed description of different possibilities for
resolving the IP address and thereby making the data transmission with a mobile terminal,
possible.

3.2.2.1 HSCSD

Figure 3.3 below illustrates the architecture that is used to connect the mobile terminal
(that provides the Web Service) to the prototyping network using a HSCSD (high-speed circuit
switched data) dial-up connection.

Figure 3.3: Architecture for an end-to-end TCP/IP connection between the mobile terminal and
the prototyping network

In this architecture a HSCSD (high-speed circuit switched data) dial-up connection is
established between the mobile terminal and an Ericsson prototyping network, the so-called
�Testbed�. The connection uses a Public Land Mobile Network (PLMN)2 and the Public
Switch Telephone Network (PSTN / ISDN) for making the data call to the server. The

1 More details about IP address at http://www.webopedia.com/TERM/I/IP_address.html
2 Details of most of telecommunication acronyms used in this chapter can be obtained at
http://www.webopedia.com. The detailed description of most of these acronyms is beyond the scope of the
document.

PLMN PSTN/
ISDN Modem

Testbed

High speed CS dial-up connection

PPP

TCP/IP

WS

PLMN PSTN/
ISDN

PLMN PSTN/
ISDN ModemModem

TestbedTestbed

High speed CS dial-up connection

PPPPPP

TCP/IPTCP/IP

WSWS

3. Architectures

 31

connection is set-up by using PPP (Point-to-Point Protocol) over a circuit-switched data call to
a modem that is connected to one of the servers (�Ibiza�) in the Testbed network. On top of this
PPP link a TCP/IP end-to-end connection between the mobile terminal and the dial-in server is
established. Hence, as long as the data call persists, the mobile terminal can be addressed using
the IP address assigned to it by the dial-in server. Thus the Web Service deployed on the
mobile terminal can be accessed from any client within the Testbed environment.

The basic concept of the Testbed setup is that all machines are behind a firewall. In
addition, this firewall uses NAT (network address translation) in order to map the limited
number of public IP addresses to a larger number of internal (private) IP addresses. So, using
an appropriate NAT configuration, the mobile Web Service can be accessed by any service
requestor (Web Service client) from the Internet. Using the NAT, the Testbed provides a DNS
name for the mobile Web Service provider. The only requirement towards the PPP daemon is,
that the mobile terminal should always receive the same IP address when it connects to the dial-
in server.

This setup is realized and used for the initial testing of mobile Web Services. The
connection is a high-speed circuit switched network (28 kbps).

Drawbacks
 With the architecture shown in Figure 3.3, the main drawback would be the circuit
switched1 connection, as the connection would have to persist as long as the mobile Web
Service provider should be available for the access of its Web Services. In general the billing of
circuit switched data connections is based on the time the connection persists, not on the
amount of data transmitted across the network. This makes this scenario unfeasible for
commercial purposes. Volume based charging is a major advantage enabled by GPRS.
 One solution to avoid this drawback is to send an SMS message to the mobile terminal
hosting the Web Service provider at the time of a Web Service request towards the mobile
terminal, and to have an application running on the mobile terminal, which processes the SMS
and starts the connection setup (TCP/IP/PPP over HSCSD dial-up) and Web Service provider.
This plan was dropped as the scenario was established for testing purpose only and the method
would not be applicable when GPRS connection is established, where it is not problematic to
have a continuous virtual connection.

3.2.2.2 GPRS

Once the GPRS connection is established the mobile can be identified by the IP
provided by the mobile operator network.

The operational setup for accessing the mobile terminal in a GPRS network is given in
Figure 3.4. The mobile TCP/IP connection between the Web Services client and the mobile
Web Service provider is deployed on top of a GPRS link into the mobile operator network.
From there the traffic is routed through the Internet to/from the Web Service client.

1 In general you can also have PPP over packet switched connections (which could make sense when you need a
end-to-end tunnel through different networks). Usually you use PPP over circuit switched connections as a basis
for IP

3.2. Mobile terminal as Web Service provider (�Mobile Host�)

 32

Mobile
Operator Internet

Operator proprietary WS

Mobile Web
Service Provider
(P800)

Web Service
client

GPRS

Mobile
Operator
Mobile
Operator InternetInternet

Operator proprietary WS

Mobile Web
Service Provider
(P800)

WSWS

Mobile Web
Service Provider
(P800)

Web Service
client

GPRS

Figure 3.4: The operational setup of Mobile Web Service provider in a live GPRS environment

But there are some serious issues to be considered with such a GPRS connection like:

(potentially) limited address range for mobile devices; potential risk of mobile spamming;
charging problem of Internet originated / mobile terminated traffic; etc. These are the main
reasons for NAT, only private GPRS IP addresses, and no network initiated PDP context
activation.

Since the architectural setup shown in Figure 3.4, is not feasible to-date for the study, as
the setup needs much support from mobile operator for providing IP, the following architecture
shown in Figure 3.5 was used for the basic observation of the Mobile Host scenario in the real
GPRS network. The architecture was feasible because of the close collaboration between
Ericsson and Vodafone.

Mobile
Infrastructure Internet

WS

Mobile Web
Service Provider
(P800)

GPRS Testbed
Vodafone

SSH

Testbed

Router

Mobile
Infrastructure

Mobile
Infrastructure InternetInternet

WSWS

Mobile Web
Service Provider
(P800)

GPRS TestbedTestbed
Vodafone

SSH

TestbedTestbed

Router

Figure 3.5: The operational setup of Mobile Web Service provider

 In this architecture a GPRS connection (PDP context) is initiated at the Mobile Host,
and a temporary dynamic IP address is released to the mobile terminal by the mobile operator
(Vodafone). The operator also has a Testbed network established, which can be accessed from
a system in the Internet using an SSL (Secure Socket Layer) tunnel. An account1 at the

1 This access was obtained because of the collaboration of Ericsson and Vodafone.

3. Architectures

 33

Vodafone Testbed then allows to use a SSH (secure shell) on the router in the Vodafone
Testbed for the connection with the mobile Web Service provider.
 Utilizing the SSL connection, the service requestor can be deployed at the Vodafone
Testbed, or can be executed from any computer in the Internet, that supports port forwarding
tools like Putty1.

 Port Forwarding is a combination of routing by port combined with packet rewriting.
Port Forwarding examines the packet header and forwards it on to another host (after a little
header rewriting) depending on the destination port. So the client can be executed on any
system and the packets be actually forwarded through the SSL tunnel to the router at Vodafone
Testbed.

Drawbacks
 The architecture has some serious limitations. It is not feasible for the commercial
purposes of third parties2, as the architecture directly uses the proprietary network, which may
not be suggestible for general purposes.
 The IP address provided by the network is temporary, and the WS client must always
get the �latest� IP address assigned to the Mobile Host before sending the service request. This
makes it feasible only for proprietary applications and for basic testing. This can be eliminated
by using NAT at the Vodafone Testbed, providing a DNS name for the mobile Web Service
provider.

3.2.3 Alternative scenarios

The subsection gives an overview of the other scenarios and architectures developed
and studied during the thesis. First we will discuss a virtual mobile Web Service provider,
which was an alternative for the basic architecture for the mobile Web Service provider
discussed in chapter 3.2.1. Later we will discuss other potential alternatives for identifying and
addressing the mobile Web Services deployed on the mobile terminal.

3.2.3.1 Virtual mobile Web Service provider

During the initial stages of this thesis an architecture for the �mobile terminal acting as
Web Service provider� as shown in the Figure 3.6 was discussed.

1 More about Putty & Port forwarding at http://the.earth.li/~sgtatham/putty/0.54/htmldoc/Chapter4.html#4.19
2 Since the architecture uses the operator�s own network, the operator can use it for his own commercial purposes.

3.2. Mobile terminal as Web Service provider (�Mobile Host�)

 34

Service Registry
(WSDL,UDDI)

Service Requester
(Client)

Bind

Publish

Find

MT (P800)
WAP push &
Synchronize

Service
Provider

Service Registry
(WSDL,UDDI)

Service Requester
(Client)

Bind

Publish

Find

MT (P800)
WAP push &
Synchronize

Service
Provider

Figure 3.6: The architectural setup of Virtual mobile Web Service provider

In this architecture, two information repositories (like GPS information, pictures, etc.)
are maintained, one on the mobile and another on the �real� Web Service provider. These
repositories are synchronized regularly using �classic� communication methods, most likely via
a GPRS link initiated by the mobile terminal (which �knows� changes of the data, etc.). At the
time the �real� Web Service provider receives a request, the service provider uses any means to
retrieve the requested information from the mobile terminal, e.g., sending a WAP-Push
message to the MT, containing the request and the response URL, pointing to an application on
the �real� Web Service provider that expects the information from the MT and relays it to the
original external request. By that we would have a (sort of) real-time access to a (virtual)
mobile Web Service provider. The communication between the mobile terminal and the real
Web Service provider, as explained above, enables the synchronization of the two repositories.

The architecture was planned for implementation as an alternative solution for the case
that the Mobile Web Service provider couldn�t be directly developed and implemented on the
mobile terminal.

Advantages
 With this architecture the basic architectural setup of Web Services is not changed, so
this can easily answer many questions, like e.g. How can a (virtual) connection to a mobile
terminal that hosts a Web Service, be initiated? How can the mobile Web Service be
addressed?, as the answers for general Web Services directly suit for this architecture.

 The general UDDI registry can also be used directly, and the critical performance issues
like the CPU power/load and memory considerations of the mobile are left for the offline
synchronization between the �real� and the �virtual� Web Service provider, and do not
influence the real-time performance of a Web Service request.

3. Architectures

 35

 However this scenario does not really mean a mobile Web Service provider and
therefore was abandoned.

3.2.3.2 Searching for IP at NAT

In the initial stages of the thesis the following architecture was tried to identify and
address the mobile terminal in a mobile network. In this scenario the mobile terminal would be
connected as a client to a server in the Testbed network via a GPRS link, and it was tried to
identify the IP address assigned to the mobile terminal by the GPRS operator. The scenario is
given in Figure 3.7.

Mobile
Operator Internet

WS
Operator proprietary

Mobile Web
Service Provider
(P800)

GPRS Testbed

NAT at MO NAT at Testbed

IP1 IP1 IP2 IP3IP2

Mobile
Operator
Mobile
Operator InternetInternet

WSWS
Operator proprietary

Mobile Web
Service Provider
(P800)

GPRS Testbed

NAT at MO NAT at Testbed

IP1 IP1 IP2 IP3IP2

Figure 3.7: The architecture for identifying IP at NAT translation

The tests were conducted on live GPRS network (Vodafone D2 in Germany) and it was
assumed that there would be 2 NAT translations during the transmission once at Mobile
operator and the other at the Testbed, as shown in the Figure 3.7. Using the IP address in the
Testbed (�IP3�), it was tried to reach the IP address of the mobile terminal within the mobile
operator network (�IP1�).

Unfortunately the scenario was unsuccessful, as the IP received always was the constant
public operator IP address of the NAT proxy (�IP2�) with a varying port number that is mapped
temporarily to the mobile terminal connection. This IP address and port number combination
can not be used to address the mobile terminal from outside the mobile operator network, as it
belongs exclusively to the temporary TCP/IP session and can not be interfered.

But with this architecture it was decided that if the mobile operator provides us with a
public IP address, then the setup can be used to connect to the mobile Web Service provider.

3.2.3.3 Workaround with session maintenance

In this architecture we wanted to get the IP address of the mobile by directly getting the
details from the mobile terminal by using some standard methods of java like
InetAddress.getLocalHost() and getting the details by establishing a session with the mobile
terminal. The steps in this scenario are described below.

3.2. Mobile terminal as Web Service provider (�Mobile Host�)

 36

• Send request to mobile terminal via WAP-Push (Including server address for response).

• Establishing session on mobile terminal to server

• Respond to server with the IP details.
The scenario is described as in Figure 3.8

WS

Mobile Web
Service Provider
(P800)

Request via WAP Push

Response to Server including IP of MT

Response : Status/Ack

Server

WS

Mobile Web
Service Provider
(P800)

WSWS

Mobile Web
Service Provider
(P800)

Request via WAP Push

Response to Server including IP of MT

Response : Status/Ack

Server

Figure 3.8: The architecture for identifying IP with session maintenance

 The scenario was left at the conceptual level itself, and was not implemented, as the
thesis had already come up with the solution discussed in the chapter 3.2.2, before this scenario
could be implemented. Apart from this, the IP address returned by the MT would have been the
same private IP address, discussed in previous subsection (chapter 3.2.3.2) and we would have
end up with the same problem (NAT) again.

Summary:
 This chapter first described the basic architectures of the mobile Web Services
environment, with the mobile terminal as both Web Service provider and Web Service client.
Then it described different methods and architectures for identifying and addressing the Web
Services deployed on the mobile Web Service provider using the HSCSD and the GPRS
connections. It also addressed the feasibility and drawbacks of such connections. Apart from
these, the chapter also discussed alternative scenarios considered during the thesis.

3. Architectures

 37

 38

4 Possible applications with mobile Web Service providers
This chapter discusses some of the numerous possible use cases of mobile Web Service

providers. The mobile Web Service provider itself gives an opportunity for a new domain of
applications, which is yet to be explored in a great deal.

In the following subsections we will discuss some of the applications that have been
developed and tested as reference cases for the performance analysis within this thesis. Apart
from these, many real-time and business�oriented applications are possible. However, the
applications selected here focus on the feasibility1 for the performance considerations discussed
in the following chapters. We also discuss a few more general applications (making use of
mobile Web Services technology) in domains like mobile gaming etc.

4.1 Mobile photo album service
Today�s high-end mobile terminals as the so-called Smart Phones become more and

more advanced, and are generally being equipped with an integrated digital camera. The
photographs taken with these mobile phones can later be uploaded or transferred to PCs
through cables or by using wireless methods like Infrared or Bluetooth.

Using currently available technologies, if a user wants to publish the photographs he
had taken with the mobile terminal to the public or friends, he has to upload the photos to a
Web server, from which they can be accessed. The user can also send the images through MMS
or some other means of messaging to the clients. Here the mobile owner bares the payment for
the communication between his Smart Phone and the Web server or the receiver�s device.

With a mobile Web Service provider, implemented and deployed on the Smart Phone,
interested people can access the Mobile Host using a standard Web Service client or a Web
client, and can browse through the pictures they are interested in. This is comparable to any
other online image album service, but implemented on the mobile terminal.

Applications developed for a Mobile Host also have to consider security and
authorization details. The applications can be upgraded to take the manual permission of users,
before providing the pictures (services) to the client.

This mobile host application was implemented and developed using PersonalJava, and
has been deployed on a SonyEricsson P800 Smart Phone, for the analysis of the performance
characteristics of a this type of a Mobile Host.

It provides support for research applications like biological research, news/sports etc.,
where the results of experiments can be taken directly and can be provided automatically for
those who are registered for that service and interested in the details. The scenario of the
application is clearly shown in the Figure 4.1.

1 We will discuss these details in greater detail in the subsequent subsections of this chapter

4. Possible applications with mobile Web Service providers

 39

Mobile
Infrastructure

InternetWS

Mobile Web
Service Provider
(P800)

WS Client

GPRS

Mobile
Infrastructure

Mobile
Infrastructure

InternetInternetWS

Mobile Web
Service Provider
(P800)

WSWS

Mobile Web
Service Provider
(P800)

WS Client

GPRS

Figure 4.1: The mobile photo album service scenario

The application was considered for implementation because of the greater scope for
observation of different parameters at performance analysis like the serialization overhead, de-
serialization overhead, and transmission delay etc. apart from its real time use. The parameters
of consideration and the application are discussed in more detail in the performance analysis in
chapter 6. The implementation details are discussed in detail in next chapter.

4.2 Location (GPS) data provisioning
The Mobile Host can also be used for providing detailed location information of the

mobile terminal, such as GPS1 (Global Positioning System) data2, in conjunction with a
corresponding module or external devices. A dedicated Web Service provides these GPS data
upon request through the mobile Web Service provider. The GPS data can also be stored in the
Mobile Host at a particular instance, for example when taking a picture, and can later be
provided as additional GPS information together with the picture. The application shown in
Figure 4.1 uses both services explained above, and provides pictures from the mobile album, as
well as location details of the pictures.

The above two applications discussed, as a combination could also be of use, for
example in a distress call, the mobile terminal could provide a geographical description of its
location along with location details. An interesting example of the application explained above
would be a use case for editors and journalists. The Mobile Host can be used in this scenario
for the co-ordination between journalists, who are covering different events across globe, and
their respective organizations. The scenario is illustrated in Figure 4.2.

1 More details about GPS can be found at http://www.trimble.com/gps/what.html
2 GPS data format is available at http://www.navcen.uscg.gov/pubs/gps/sigspec/gpssps1.pdf

4.3. Mobile gaming

 40

Mobile
Infrastructure

Internet

WS

Journalist 1

GPRS
WS

Journalist 2

GPRS

WS

Journalist 3

WS

Journalist 4

GPRS
GPRS

Editor

Mobile
Infrastructure

Mobile
Infrastructure

InternetInternet

WS

Journalist 1

WSWS

Journalist 1

GPRSGPRS
WS

Journalist 2

WSWSWS

Journalist 2

GPRS

WS

Journalist 3

WSWSWS

Journalist 3

WS

Journalist 4

WSWS

Journalist 4

GPRS
GPRS

Editor
Figure 4.2: The Mobile Host used in Journalism scenario

 In the scenario shown in Figure 4.2, journalists can be at different locations across the
globe, covering different events like the sport events, conferences, etc. An editor can always
keep track of the location of �his� journalists and the content they have gathered. He can
browse through the pictures taken by the journalist at any instance. Standard client applications
can be developed for the editor, which synchronize the information stored by editor and data at
the Mobile Host. By such an application the journalists can concentrate more on their job of
collecting, as they don�t have to upload the data every time they get something interesting.

4.3 Mobile gaming
Today, there are high expectations and hopes towards mobile gaming. Mobile terminals

become more and more powerful, multi-media capabilities are constantly extended, and the
evolution of the mobile networks enables more and more interactive mobile applications.
Hence, many mobile operators are seeing them as one of the next generation business drivers in
the mobile arena.

In mobile gaming, game clients are connected to a Game Access Server (GAS)1 via an
access system such as wireless networks. The client software is installed on the mobile
terminals that interface the game application on the local GAS. Game Access Servers are
situated at the edge of data networks, and are operated by telecom operators, ISPs, or game
service providers. Each GAS holds a copy of the game state and distributes game data to clients
according to priorities that are set by the clients. Game clients that belong to different access
units may participate in the same game. Game Access Servers send aggregated game data
streams to each other over backbone networks.[20]

1 More details about multi-user gaming and GAS at http://www.wirelessdevnet.com/symbian/rb_20.html

4. Possible applications with mobile Web Service providers

 41

The Mobile Host could be very useful in the mobile gaming domain. Until now, as
explained earlier, a GAS is always involved in the coordination between the players, providing
the ad-hoc characteristics to the network. Now, with the Mobile Host in the scenario, the GAS
functionality can be implemented by one of the players and can act as GAS, providing games
and coordinating the communication between the players, there by creating scope for a total
new set of games and payment methodologies, which can involve third party developers and
individuals as game organizers, supporting ad-hoc networks. The scenario is shown in Figure
4.3.

Game Host

WS

Mobile Operator network
Game Host

WS

GAS

Client

Game Host

WS

Game Host

WSWS

Mobile Operator network
Game Host

WS

Game Host

WSWS

GASGAS

ClientClient

Figure 4.3: Scenario with Mobile Host in ad-hoc mobile gaming environment

The Mobile Host can act as GAS for other mobile phones in the mobile operator
network, or for external clients connected to it via Internet. The game played by the mobile
client, can also span across multiple such Mobile Hosts, which co-ordinate the game
provisioning, thereby making an ad-hoc gaming network based on mobile phones.

Still, there are many open questions to be studied in this area, as the Mobile Host it self
gives scope for new distributed architectures for wireless networks, and thus can support new
payment methodologies, communication and co-ordination of different participants of different
games etc.

4.4 Transportation and Logistics
The Mobile Host offers further deployment opportunities in the transportation and

logistics domain. Example areas are maintaining traffic control1, and guided parcel service etc.
The scenarios are explained briefly below.

Most of today�s traffic congestions are caused by excessive traffic or by construction
sites. Nowadays, scientists studying traffic congestion and its causes, have a pretty clear picture
of how a small incident or disturbance can develop into a full-fledged traffic jam and the means

1 More details available at http://www.invent-online.de/en/projects.html

4.4. Transportation and Logistics

 42

of avoiding such a situation. In the future, driving assistance systems will utilize these scientific
results, collecting and combining data dynamically to analyze and even predict the traffic state
traffic volume, speed, density, and to modify speeds, headways, and lane changing so as to
keep traffic flowing as smoothly as possible even under adverse conditions. By making traffic
itself behave intelligently in this way, traffic performance assistance systems will help to
minimize spontaneous disturbances that otherwise could cause congestions or stop-and-go
traffic.

The driving assistance systems introduced above can be provided with Mobile Hosts,
which allows them to respond according to the incoming WS requests and take alternative
measures. The Mobile Host can also help in the inter-vehicle communication, which warns the
subsequent vehicles. So if a traffic jam is already present, traffic performance assistance
systems can be designed to minimize the length of the jam and to adapt vehicle speeds so as to
return faster to un-congested traffic. The application scenario is shown in Figure 4.4.

Figure 4.4: Mobile Host used in traffic control systems

The figure shows the communication of driving assistance systems, provided with the
vehicles, with external towers. It also shows inter-vehicular communication. Using such
applications, existing roadway networks could be utilized much more efficiently to meet traffic
demand and avoid overloads.

In similar lines to the above described traffic control maintenance, proprietary
applications can be developed on the Mobile Hosts, which allow the vehicle drivers to receive
requests from different clients for the parcel delivery. Such a system can also answer client
requests like pickup location, change in delivery address, duration for delivery, and the
destination of the parcel etc. which also allows the client properly co-ordinate with the parcel
delivery system. Several of these parcel delivery vehicles can be coordinated by a common
server application, which identifies the most feasible vehicle based on the client request details,

4. Possible applications with mobile Web Service providers

 43

and forwards the request from the client to that vehicle, based on some parameters like the
distance from the pickup location, the delivery location etc. The application can also benefit
from the GPS service discussed earlier. The scenario is shown in Figure 4.5.

2

3

4

1

A

B

2

3

4

1

A

B

Figure 4.5: Guided parcel service scenario

 All the vehicles shown (1,2,3,4) are provided with Mobile Hosts. A client can contact
the vehicle directly, or through the central system, shown by towers, and ask for a service that
takes parcel from location A and delivers it at location B. If the client calls the central system,
the system diverts the request to the best feasible vehicle that can serve the client. If the client
calls the vehicle directly, the vehicle can co-ordinate with other vehicles and the central system
to find the most feasible vehicle. The best advantage of such a system is, that, the client can
exactly track his parcel throughout the delivery process.

Apart from the applications described here, a Mobile Host can also be used in many

other scenarios like home equipment control, robot control, e-medicine etc. because of its low
resource requirements. In all these applications the equipment or the appliances are connected
to the mobile Web Service provider by some means like Bluetooth, Infrared and etc., through
which the Mobile Host can deliver respective commands to the devices based on the WS
requests it receives.

The following Table 4.1 summarizes different use cases discussed in this chapter. The
table mainly considers the amount of communication and co-operation needed for the
establishment of connections (Ad-hoc or Peer-peer) for the respective applications. The
interaction between the Mobile Host and the external media is also analyzed in the table.

Scenario Communication Cooperation Data
provision

Human to
machine
interaction

Machine to
machine
interaction

Mobile photo
album service

X - X X -

4.4. Transportation and Logistics

 44

Location data
provisioning

X - X X -

Mobile gaming Supports ad-hoc
communication

X X X X

Transportation
and logistics

Supports ad-hoc
communication

X X X X

Home
equipment
control

X X - To some
extent

X

Robot control X X - - X

e-medicine X - X X -

Table 4.1: Summary of different possible use cases of Mobile Host

Summary:
 The chapter discussed some of the applications that have been developed and tested as
reference cases for the performance analysis within this thesis. The chapter also discussed some
domains like mobile gaming, transportation and logistics, where the Mobile Host can be
incorporated.

4. Possible applications with mobile Web Service providers

 45

 46

5 �SSNServer� � Mobile Web Service Provider
As stated earlier, the main objective of the thesis is to study the concept,

implementation and performance testing of mobile Web Service provider for Smart Phones. So
for this purpose a Mobile Host (SSNServer) was developed for the limited-resource devices,
especially Smart Phones. The chapter discusses the technologies supported by these low-
resource devices, the HTTP protocol and the messages and then the architectural and
implementation details of the Mobile Host.

5.1 Types of java for mobile phones
Since the main interest of the thesis is to study the concept, implementation and

performance of Mobile Host, the Java version, used for the implementation of the mobile Web
Service provider, is selected under consideration of specific criteria;

• The processing power and speed of the mobile terminal.

• Extended support of the Java version by the SonyEricsson P800 Smart Phone, which
was selected as terminal for the implementation and performance analysis.

• Portability of the application.

The types of Java applications that can be developed for the Smart Phones depend on
the Java support in these terminals. The SonyEricsson P800 Smart Phone supports two types of
Java, namely PersonalJava and J2ME CLDC/MIDP 1.0.

The following subsections discuss both of the technologies mentioned above.

5.1.1 PersonalJava

PersonalJava1 also referred as �pJava�, was one of the first Java programming
environments targeted at developing applications for resource-constrained devices. These
devices include Smart Phones, PDAs (Personal Digital Assistants) and many other embedded
devices. PersonalJava specifies a reduced set of class libraries compared to the desktop
environment. Over the years, the Symbian port of PersonalJava to SymbianOS2 has been
undergoing substantial optimizations like assembler coded byte code interpreter, optimized
AWT3 library etc., that today PersonalJava in combination with the hardware performance
enhancements is a powerful alternative for the development of mobile applications.

The PersonalJava profile is based on the JDK1.14 (Java Development Kit), but makes a
number of packages, classes, and methods optional. It gives the capability to the developer to
create Web applets and other mobile phone applications. It is the first attempt by Sun to
produce a Java application environment (JVM) for mobile devices; it predates the Connected
Device Configuration (CDC) and is the forerunner to J2ME.

1 More details about PersonalJava can found at http://java.sun.com/products/personaljava/
2 More details about SymbianOS at http://www.symbian.com/
3 AWT (Abstract Window Toolkit) is a part of the Java Foundation Classes (JFC) -- the standard API for
providing graphical user interfaces (GUIs) for Java programs.
4 More details about JDK 1.1 are available at http://java.sun.com/products/archive/jdk/1.1/index.html

5. �SSNServer� � Mobile Web Service Provider

 47

5.1.2 J2ME � Java 2 Platform, Micro Edition
Java 2 Platform, Micro Edition (J2ME)1 is a subset of the Java 2 Platform, Standard

Edition (J2SE)2, and is the Java platform for consumer and embedded devices such as mobile
phones, PDAs, TV set-top boxes, in-vehicle telematics systems, and a broad range of other
embedded devices. J2ME is defined through the Java Community Process, and it also maintains
the Java philosophy of portability.

Sun has divided the Java 2 platform into different editions based on their end system
requirements. The different platforms and their areas of focus are illustrated in Figure 5.1.

Figure 5.1: Architecture of Java 2 Platform [7]

J2SE provides a complete environment for application development on desktops and
servers. It also serves as the foundation for the Java 2 Platform, Enterprise Edition (J2EE)3,
which is used for developing multi-tier enterprise applications.

J2ME was designed by grouping devices into �configurations�, a vertical set of virtual
machines and minimal set of class libraries providing the base set of functionality for the range
of devices within each configuration.

1 Sun provides a detailed discussion of J2ME at http://java.sun.com/products/archive/jdk/1.1/index.html
2 More details at http://java.sun.com/j2se/index.jsp
3 J2EE specification is available at http://java.sun.com/j2ee/index.jsp

5.2. HTTP (Hypertext Transfer Protocol)

 48

Two configurations have been defined for J2ME, the Connected Limited Device
Configuration (CLDC)1 and the Connected Device Configuration (CDC)2. The CLDC is the
smaller of the two platforms, and caters for devices such as mobile phones with an intermittent
network connection, slow processor (16 or 32 bit), and limited memory (128kb-512kb). The
CDC is designed for devices such as high end PDAs and communicators, with more memory
(minimum of 2Mb) and a 32-bit processor.

The development environment for J2ME on the CLDC devices is the Mobile
Information Device Profile (MIDP)3. It defines the classes for user interface, persistent storage,
and networking and application management. Combined with CLDC and its Kilo Virtual
Machine (KVM) [8], this profile provides a complete Java runtime environment (JRE)4 for
handheld devices with minimum memory and processor power. It allows programs to be
downloaded, over the air to the device from a service provider, in the form of MIDlets5.

The Personal Profile is the CDC profile, aimed at devices that require full Graphical
User Interface (GUI) or Internet applet support, such as high-end PDAs, communicator -type
devices, and game consoles. It includes the full Java Abstract Window Toolkit (AWT) libraries
and offers Web fidelity, easily running Web-based applets designed for use in the desktop
environment. Personal Profile replaces PersonalJava technology, and provides PersonalJava
applications a clear migration path to the J2ME platform.

Combining various optional packages can further extend the J2ME platform. These
optional packages along with CLDC, CDC, and their corresponding profiles, can address very
specific market requirements. These optional packages offer standard APIs to support both
existing and emerging technologies like Bluetooth, Web Services, wireless messaging,
multimedia, and database connectivity etc.

After the analysis of both the development platforms, PersonalJava was selected for the
implementation of the Mobile Host on P800, since:

• PersonalJava has a richer application environment and can interact more extensively
with the phone software than J2ME.

• PersonalJava is faster in processing on the P800 Smart Phone [12].
Using PersonalJava may affect the portability of the Mobile Host on different Smart

Phones, but this is not a big constraint for this thesis, as the main interest is on the concept and
performance analysis of the mobile Web Service provider on the given Smart Phone.

5.2 HTTP (Hypertext Transfer Protocol)
The Mobile Host is developed as a Web Service handler, built on top of a normal HTTP

Web server. The architecture and the implementation details of the Mobile Host are explained
in detail in the later parts of this chapter.

1 More details about CLDC at http://java.sun.com/products/cldc/index.jsp
2 More details about CDC at http://java.sun.com/products/cdc/index.jsp
3 For further information on MIDP refer to http://java.sun.com/products/midp/index.jsp
4 JRE allows end-users to run Java applications.
5 More details about MIDlets at http://developers.sun.com/techtopics/mobility/midp/questions/spawn/

5. �SSNServer� � Mobile Web Service Provider

 49

The Web Service requests are passed to the Mobile Host by HTTP tunneling1.
Therefore, before the detailed description of the architecture of the Mobile Host, we will
discuss briefly HTTP2 (Hypertext Transfer Protocol), HTTP messages, and the Web server
basics, to the extent required for the further discussion of the architectural details of the Mobile
Host.

HTTP is the application layer protocol of the Web. It is implemented in two
communication peers: the client program and the server program, executed on different end
systems, and communicating through HTTP messages. HTTP defines the method and the
structure of message for the communication.

HTTP defines how the Web clients (browsers) request Web pages from the Web servers
and how the Web servers transfer the Web pages. The HTTP client first initiates a
Transmission Control Protocol3 (TCP) connection to the server port (default port for HTTP is
port 80). Once the TCP connection is established, the client sends the HTTP request message to
the server through the socket associated with the TCP connection. The message includes the
path name4 of the Web page. The HTTP server receives the request through the socket, and
retrieves the Web page from the storage (file system or RAM) of the server, encapsulates the
object in an HTTP response message, and sends it to the client using the socket. Once the client
receives the message, the TCP connection is closed.

The HTTP as explained above uses the non-persistent TCP connection mode, as the
TCP connection closes after processing the client request. A persistent TCP connection is also
possible, where the server maintains the connection even after sending the response.
Subsequent communication between the same client and server utilizes the already established
and still open connection.

5.2.1 HTTP message format

The HTTP specification defines two types of message formats, HTTP request and
HTTP response messages. The following subsection gives a brief description of these message
formats. A detailed description of the messages is available with the HTTP specification
(RFC2616).

5.2.1.1 HTTP Request message

The HTTP request message is just a normal ASCII text message. The client formulates
this message, and sends it to the Web server for processing. The message format is shown in
Figure 5.2. A brief description of the fields of the HTTP request message, that are relevant for
the thesis, is given below.

1 Using Http tunneling it is possible to send data of any protocol through proxy over HTTP. The protocol
messages are wrapped into the Http message body and are transferred as normal Http GET/POST requests.
2 Detailed specification of HTTP is available at http://www.w3.org/Protocols/
3 More details about TCP at http://vit.smolensk.ru/docs/network/illustrated_tcp_ip/index.html
4 The HTTP message formats are discussed in detail in the next subsection

5.2. HTTP (Hypertext Transfer Protocol)

 50

method sp lfsp crURL Version
header field name : value lfcr

header field name : value lfcr
lfcr

Request line

Header lines

Entity body

methodmethod spsp lflfspsp crcrURLURL VersionVersion
header field nameheader field name :: valuevalue lflfcrcr

header field nameheader field name :: valuevalue lflfcrcr
lflfcrcr

Request line

Header lines

Entity body

Figure 5.2: General format of HTTP request message

Method
The Method field indicates the method to be performed on the object identified by the

URL. Methods can be GET, which means retrieval of the data the URL identifies, HEAD,
which is the same as GET, but returns only the HTTP headers and no document body, and
POST, which creates a new object linked to the specified object. The message-id field of the
new object may be set by the client or else will be given by the server. A URL will be allocated
by the server and is returned to the client. The new document is the data part of the request

Version
 The Protocol Version field defines the format of the rest of the request. If the protocol
version is not specified, the server assumes that the browser uses HTTP version 1.0.

Entity body
The content of an object is sent (depending on the method) with the request. The entity

body is used with POST method and not with GET method.

5.2.1.2 HTTP Response message

Similar to request message the HTTP response message is also written in normal ASCII
text. The response message format is shown in Figure 5.3. A brief description of the fields of
the HTTP response message, that are relevant for the thesis, is given below.

5. �SSNServer� � Mobile Web Service Provider

 51

version sp lfsp crstatus code phrase

header field name : value lfcr

header field name : value lfcr

lfcr

Status line

Header lines

Entity body

versionversion spsp lflfspsp crcrstatus codestatus code phrasephrase

header field nameheader field name :: valuevalue lflfcrcr

header field nameheader field name :: valuevalue lflfcrcr

lflfcrcr

Status line

Header lines

Entity body

Figure 5.3: General format of HTTP response message

Version
 The version field specifies the HTTP version used by the server.

Status code
 The status code and the phrase associated with it, indicate the result of the request. For
example, �200 OK� indicates the request is successful and the information is returned in the
response, �404 Not Found� indicates that the requested document does not exist on the server.

Entity body
 The entity body is the main part of the message; it contains the requested object itself.

5.3 Architecture and features of the Mobile Host
This subsection discusses architectural details of the mobile Web Service provider

implemented and used for the performance analysis.
The Mobile Host has been developed as a Web Service handler built on top of a normal

Web server. The normal HTTP (Hypertext Transfer Protocol) requests are processed as generic
HTTP Web server requests, and the Web Service requests sent by HTTP tunneling are diverted
and handled by the Web Service handler.

Figure 5.4 shows the core architecture of the Mobile Host. At the HTTP interface a
server socket is waiting for the incoming HTTP GET/POST requests. When the Mobile Host
gets a HTTP request, the server socket accepts the request, creates a socket for communication,
and initiates a new thread of execution by creating an instance of the request handler. The
request handler extracts the incoming request data from the input stream of the socket, and
checks for the �SOAPAction� header field. If the header value is not set, the request handler
processes the HTTP request just as the normal Web server (HTTP server), and returns the
response by writing to the output stream of the socket.

5.3. Architecture and features of the Mobile Host

 52

Request Handler

SOAP Processor

KSOAP

KXML

Service Handler

MPS WS GPS

WS Handler

MOBILE HOST
HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

Request Handler

SOAP Processor

Request Handler

SOAP Processor

KSOAP

KXML

KSOAP

KXML

Service HandlerService Handler

MPSMPS WSWS GPSGPS

WS Handler

MOBILE HOST
HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

HTTP
Interface

(Java
ServerSocket
Listener)

HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

File
System
File
System

External
devices
like GPS
Receiver
etc.

External
devices
like GPS
Receiver
etc.

Bluetooth
/ IR

HTTP
request

Request Handler

SOAP Processor

KSOAP

KXML

Service Handler

MPS WS GPS

WS Handler

MOBILE HOST
HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

Request Handler

SOAP Processor

Request Handler

SOAP Processor

KSOAP

KXML

KSOAP

KXML

Service HandlerService Handler

MPSMPS WSWS GPSGPS

WS Handler

MOBILE HOST
HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

HTTP
Interface

(Java
ServerSocket
Listener)

HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

File
System
File
System

External
devices
like GPS
Receiver
etc.

External
devices
like GPS
Receiver
etc.

Bluetooth
/ IR

HTTP
request

Figure 5.4: Core architecture of the Mobile Host

 If the �SOAPAction� header value is set, then the request handler reads the HTTP
message body and deserializes1 the SOAP request (XML data structures) to Java objects using
the kSOAP and kXML. The request handler passes these objects to the service handler, which
extracts the request parameters and calls the respective services including the parameters. The
business logic of the service method is then executed and the service handler returns the
response to the request handler.

 The Web Services deployed on the Mobile Host can access the local file system, or any
external devices like a GPS receiver, using Infrared, Bluetooth etc., and can implement
business logic.
 The request handler serializes the response and prepares the HTTP response message,
which is returned to the client as a HTTP response by writing to the output stream of the
socket.

The activity diagram shown in Figure 5.5 explains the process in detail. The swimlanes
indicate the node carrying out the functionality.

1 The terms deserialize and serialize are briefly described after the architectural details of Mobile Host.

5. �SSNServer� � Mobile Web Service Provider

 53

Before considering the implementation details, we will discuss some of the concepts
mentioned here in the architecture.

Deserialization:
As discussed earlier1, SOAP messages are in the form of XML data structures. So, to

extract the details of the requested services (like the service name, input parameters for the
service etc.), that are incorporated in the ASCII based XML data structures, the XML data is to
be parsed and the details are to be retuned as objects, so that the service details can be extracted
as and when necessary. This process is called deserialization. The process returns �SOAP
Envelope� objects. Different implementations of SOAP have their own support for
deserialization. We had already discussed kSOAP�s support for serialization and
deserialization.

Serialization:
 When the response of the Web Service is to be sent back to the client as SOAP response
messages, the SOAP response message objects on the Mobile Host are to be converted back to
the XML messages streams. This process is called serialization, which produces an XML
stream that can be transferred across the standard IO streams as normal ASCII stream, and
works analog to deserialization.

1 During the SOAP and kSOAP discussion in chapter 2, we had considered the structure of SOAP messages and
the process of serialization and deserialization

5.3. Architecture and features of the Mobile Host

 54

Create a ServerSocket and
wait for client requests

Start a new thread for client
request processing

Read the request line of
HTTP request

Read the
Header values

Is SOAPAction
header set

Get the URL object
from File system

Prepare the Http
response message

Send the response to the
client through the socket

is request for
.jws fi le

No

Get the URL from
the request line

No

Create a new socket for
communication upon client request

Read the Request
message body

Yes

Yes

Deserialize the SOAP message to
SOAPEnvelope object

Extract the
SOAPBody object

Get the service name and
the input parameters

Execute the
service

Serialize the response
of the service

WS HandlerRequest Handler

Figure 5.5: Activity diagram showing the core Mobile Host functionality

5. �SSNServer� � Mobile Web Service Provider

 55

Considering the low-resource constraints of the Smart Phones, the Mobile Host�s targeted
devices, no deployment environment was provided. Hence, all services have to be deployed at
the installation of the Mobile Host. An alternative implementation would be, that the Mobile
Host looks for services at different locations (that are previously specified at the mobile host
before deployment) other than the main JAR location, where the services could then be
deployed at runtime. More details are discussed later in this chapter.

5.4 Implementation details
This subsection gives implementation details of the mobile Web Service provider. Here

we first discuss the Mobile Host features, their implementation, and then the developed
services. As mentioned earlier, the Mobile Host was developed using PersonalJava.

5.4.1 General features of the Mobile Host

The mobile Web Service provider developed for the Smart Phones provides the following
features:

• A standard Web server handling HTTP requests,

• A basic Web Service provider handling Web Service requests from any Web Service
requestor using SOAP, passing the requests with HTTP tunneling,

• Capable of handling concurrent requests,

• Support for deployment of new services even after the deployment of the Mobile Host
on the Smart Phone,

• Small GUI for basic server operations like start, stop, exit and services deployed,

• Capability to provide memory usage details of the Smart Phone,

• Support for the performance analysis.

5.4.2 Package hierarchy

SSNHTTP
Server

trace WSProviderSSNHTTP
Server

trace WSProviderSSNHTTP
Server

trace WSProvider

Figure 5.6: The packages of the Mobile Host

 The functionality of the mobile Web Service provider is implemented in three packages,
as shown in Figure 5.6. The classes implementing the basic Mobile Host functionality are in the
�SSNHTTPServer� package. The �WSProvider� contains the services provided by the Mobile
Host. The �trace� package contains the utility classes used in the performance analysis of the
mobile Web Service provider. The dependency relations between the packages are also shown
in the figure.

5.4. Implementation details

 56

 The following subsections describe these packages in detail with respect to their
functionality.

5.4.3 Mobile Web Service provider

As discussed earlier the main functionality of the mobile Web Service provider is
implemented in the SSNHTTPServer package. The class diagram of the package is shown in
Figure 5.7. An overview of the classes and their functionality is given below.

HttpStatusCodesMyServer
port : int
docRoot : String
t imeout : int
BUF_SIZE : int
req_id : int
t races : Hashtable

MyServer()
run()
loadProp()
main()
s tart()
s top()
actionPerformed()

+$MainServerWindow
MyDialog

MyDialog()
actionPerformed()
run()

MimeMap

MimeMap()

RequestHandler

RequestHandler()
run()
handleClient()
handleGet()
handlePost()
handleHead()
handleRest()
getHeaders()
printHeaders()
getBody()
printBody()
sendToStream()
sendToStream()
loadFile()
log()
listDirectory()
handleWS()
serialize()
deserialize()
handleTrace()
getTimes()
main()

map

1..1
1..n

Figure 5.7: Class diagram of SSNHTTPServer package

MyServer:
This class sets the initial configuration required for starting the Mobile Host the

document root directory of the server, port on which the server is waiting for requests, socket
timeout, etc. Once these standard parameters are set, the server starts listening on the
ServerSocket for incoming client requests and initiates calls to the RequestHandler object upon
requests from the clients. The class also holds the trace details of each client request in a hash
table to be used for the performance analysis.

5. �SSNServer� � Mobile Web Service Provider

 57

 Finally, the class provides the server with a Graphical User Interface (GUI) for
restarting and shutting down the Mobile Host, and for the trace support. The GUI also provides
the task manager support, which helps in the observation of the memory load on the Mobile
Host

RequestHandler:
The RequestHandler is the main class, which implements most of the functionality of

the Mobile Host. For simplicity, the request handler and the service handler functionality of the
core architecture of the Mobile Host shown in Figure 5.4 are implemented in this class. The
request handler creates a new thread for each client request of the Mobile Host and these
threads handle the clients.
 The thread extracts the data from the input stream of the socket, and the HTTP method
of the request is identified. The thread then reads the header fields of the request, and checks
for the SOAPAction header field. If the header value is not set, the thread processes the HTTP
request just as the normal Web server, like retuning a file, directory listing from the file system
etc., and returns the response as standard HTTP response message by writing to the output
stream of the socket.
 If the SOAPAction header is set, the thread extracts the HTTP message body and
deserializes the SOAP request to Java objects using the kSOAP and kXML API. After
deserialization, the service name and the service parameters are read, and the respective service
is called using the Java reflection1 API. Once the service returns the result, the result is
serialized and populated into the HTTP response message body, and the response is sent to the
client by writing it to the output stream.
 The class also supports the trace requests. If the request is for trace parameters then just
the trace value is extracted from the static hash table object of the Mobile Host using the
request id, and the trace data is sent to the client as the response.

MyDialog:
This is a utility class, which provides the GUI for the task manager support of the

Mobile Host. As discussed earlier, the GUI displays the details of the memory usage details of
the Smart Phone with respect to the JVM like the free memory and total memory of the server
using the Java Runtime2 support. For this the class uses the Runtime.freeMemory() and the
Runtime.totalMemory() methods of PersonalJava.

MimeMap:
This class is a hash table holding the file extensions accepted by the server and their

respective MIME3 types.

HttpStatusCodes:
This is an interface, which defines the standard response status codes of the HTTP

protocol.

1 The reflection API represents, or reflects, the classes, interfaces, and objects in the current Java Virtual Machine.
More details are available at http://java.sun.com/docs/books/tutorial/reflect/
2 The API of PersonalJava is available as Javadoc at http://java.sun.com/products/archive/jdk/1.1/index.html
3 MIME, Multipurpose Internet Mail Extensions, specification available at
http://www.mhonarc.org/~ehood/MIME/2045/rfc2045.html

5.4. Implementation details

 58

Timers
SOCKET_ACCEPTED : long
STREAM_READ : long
METHOD_DIVERT : long
HTTP_START_LOADFILE : long
HTTP_END_LOADFILE : long
HTTP_END_ERROR : long
WS_START : long
WS_DESERIALIZED_STREAM : long
WS_START_SERVICE : long
WS_END_SERVICE : long
WS_SERIALIZED_STREAM : long
WS_END : long
HANDLED_ERROR : boolean
HANDLED_HTTP : boolean
HANDLED_WS : boolean

Timers()

Figure 5.8: Timers class holding the trace parameters of the Mobile Host

As Discussed earlier, the trace package contains the utility classes used in the
performance analysis of the Mobile Host.

The package has only one class, Timers, shown in the Figure 5.8, which holds the exact
timestamps of the server at different instances of the Mobile Host execution with respect to
each request of the server. These are the details stored in the hash table for future use in the
performance analysis at the server as described earlier. Detailed description of all these
variables is given in the performance study in chapter 6.2.2, where their description would be
appropriate.

5.4.4 Services developed

The package WSProvider holds the services provided by the mobile Web Service
provider. As explained in the core architecture of the Mobile Host, the package can span across
multiple JAR files, which are mentioned before the deployment of the server on the mobile
terminal, where all, the server looks for the requested services. This is the package, which gives
the Mobile Host the capability of �dynamic deployment of services�. The class diagram of the
package is shown in Figure 5.9, with all the services developed for the mobile host as of now1.

All the services in the figure are visible to the Web Service requester (client) as a single
service provider with multiple public services, but as far as the implementation of the Mobile
Host is concerned, each service is a new Java class, whose first method is provided as the Web
Service. The name of the service matches with the name of a class in the WSProvider package.

1 Many other services were also developed, apart from the services shown in the figure, like the UserHandledGPS,
which asks for the user�s permission before providing the GPS details, and etc.

5. �SSNServer� � Mobile Web Service Provider

 59

Accesory

Accesory()
retSame()
main()

DirectoryService

DirectoryService()
list()
main()

GPSProvider

GPSProvider()
getGPS()

HelloWorld

HelloWorld()
sayHello()

PhotoService

PhotoService()
getImage()

StoredPhotoGPS

StoredPhotoGPS()
getStoredGPS()

TestRuntime
result : boolean
semaphore : Object
flag : boolean

TestRuntime()
runtimeTest()
showPopupDialog()
main()

ValidatePass

ValidatePass()
validate()
main()

gps

Figure 5.9: Class diagram of SSNHTTPServer package

An overview of each of the services is given below. Most of the services developed here
are very small and generally two to three of these services contribute for any application
development. Most of these services were required during the performance analysis for
concluding different results.

PhotoService (mobile picture service):
The service provides the pictures taken by the Smart Phone. The service requires the

name of the picture, under which it is stored in the file system of the Smart Phone, as
parameter. The images are then looked up in the file system. The identified images are then
Base64 encoded1 into ASCII streams and are returned as a byte stream.

DirectoryService:
The service provides the directory listing of the server file system as a string. The string

object can later be parsed to get the directory listing of the Smart Phone. For example, the
service returns all the images in a directory, if the directory name is given as parameter. The
response string can be processed later to get the different image names.

GPSProvider (GPS provisioning service):
The service provides the GPS (Global Positioning System) location-based data. GPS2 is

a satellite-based system, operated and maintained by the U.S. Department of Defence (DoD).
GPS provides accurate location and timing information to people worldwide. The system

1 Base64 encoding is performed on the images, to transfer them using HTTP protocol, which supports only ASCII
char streams. The Base64 encoding takes three bytes of data and represents them as four printable characters in the
ASCII standard. More details can be found at http://email.about.com/cs/standards/a/base64_encoding.htm
2 More details about GPS at http://www.montana.edu/places/gps/1Basic/index.html

5.4. Implementation details

 60

transmits radio signals that can be used by GPS receivers to calculate position, velocity and
time anywhere on earth, any time of day or night, in any kind of weather. The system has 24
satellites orbiting the earth, which give exact location of any point on earth. The system
provides different positioning details like longitude, latitude, altitude, and the time etc.

So, for providing the location details by the Mobile Host, the service uses a Socket GPS
receiver1, connected to the Smart Phone via Bluetooth. An Ericsson proprietary
BlueGpsLocator server component application written in c++ is installed on the Smart Phone.
This BlueGpsLocator application continuously reads the GPS data from the serial port of the
device, and returns the GPS data on port no 8180. The service on the Mobile Host uses a utility
class GpsReader, which reads the data returned by the BlueGpsLocator application on port
8180, and returns the data as a GpsData object. The service extracts the location details like
longitude, latitude, altitude, the speed, and the status of the device from the GpsData object,
and returns these details as a String object.

The class diagram of the utility classes used in this service is shown in Figure 5.10.

GpsData
longitude : String
latitude : String
altitude : String
speed : String
CONNECTED : int = 1
DISCONNECTED : int = 2
INVALID : int = 3
state : int

GpsData()
getAltitude()
getLatitude()
getLongitude()
getSpeed()
setAltitude()
setLatitude()
setLongitude()
setSpeed()
getState()
setState()

GPSProvider

GPSProvider()
getGPS()

(from WSProvider)

GpsReader
gps_host : String
gps_port : int
STANDARD_GPS_HOST : String
STANDARD_GPS_PORT : int = 8180

GpsReader()
GpsReader()
readGPSInfo()
main()

Figure 5.10: The utility classes of the GPSProvider service

StoredPhotoGPS:
The service returns the GPS data associated with the picture. The GPS data, i.e. the

location where the picture was taken with the Smart Phone, is stored along with the picture.
The service accesses these data and returns them to the WS requestor.

TestRuntime:

The service is used for switching between the tasks on the Smart Phone. The service
uses the TaskSwitch2 application installed on the Smart Phone.

1 Information of the GPS device is available at http://www.socketcom.com/product/GP0804-405.asp
2 The TaskSwitch is a Symbian proprietary application. More details about the product and its usage are available
at http://www.symbian.com/developer/downloads/java_util.html

5. �SSNServer� � Mobile Web Service Provider

 61

Accesory (Echo service):
The service echoes the string it receives as the input parameter. The service was

required during the performance analysis. More details are given in the performance analysis in
chapter 6.2.3.

ValidatePass:
The service is used for the authorization of the Web Service requestor. The service

verifies the username and password sent by the client.

HelloWorld:
This was a basic service used for the initial testing of the Mobile Host. The service just

greets upon providing the name.

5.4.5 Mobile Host GUI

The GUI for the Mobile Host developed and deployed on the Smart Phone is shown in
Figure 5.11. It has support for stopping and starting the server. The GUI displays the status of
the server and the deployed services on the mobile Web Service provider. The Mobile Host
also has support to remove the traces parameters, so as to conserve memory resources, as and
when necessary.

Figure 5.11: The Mobile Host GUI

5.4. Implementation details

 62

Summary:
 The chapter discussed the Java implementations available for the Smart Phones. Then it
discussed briefly the HTTP protocol and message formats. It later discussed the architectural
features of the Mobile Host and also addressed the implementation details and explained the
developed components.

5. �SSNServer� � Mobile Web Service Provider

 63

 64

6 Performance analysis
This chapter describes the performance analysis conducted in the mobile Web Service

environment with mobile terminals as Web Service clients and providers. It explains the
conducted experiments and the analysed results in detail.

6.1 Mobile terminal as Web Service Client
In order to evaluate whether Web Services could be used from a mobile device, a

simple request-response scenario is started, in which an application running on the mobile
device requests some data from an application server on the Internet. The performance of a
solution based on WS (SOAP) is compared with similar solutions based on other protocols
such as Java RMI or an optimised protocol implemented directly over TCP. The following
subsections give only a brief1 description of the study as much research was already completed
and this part of the thesis comprised only the study of the results.[18]

6.1.1 Test setup

The environmental setup for the mobile Web Service client experiment is shown in
Figure 6.1. The mobile TCP/IP connection between the test client and the test server is
deployed on top of a GPRS link into the mobile operator network. From there the traffic is
routed through the Internet to/from the server used to measure the performance.

Mobile
Operator
Mobile

Operator Internet

GPRS

Client Server

Mobile
Operator
Mobile

Operator Internet

GPRS

Client Server

Figure 6.1: The experimental setup for mobile Web Service client

 All tests were performed over a live GPRS network2 (Vodafone D2 in Germany). For
reference purposes, the same measurements as performed via the mobile connection have also
been performed via a fixed client-server connection (Ethernet LAN). The following protocols
were compared:

• SOAP over HTTP

• SOAP over HTTP with compression

• SOAP over TCP

• Java RMI

• Lightweight protocol running over TCP

1 The proprietary information of Ericsson, where the experiment was performed, deprives me from giving detailed
description
2 Generally this is the GPRS connection used throughout the tests explained in this chapter

6. Performance analysis

 65

The protocol, SOAP over HTTP with compression, offers an optional compression
using the gzip algorithm.[15][16] The SOAP over TCP is implemented only on the fixed link,
as the VB/C++ implementation is only for the full Windows platform.

Most of these protocols support persistent or non-persistent TCP connections. When
persistent connections are used, the same TCP connection is re-used for all requests and
responses within the same session. In the non-persistent case, a new TCP connection is opened
and closed for each request-response pair. Both cases were tested for the protocols that
supported these options.

6.1.2 Test cases

In order to have a stable base for the analysis, all requests have the same size. Each
request contains three parameters: one integer, one string and one floating-point number.
These parameters describe what the client requests from the server. They determine
respectively the number, type and size of the objects returned by the server.

Depending on the parameters of the request, the server�s response will contain the
number of objects (1, 10, 100 or 1000) of a given type (string, integer or float) and of a given
size (1, 10, 100 or 1000 characters for the strings and 1, 4 or 10 digits for the integers). These
combinations of sizes and types allow us to have a good coverage of the basic data types that
could be included in a message. The results obtained from these test cases allows to interpolate
or extrapolate the corresponding values for messages containing almost any number of integers
or strings of any length.

However, some combinations of parameters were excluded for the tests over GPRS.
For example, sending a response message containing 1000 strings of 1000 characters would
have generated too much traffic, especially since each measurement has to be repeated several
times in order to have statistically valid results. So for optimal results, the following test cases
were measured for all protocols over GPRS:

• Empty response (0 objects)
• 1 string of 1 character
• 1 string of 10 characters
• 1 string of 100 characters
• 1 string of 1000 characters
• 10 strings of 10 characters
• 10 strings of 100 characters
• 100 strings of 10 characters
• 1000 strings of 1 character
• 1 integer of 4 digits
• 10 integers of 4 digits
• 100 integers of 4 digits

6.1.3 Experimental results

The following subsection gives a brief description of the experimental results. The test
case �10 strings of 100 chars� is considered to be the optimal case and its results are described
in the following subsections.

6.1. Mobile terminal as Web Service Client

 66

6.1.3.1 Evaluation of the exchanged data

The following three charts (Figure 6.2, Figure 6.3, Figure 6.4) show how the total size
of the response evolves according to the size of the object transmitted or according to the
number of objects.

The first chart shows the size of the response containing one string of 1, 10, 100 or 1000
characters. The second chart shows the size of the response containing 1, 10, 100 or 1000
strings of 1 character each, while the third chart shows the sizes of the response containing1,
10, 100 or 1000 integers of 4 digits. By interpolating these values, it is possible to estimate
what would happen for messages containing an arbitrary number of objects of arbitrary sizes.

So by observing the charts it is clear that the results for SOAP are a little larger.
Overhead added by SOAP is very significant, if the message contains a large number of
objects. SOAP (which is based on XML) requires more bytes to encode its data compared to
protocols using binary data, such as Java RMI. This overhead is due to the structural mark-up
surrounding each object. So, Figure 6.3 shows that the size of SOAP response is very large
when compared to other protocols for test case with response of 1000 strings with 1 char each.
But the case is very rare in general applications.

Total Response Size, Strings

10
59

.8

10
76

11
96

24
49

99
8

10
21

11
44

23
97

93
6

83
8

96
1

22
14

75
6

76
9 86

9

18
59

68
4

58
3 68

8

16
73

66
.4

79
.8

21
3.

2

16
54

.5

27
8

28
7 37

7

12
77

72
.4

81
.4 17

1.
4

10
71

.4

0

500

1000

1500

2000

2500

1 String of
1 Char

1 String of
10 Chars

1 String of
100 Chars

1 String of
1000 Chars

Type of Content

R
es

po
ns

e
Si

ze
 [b

yt
es

]

SOAP/HTTP, Java (non-persistent)

SOAP/HTTP, VB/C++ (non-persistent)

SOAP/HTTP, VB/C++ (persistent)

SOAP/HTTP, VB/C++ (non-persistent, compressed)

SOAP/HTTP, VB/C++ (persistent, compressed)

JavaRMI, Java (persistent)

Optimized/TCP, C (non-persistent)

Optimized/TCP, C (persistent)

Figure 6.2: Response sizes for 1 string of different sizes

6. Performance analysis

 67

Total Response Size, Strings

10
59

.8 13
39

.1
1

99
8 11

86

26
78

93
6 10
00

24
95

75
6

79
1 10

01

29
51

68
4

60
7

88
5

28
31

66
.4 14
7.

6

60
1.

1

27
8

29
6 47

6

23
28

72
.4

90
.4 27

0.
4

21
22

.4

27
19

17
51

2.
2

17
45

1

17
35

3

47
93

.3
6

0

1000

2000

3000

4000

5000

6000

1 String of
1 Char

10 Strings of
1 Char

100 Strings of
1 Char

1000 Strings of
1 Char

Type of Content

R
es

po
ns

e
Si

ze
 [b

yt
es

]

SOAP/HTTP, Java (non-persistent)

SOAP/HTTP, VB/C++ (non-persistent)

SOAP/HTTP, VB/C++ (persistent)

SOAP/HTTP, VB/C++ (non-persistent, compressed)

SOAP/HTTP, VB/C++ (persistent, compressed)

JavaRMI, Java (persistent)

Optimized/TCP, C (non-persistent)

Optimized/TCP, C (persistent)

Figure 6.3: Response sizes for different no of stings of 1 char size

Total Response Size, Integers

10
57

12
35

.6

28
30

10
05

11
91

27
75

82
2

10
60

25
92

75
2 80

4

11
01

56
8 67

1

96
6

14
5

12
6

48
6

28
0 31
6

67
6

74
.4 11
0.

4

47
0.

4

0

500

1000

1500

2000

2500

3000

1 Integer of
4 Digits

10 Integers of
4 Digits

100 Integers of
4 Digits

Type of Content

Re
sp

on
se

 S
iz

e
[b

yt
es

]

SOAP/HTTP, Java (non-persistent)

SOAP/HTTP, VB/C++ (non-persistent)

SOAP/HTTP, VB/C++ (persistent)

SOAP/HTTP, VB/C++ (non-persistent, compressed)

SOAP/HTTP, VB/C++ (persistent, compressed)

JavaRMI, Java (persistent)

Optimized/TCP, C (non-persistent)

Optimized/TCP, C (persistent)

Figure 6.4: Response sizes for different no of Integers of 4 digits length

6.1. Mobile terminal as Web Service Client

 68

6.1.3.2 Response times

The total time for one complete round trip scenario comprises of the processing time for
SOAP serialization and de-serialization and the transmission time. The following Figure 6.5
gives the time divisions for the optimal case �10 strings of 100 chars�.

 The transmission time depends on the amount of data exchanged, but it also depends
very much on the number of round-trips required for opening and closing TCP connections.
The processing time for SOAP serialization and de-serialization was usually between 50ms and
200ms for the various types of messages that were tested. This means that the processing time
for encoding and decoding SOAP messages is less than 10% of the total time perceived by the
user.

Total Response Time for a Typical Request-Response
(Response: 10 random strings of 100 characters)

25
81

23
23

33
96

11
82

58
06 14

61

15
22

13
29

0.520 33 33

0.2184 58 55

0

1000

2000

3000

4000

5000

6000

7000

SOAP/HTTP, Java SOAP/HTTP, VB/C++ SOAP/HTTP compressed,
VB/C++

JavaRMI, Java Optimized/TCP, C

Ti
m

e
(m

s)

Transmission - TCP connections

Transmission - Data transmission + optional compression

Client processing - Deserialization

Client processing - Serialization

Figure 6.5: Total response times for the typical case

6.1.4 Observations

From the results observed in the previous subsection the following conclusions can be
drawn regarding feasibility of Smart Phones as mobile Web Service clients.

• It is possible to invoke Web Services from a mobile device. SOAP is good enough
because the overhead compared to other protocols is still small.

• The processing time is only a small fraction of the total time (< 10%).

• A significant part of this total time comes from the high latency of GPRS networks and
the time taken for opening and closing TCP connections

6. Performance analysis

 69

6.2 Mobile terminal as Web Service Provider
In the chapter 5 we had discussed the implementation details of the Mobile Host. Once

the Mobile Host was developed, it was extensively tested for performance issues like the
memory load, server-processing load etc. The following subsections describe the experiments
conducted and explain the results observed during this performance analysis of the Mobile
Host.

6.2.1 Test setup

The test setup for the mobile Web Service provider�s performance analysis is shown in
Figure 6.6. The mobile Web Service provider is developed and deployed on the P800 Smart
Phone. A standalone Axis1 client (The client can be any standard Web Service client) program
was developed, which accesses the Mobile Host as a Web Service requester. The client calls for
different services deployed on the Mobile Host and the performance of the Mobile Host is
observed, while the Mobile Host is processing the WS request. The client identifies and
addresses the services deployed on the Mobile Host by different means, described in detail in
chapter 3.2.2. The client used both the HSCSD and GPRS connections and the results were
observed.

Internet

Mobile Host WS Client

WS

GPRS / HSCSD
Internet

Mobile Host WS Client

WSWS

GPRS / HSCSD

Figure 6.6: The test setup for mobile Web Service provider

6.2.2 Traces architecture

The main intension of these tests was to observe the time division of the total
processing time of the Mobile Host for different activities of the server, like server processing
time and transmission time etc., from one complete cycle of the request-response scenario. For
this, timestamps2 were taken at different instances of processing a request and these timestamps
were observed for the delays caused by different activities later. Figure 6.7 shows different
operations performed during one complete cycle of a request response scenario across the time
axes.

1 Apache Axis is an implementation of the SOAP, which can generate Web Service requests. More details of the
implementation and API are available at http://ws.apache.org/axis/
2 These timestamps are taken using the method System.currentTimeMills() of PersonalJava. The method returns
the difference, measured in milliseconds, between the current time and midnight, January 1, 1970 UTC. So the
precision of these timestamps is to milliseconds.

6.2. Mobile terminal as Web Service Provider

 70

Client WS provider
Initiate WS call

TCP setup

Socket acceptedRequest transmission

Request stream read

SOAP deserialization

Response serialization

Request processing

Client processing

Response transmission

Client processing

End of WS call

Client WS provider
Initiate WS call

TCP setup

Socket acceptedRequest transmission

Request stream read

SOAP deserialization

Response serialization

Request processing

Client processing

Response transmission

Client processing

End of WS call

Figure 6.7: Operations performed during a request response scenario

 The client initiates the call for a service and prepares the SOAP request, with details
like the service name and input parameters etc., and then transmits the request to the mobile
Web Service provider by establishing a TCP connection. The WS provider then extracts the
SOAP request from the HTTP request message stream and deserializes the XML based SOAP
request stream to KSOAP�s SOAPEnvelope object. The WS provider then processes the
request and populates the response. The response is then serialized to XML data streams and
the response is transmitted to the client using the TCP setup already established. The client then
processes the response stream from the Mobile Host and the actual response of the service is
returned to the invoking client program.

 The request and response messages are transferred to the WS provider in the form of
TCP packets. So some delay could be caused for packet loss, TCP congestion control1 etc. The
delay is shown in the Figure 6.7 as the slanting lines for request and response transmission.
 If the request is a normal HTTP request then the SOAP de-serialization and response
serialization processes are bypassed at the mobile Web Service provider and the

1 More details about packet loss, TCP Congestion control can be found at [3]

6. Performance analysis

 71

communication is through standard HTTP request and response messages, as in standard web
server, described in chapter 5.2.1.
 During this complete request-response scenario, time stamps are taken at different
stages of the process execution. These values are stored in a Java class (Traces) as shown in
Figure 5.8 in the implementation details. The different instances, when timestamps are taken,
are given below.
Timestamps are taken

• After socket acceptation at the Mobile Host
• After request stream extraction
• After method diversion, which decides weather the request type is a WS request or

normal HTTP request.
• Before starting the Web Service request processing
• After the deserialization of the SOAP request
• Before starting the actual service (external1 or internal)
• After finishing the service
• After serializing the SOAP response
• Before loading the requested file for HTTP requests
• After the HTTP response message is prepared
• After the response transmission at the server

The timestamps taken while processing a request are stored in a Hashtable at the Mobile
Host, with a request ID, which is assigned for each request being processed. The Mobile Host
can later be requested for these trace parameters and the results can be observed for any
generalizations, at the client program. The client program, which generates the request, also has
the total timing for the complete request-response cycle.

The following subsections describe the tests conducted using the test setup in Figure 6.6
and the observed results.

6.2.3 Experiments & results

This subsection describes the different tests conducted with mobile Web Service
provider, developed and deployed on the Sony Ericsson P800 Smart Phone. The tests were
conducted with different services discussed in chapter 5.4.4, 'Services developed�. The main
services used for testing are the Mobile picture service and the GPS provisioning service.

The two2 services are selected for testing because of their specific uses for the
performance analysis of the Mobile Host. The first service, the Mobile picture service, returns
the pictures taken by the camera that is integrated in the Smart Phone. For this service, the
response size is very large (approximately 40kb) and this gives a large scope for the
observation of effects of different parameters like transmission delays, the encoding performed
on the response messages, the actual service delay etc. on the performance of Mobile Host. The
second service returns just a small string containing the GPS data as the response, which gives

1 The service that is accessing external devices for the service provisioning like the GPS provisioning service
which uses a Socket GPS receiver connected to the Smart Phone via Bluetooth
2 Apart from these two services, many other services were used for performance analysis, like the Accesory and
DirectoryService etc. The services are mentioned while discussing the respective tests.

6.2. Mobile terminal as Web Service Provider

 72

the scope for observing the behaviour of the Mobile Host under concurrent requests from
multiple clients, there by observing the robustness of the Mobile Host under the multithreaded
scenario.

All of the experiments were repeated several times1 in order to have statistically valid
results and the average values are analysed, mostly2.

Test cases for Mobile Picture service
 As explained earlier, the Mobile Picture service provides the pictures taken by the
Mobile Host. So for initial testing 15 different images were considered as test cases with sizes
ranging from 3kb to 93kb. The different images considered and their sizes are shown in Figure
6.8. The images are shown in Appendix A.

Sizes of test Images

3.26 5.45 7.95 9.74 12.9115.8120.72 23.2 28.3633.35
46.4249.84

73.77

92.81

51.29

0
10
20
30
40
50
60
70
80
90

100

Kath
ak

ali
.jp

g

taj
mah

al.
gif

mana
de

1.jp
g

pea
co

ck
.jp

g

su
ns

et.
jpg

sti
ge

rpo
nd

.jp
g

Bab
aJ

aiG
uru

Deo
Tem

ple
Agra

.jp
g
pee

e.j
pg

Rice
Farm

ing
Te

rra
ce

d.jp
g

San
ch

iG
ate

s.j
pg

Man
gro

wFo
res

t.jp
g

su
nd

erb
ans

8s
b.j

pg

Nala
nd

aR
uin

s.j
pg

taj
mah

al1
.gi

f

15
55

.jp
g

Image Names

Im
ag

e
Si

ze
s

 Size in KB

Figure 6.8: Test cases for the Mobile Picture service

 These pictures are generally1 used as the test cases for all those tests conducted with the
Mobile Picture service, which are explained in the following subsections.

1 Most of the experiments were repeated 5 times.
2 Especially for the Mobile picture service, the number of test cases is 15 and each experiment is repeated 5 times,
adding to 75 cases for an experiment. So, some of the experiments were analyzed with the best experimental
results instead of averages.

6. Performance analysis

 73

Comparison of WS and HTTP responses
 The Mobile Host was first tested with the mobile picture service for calculating the
SOAP processing delay of the server. For this the client generated requests for the test case
images shown in Figure 6.8, both as normal HTTP client and also as the standard Web Service
client. The difference between the two timings was calculated. The test was conducted using
both the HSCSD and GPRS connections explained earlier.

 The results showed a significant difference (approximately 20-25 % less time taken for
the HTTP request) between the two timings. The results for the test conducted with the HSCSD
connection are shown in Figure 6.9. The Figure 6.10 shows the SOAP processing % as the
difference between the two values.

Difference between SOAP and HTTP requests

75
80

10
13

5

11
93

7

14
88

2

17
74

6

22
71

2

25
05

6

30
29

3

35
02

0 47
65

8

51
27

4

52
78

6

74
39

7

97
09

0

55
08

69
58

0

59
51

6

39
20

7

38
51

5

35
47

1

26
84

9

22
83

3

19
09

8

17
17

5

13
51

9

11
44

6

92
43

83
12

61
29

43
66

0

20000

40000

60000

80000

100000

120000

Kath
ak

ali
.jp

g

taj
mah

al.
gif

man
ad

e1
.jp

g

pe
ac

oc
k.j

pg

su
ns

et.
jpg

sti
ge

rpo
nd

.jp
g

Bab
aJ

aiG
uru

Deo
Te

mple
Agra

.jp
g

pe
ee

.jp
g

Rice
Farm

ing
Terr

ac
ed

.jp
g

San
ch

iG
ate

s.j
pg

Man
gro

wFore
st.

jpg

su
nd

erb
an

s8
sb

.jp
g

Nala
nd

aR
uin

s.j
pg

taj
mah

al1
.gi

f

15
55

.jp
g

Image name

D
ur

at
io

n
in

 M
S

SOAP Duration HTTP Duration

Figure 6.9: Difference between the SOAP and HTTP requests

1 Some of the test cases like the images with 92.81 kb size are eliminated in some of the experiments like the
regression test where the server needs to process multiple threads, since this would have generated too much
traffic, especially since each measurement has to be repeated several times in order to have statistically valid
results.

6.2. Mobile terminal as Web Service Provider

 74

Difference between SOAP and HTTP requests

28.33

20

25.7224.88
25.57

23.33

24.6223.77
24.37

23.8123.08

22.5617.98
19.14

20.73

0

5

10

15

20

25

30

Kath
ak

ali
.jp

g

taj
mah

al.
gif

man
ad

e1
.jp

g

pe
ac

oc
k.j

pg

su
ns

et.
jpg

sti
ge

rpo
nd

.jp
g

Bab
aJ

aiG
uru

Deo
Tem

ple
Agra

.jp
g

pe
ee

.jp
g

Rice
Farm

ing
Terr

ac
ed

.jp
g

San
ch

iG
ate

s.j
pg

Man
gro

wFore
st.

jpg

su
nd

erb
an

s8
sb

.jp
g

Nala
nd

aR
uin

s.j
pg

taj
mah

al1
.gi

f

15
55

.jp
g

Image name

D
ur

at
io

n
in

 M
S

SOAP processing %

Figure 6.10: Difference between the SOAP and HTTP requests - 2

 In the initial study of the thesis, it was assumed that the difference between the WS and
HTTP timings was the actual SOAP processing delay of the Mobile Host. But later study
revealed that the SOAP overhead and the Base64 encoding performed on the images before
serialization and transmission of the response, has caused the size of the response to increase by
more than 50%, which caused an increase in the transmission delay of the response, there by
increasing the total time taken for the WS request processing at the Mobile Host.
The actual SOAP overhead caused to the size of the response is observed to be only 578 bytes.
To observe this, the client requested the Mobile Host for the Accesory service (Echo service)
explained in chapter 5.4.4, with single character as parameter. The service echoed the character
by encoding the result in SOAP envelope. The size of the total response stream was observed at
the server, just before transmission.

Delays caused by different activities on the Mobile Host
In order to identify the actual times taken for different activities on the Mobile Host like

SOAP deserialization, serialization, transmission etc., the mobile picture service was requested
by the client and the timestamps were taken as explained earlier. These timestamps were later
processed to get the delays caused by these activities at the Mobile Host. The test is conducted

6. Performance analysis

 75

using both the HSCSD connection and GPRS connection. The following Figure 6.11 shows the
time delays of different activities for the test case images in Figure 6.8, using the GPRS
connection.

Durations for activities

73
5

85
9

93
7

11
41

11
41

13
91

17
03

48
13

94 7 8 78 78 47 7 9 78

29
22

0

5000

10000

15000

20000

25000

30000

Ka th a kal i. jp
g

ta jm ah a l. g if

m a na d e 1 .jpg

p e aco ck . jp g

su n set .jp
g

s tig e rp o n d .jpg

Ba b a Ja iGuruD e oTem p leAg ra
p e ee .jp g

Image name s

D
ur

at
io

n
in

M
S

Total time at client Time at server S tream push at server

Durations for activities

0

50

100

150

200

250

300

350

Kat h
aka l i.jp

g

ta jmaha l .g if

m ana de1 .jp g

peacoc k.jp
g

s unse t. jp
g

s tige rpo
nd . jpg

Bab
aJa iGuruD eoT em ple

A gra peee .jpg

Im age nam e s

D
ur

at
io

n
in

 M
S

Reques t stream reding time Reques t processing time Deserialization SOAP Div ersion

Durations for activities

0

100

200

300

400

500

600

700

800

900

1000

K athak a l i .j p
g

ta jm aha l. g if

m ana de1 . jpg

peac oc k .jpg

s uns e t.jpg

s tige rpond .jp

B abaJ a iG uruD e oT em p leA gr
pe ee .jpg

Image names

Du
ra

tio
n

in
 M

S

Service tim e Serializat ion

Durations for activities

0

20000

40000

60000

80000

100000

120000

R iceF arm ing Te rra ce d j

S a n chiG a te s .jp

M a ng row For es t j p

s u n der ba ns8 sb. jp

N a la n daR u in s .jp

t a jm ah a l1 .g i f
15 55 .jpg

Image names

D
ur

at
io

n
in

M
S

Total time at client Time at server Stream push at server

Durations for activities

0

50

100

150

200

250

300

350

R ic eF arm
ingT erra

ced j

San ch iGate s.jp
g

Mang rowFores t.jp
g

s underbans 8sb.jpg

NalandaRuins.jp

ta jm ahal1 .g if

1555 .jpg

Im age nam es

Du
ra

tio
n

in
 M

S

Request stream reding time Reques t processing time Deserialization SOAP Diversion

Durations for activities

0

500

1000

1500

2000

2500

3000

3500

4000

R ic eFar ming Terra ce d j

S anc hiG at es .jp

M ang row Fo re s t. jp

s unde rban s 8s b. jp

Na landa Ru ins .jp

ta jm ahal1. g i f
15 5 5.jpg

Image names

Du
ra

tio
n

in
 M

S

Service time Serialization

Figure 6.11:Time delays of different activities of the Mobile Host processing

The time delays shown in Figure 6.11 were later analysed with the test case image sizes,
so as to get the dependence of these delays with the image sizes. The results are shown in
graphs in Figure 6.12. The graphs clearly show that the total times at client and server, the
stream push at the server, service time and serialization time are linearly increasing with the
size and the rest of the delays were almost negligible and were mostly constants.

6.2. Mobile terminal as Web Service Provider

 76

Analysis of activity durations

0

20000

40000

60000

80000

100000

120000

0 10 20 30 40 50 60 70 80 90 100

Size of the image

D
ur

at
io

n
in

 M
S

Total time at client Time at server

Stream push at server

Analysis of activity durations

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100
Size of the image

D
ur

at
io

n
in

 M
S

Request stream reding time Request processing time
Deserialization SOAP Diversion
Service time Serialization

Figure 6.12: Analysis of activity durations with respect to the image sizes

 The results of the test shown in the above Figure 6.11 suggest that time delays caused
by the SOAP deserialization, SOAP processing and the Serialization are almost negligible
when compared to the total processing time of the request. The results also suggest that most of
the time at the server is actually the response stream transmission delay of the Mobile Host. So
the total WS processing delay at the Mobile Host, as the combination of deserialization, SOAP
processing and serialization, is calculated to be only 2.5% (approximately) of the total time of
Mobile Host processing delay, rest all being the transmission delay. The Table 6.1 shows the
WS processing delay % of different images with respect to the total processing time of the
request.

6. Performance analysis

 77

Image name WS processing %

Kathakali.jpg 2.06
tajmahal.gif 2.18
manade1.jpg 2.37
peacock.jpg 3.11
sunset.jpg 2.5
stigerpond.jpg 1.98
BabaJaiGuru~1.jpg 2.31
peee.jpg 2.55
RiceFarming~1.jpg 1.98
SanchiGates.jpg 2.34
MangrowForest.jpg 2.37
Sunderbans8sb.jpg 2.08
NalandaRuins.jpg 2.11
tajmahal1.gif 2.13
1555.jpg 2.56 WS Processing %

0 0.5 1 1.5 2 2.5 3 3.5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Im
ag

es

Table 6.1: WS processing % of the total processing time of the request

 The tests described above all showed that the total SOAP processing time of the Mobile
Host is very small (almost negligible with respect to the total time). All the above experiments
were conducted with mobile photo service, where the transmission time was very high because
of the large (approximately 60 kb) response stream for the service. So to observe the Mobile
Host�s performance with reasonable small services the following tests were conducted with
GPS provisioning service. The response of the service is few KB and the time delays of
different activities can be observed clearly.
 With the GPS provisioning service explained earlier, the Mobile Host returned the GPS
location based data of the mobile terminal as a String. The test was conducted using both the
HSCSD connection and GRPS connection for addressing the mobile terminal from the client.
The following Figure 6.13 shows the observed time delays for different activities at the Mobile
Host for the GPS provisioning service. The results shown in Figure 6.13 are for the GPRS
connection.

6.2. Mobile terminal as Web Service Provider

 78

Durations for activities

5300

1719

219
47

297
47

250 203 94
0

1000

2000

3000

4000

5000

6000

 No Threads

D
ur

at
io

n
in

 M
S

Total time at client
Time at server
Request stream reding time
Request processing time
Deserialization
SOAP Diversion
Service time
Serialization
Stream push at server

Figure 6.13: Time delays for the GPS provisioning services

 The results showed in the Figure 6.13 suggest that the total SOAP processing time at the
Mobile Host is still very small when compared to total request processing time. The mobile
Web Service provider took 5.6%, 3.8%, and 10.3% of the total time for the deserialization
delay, serialization delay and total SOAP processing of the Mobile Host respectively.

Concurrent access of the Mobile Host
 Until now we had discussed different tests conducted with the single threaded case,
where only one client is accessing the mobile Web Service provider at any particular instance.
Only after a Web Service request to the Mobile Host is completely processed, the client
generates another request.

Once the Mobile Host was successfully tested with the single threaded case, whose
results showed that the actual processing delay caused by the Mobile Host is very small with
respect to the total time, the service provider was subjected to regression testing with parallel
clients.

 For the regression testing, different WS clients concurrently accessed the Mobile Host
for the deployed services. For that a client program was developed with Java threaded1 support,

1 A thread is a process of execution in a program. Java has extensive support for multithreading. The JVM allows
an application to have multiple threads of execution running concurrently. More details at
http://www.java.sun.com

6. Performance analysis

 79

with each thread requesting for a service in parallel to other threads. The basic scenario of the
test is still the same as shown in Figure 6.6.
 The test was conducted with both the connection types, HSCSD and GPRS. The client
accessed for the mobile picture service, with the test case images shown in Figure 6.8, by
generating parallel threads. Each thread requests for all of the 15 images of test case images by
generating WS requests one after the other. The test was successful with parallel threads up to 3
threads. For more number of threads the test failed. Further study of the results revealed the
reasons for the failure of the test with more than 3 threads:

• Because of the threads, some requests failed as the Mobile Host could not accept
sockets for those requests, which were generated simultaneously (For example 4
simultaneous requests generated and the server could accept only 2 sockets at that time.
So the other two requests failed). Keeping a pool for the incoming requests and
processing sequentially using LIFO1 (Last In First Out) or FIFO2 (First In First Out)
algorithms could eliminate the problem. But this would increase the load on server just
to maintain these request pools. In General, the client would generate a new request, if
the request is not processed in some standard time, there by increasing the number of
unnecessary requests in the pool, and there by affecting the performance of the server.

• Each socket is set with timeout of 5 seconds. With this parameter set for the socket, a
read call on the Input Stream associated with this Socket will block for only this amount
of time. If the timeout expires, a java.net.SocketTimeoutException is raised, though the
Socket is still valid. So which ever thread could not start its output stream writing in 5
seconds terminated the connection with the client and the request failed for that test
case. Removing the socket timeout could have eliminated the problem, but this could
have made some of threads just wait for the read (IO) requests and would never
terminate. This would have given us invalid results during the performance study.

• Some requests for the Traces also failed as they were also racing with the test case
thread requests. Generating the Trace requests at the end of the test could have
eliminated the problem. But as discussed earlier the traces are stored at the server until
requested. So this would increase the memory load at the server and there by would
affect Mobile Host performance. Also, once the Trace is requested the Trace is removed
form the server memory. So the Trace requests are generated along with the normal WS
requests, of course at the end of each thread, as this would free some resources for the
server.

 The experimental results for the test with mobile picture service, had not given us a
clear picture of the actual Mobile Host�s server performance issues (like deserialization time,
serialization time etc) under the regression test, as we had already discussed, the transmission
time itself was taking more than 97% of the total request time for the single threaded requests.
And this percentage increased under threaded case as most of the time the Mobile Host was just
transmitting the data, so the other parameters could not be observed clearly. So for this, the test
was repeated with the GPS positioning service. For this service the test was successful up to 10
parallel threads.

1 The algorithm used in generic Stack data structure
2 The algorithm used in generic Queue data structure

6.2. Mobile terminal as Web Service Provider

 80

 The following Figure 6.14 gives the time delays for different activities at the Mobile
Host for the GPS provisioning service under multithreaded scenario, for the fastest thread of 10
parallel threads generating the GPS data request. The results shown are for the test conducted
using the GPRS connection.

Durations for activities

9494

5094

391
109 62 125

4282

62 234

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T8

Thread Name

D
ur

at
io

n
in

 M
S

Total time at client
Time at server
Request stream reding time
Request processing time
Deserialization
SOAP Diversion
Service time
Serialization
Stream push at server

Figure 6.14: Time delays for the GPS provisioning services, shown for the fastest of 10 parallel

threads

 The results shown above, when compared with single threaded case results shown in
Figure 6.13, suggest that there is not much difference for the time delays for different activities
of the Mobile Host between the single threaded and the multithreaded cases. The only drastic
difference being at the actual service delay i.e. the threaded case took 4282 milliseconds to
access GPS data from the device, where as the single thread case took only 250 milliseconds.
So the results suggested that the multi threading had affected the Mobile Host�s ability to
access it�s resources like the file system and external devices to a great extent. The observation
of the time divisions for all the 10 threads is shown in Figure 6.15.

6. Performance analysis

 81

62 94 78 218 94 94 93 94 47 93

42
82

37
04 57

81

97
35

94
06

97
82

98
44

10
32

8

21
37

5

21
42

2

62 32 46 31 47

46 15

48
54

60
75

65
65

53
55

68
04 72
66 78
25 84

67

72
20

80
45

47

1562

157188

140298140234172

141

234234

0

5000

10000

15000

20000

25000

30000

T8 T7 T2 T4 T9 T0 T6 T1 T3 T5Thread Name

D
ur

at
io

n
in

 M
S

Transmission time (SOAP)
Total server processing time
Serialization time
Actual service time
Deserialization time

Figure 6.15: Time delays for the GPS provisioning services, 10 parallel threads

The observation of results in the Figure 6.15, gives more strength to the statement
discussed above that the threads are affecting the Mobile Host�s ability to access external
devices. All the threads were just delayed because of the GPS provider device connected to the
Mobile Host via Bluetooth.
 The observation of the results also suggests that the mobile terminal maintains a queue
for different threads for the access to external devices, as there were some sorts of jumps
(observe first three threads, next 5 threads, last 2 threads) for actual service time, clearly shown
in Figure 6.15.
 For more than 10 threads, some of the requests failed at the Mobile Host. The reasons
discussed for the mobile picture service are applicable also for the failure of this test.

Comparison of GPRS and HSCSD connections

 As we had already discussed, most of the time of the total communication is for the
transmission. So the server processing can be improved by increasing the bandwidth of the
transmission. As discussed earlier with GPRS the transfer rate is more than with HSCSD. So to
observe the affect of connection used on the total time for the request processing, the results of
the mobile picture service test, for single threaded case, using both the GPRS and HSCSD
connections are compared. The Figure 6.16 shows the comparison results.

6.2. Mobile terminal as Web Service Provider

 82

Comparision of GPRS and HSCSD connections

54
.81

67
.62

56
.98

39

55
.25

51
.32

49
.84

66
.52

61
.89

50
.4766
.64

49
.648
.37

45
.3245
.2

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Kath
ak

ali
.jp

g

taj
mah

al.
gif

man
ad

e1
.jp

g

pe
ac

oc
k.j

pg

su
ns

et.
jpg

sti
ge

rpo
nd

.jp
g

Bab
aJ

aiG
uru

Deo
Tem

ple
Agra

.jp
g

pe
ee

.jp
g

Rice
Farm

ing
Terr

ac
ed

.jp
g

San
ch

iG
ate

s.j
pg

Man
gro

wFore
st.

jpg

su
nd

erb
an

s8
sb

.jp
g

Nala
nd

aR
uin

s.j
pg

taj
mah

al1
.gi

f

15
55

.jp
g

Image names

D
ur

at
io

n
in

 M
S

SOAP time at client CS SOAP time at client GPRS
% diff at client WRT GPRS

a

Figure 6.16: Comparison of total request processing time, for GPRS and HSCSD connections

The observation of above results suggests that there is a 55% (approximately) increase
in total time for the request processing for the HSCSD connection with respect to the GPRS
connection. The results were obvious as there was approximately 60% increase in transmission
time, which contributes approximately 95% of the total time.

But the results showed above were sceptical, as the difference between the GPRS and
HSCSD are not very significant as expected (Expected reduction in time in for GPRS
connection to be 3 to 4 times less than that of HSCSD connection, as the HSCSD transmission
rate is 28.8 kbps where as GPRS transmission rates can, theoretically, reach up to 144 kbps). So
the tests were repeated many times predicting that the GPRS network to be busy as the same
channels can be shared by many users.

The thorough study later revealed that the P800 Smart Phone, used for testing, is a
�Type 4+1�1 GPRS mobile phone, which means that it has four downlink channels and one
uplink data transmission channel. So the transmission rate we were getting is only 1/5th
(approximately, as there could other reasons effecting the transmission rate) of the total
transmission rate possible.

1 More details about GPRS phone types and transmission rates are available at http://www.cellular-
news.com/gprs/what_is_gprs.shtml

6. Performance analysis

 83

So, the best feature the Smart Phone had for ordinary case was a big liability for the
study, obviously, as the scenario we are considering is complete reverse of general case, since
the Mobile Host usually sends more data than it receives.

Memory load of Mobile Host
Apart from the time division for different activities of the total processing time of the

request, during the thesis study, the memory load of Mobile Host was also checked. But, there
was no generic tool support for Smart Phones, giving the details of memory usage of the Smart
Phone at a particular instance.

Most of these tests discussed here, depended on the Java Runtime support for the
amount of free memory and memory load of the Smart Phone. But this value is not a constant
as the memory used by the JVM changes with activities like garbage collection1 and as the
sandbox of the JVM changes depending on the requirements. So at any instance we can get
only the amount of memory that is free of the total memory used by JVM.

Before considering more details about the memory load of Mobile Host, we briefly
discuss the behaviour of JVM memory management.

• When a JVM is invoked to run an application, it will ask the operating system for
enough memory to run the JVM itself and some free memory for the application to
create new objects and variables.

• When a new object is created, the JVM will allocate memory for that object out of the
free memory area.

• When the free memory area is getting too small, the JVM will ask the operating system
for more memory.

• When an object is no longer used by the application, it will be destroyed. Its memory
will be freed up and merged back to the free memory area (Garbage collection).

• When the free memory area is used up, and there is no more additional memory
available from the operating system, the JVM will stop the application and issue the
"Out of memory error".

To get the memory load, the Mobile Host was provided with the task manager support,
as discussed earlier in chapter 5.4.3, which gives the details of the memory usage (free memory
and total memory) of the Smart Phone with respect to the JVM and these details were observed
through out the span of different tests explained in this chapter.

The observation of these details suggested that, there was no problem for the Mobile
Host with memory usage, as most of the time, the amount of free memory is at least 20% of the
total memory allocated for the JVM and the �Out of Memory error� was never encountered
during the execution of the tests.

1 Garbage collection frees memory, by removing variables and finalizing the objects with out any reference in the
JVM. More details about the Java Garbage collection at http://www.javaworld.com/javaworld/jw-08-1996/jw-08-
gc.html

6.2. Mobile terminal as Web Service Provider

 84

So, memory load was not a big problem for the performance of Mobile Host, as this is
mainly handled by the JVM implementations provided for the Smart Phones and cannot be
controlled directly.

6.2.4 Observations

From the results observed in the previous subsection the following conclusions can be
drawn about the mobile Web Service providers.

• It is possible to have Web Services providers on a Smart Phone.

• The total processing time at the Mobile Host is only a small fraction of the total time (<
10%).

• The Mobile Host can process concurrent requests (approximately 10 parallel requests)
for reasonable services.

• Concurrent access can affect the Mobile Host�s ability to access internal and external
resources.

• Increasing the transmission rates can increase the processing capability of the Mobile
Host.

• The GPRS mobile phone type is affecting the maximum possible transmission rate for
the Mobile Host, as the Smart Phones are allowing more transmission rates for
downlink when compared to uplink.

• Generally, memory load was not a problem for the Mobile Host.

Summary:
The chapter described the performance analysis conducted in the mobile Web Services

environment with mobile terminals as Web Service clients and providers. The chapter first
discussed the research conducted with mobile terminal as Web Service client, where it
explained the conducted experiments and analysed the results. The chapter then discussed the
test setup for mobile terminal as Web Service provider and discussed the experiments and the
results in detail. The chapter addressed different performance issues of the developed Mobile
Host.

6. Performance analysis

 85

 86

7 Future research directions
The thesis study had successfully proved the feasibility of mobile terminals in Web

Service domain as both Web Service providers and Web Service clients. This leaves us with a
large scope for new research of Web Services in mobile domain and also studies of new
domains for wireless networks. The following chapter gives a brief description of different
areas, where the research can further be extended.

7.1 Proxy architecture
In the previous chapters, we had seen different means of communication with the

mobile Web Service provider for the provided services. The architectures we discussed earlier
gives scope for a proxy, which could be similar to normal HTTP proxy handling security,
Authentication and congestion control etc. With the incorporation of such a proxy the
operational setup of the Mobile Host would be as shown in Figure 7.1.

Internet

WS ClientMobile Host

WS

Proxy

Authentication,
security &
performance

WS Provider

Internet

WS ClientMobile Host

WS

Proxy

Authentication,
security &
performance

Internet

WS ClientWS ClientWS ClientMobile Host

WS

Mobile Host

WSWS

Proxy

Authentication,
security &
performance

ProxyProxy

Authentication,
security &
performance

WS Provider

Figure 7.1: The operational setup of Mobile Host with proxy

The proxy can be programmed to handle security issues of the service provider like
authentication, encryption etc., before passing the client request to the Mobile Host, there by
making the Mobile Host fool-proof even in the commercial environments. The proxy can also
help in congestion control for example by allowing only a specific number of input requests at
any instance, there by increasing the robustness of the Mobile Host.

The proxy can be implemented either on the Smart Phone itself, or it can be
implemented on some intermediate terminal as an individual component. In the first case the
proxy behavioural issues can be deployed as services on the Mobile Host. In such a case the
proxy services will be executed before handling the actual service request of the WS client.

The introduction of the proxy might require for new ways of identifying and addressing
the Web Services deployed on the Smart Phone.

7.2 BEEP for SOAP message transmission
In chapter 2.1.2.3, while discussing the SOAP, we stated that SOAP messages could be

exchanged not only with HTTP but also with other protocols like FTP and BEEP etc. The
following Figure 7.2 clearly shows SOAP over different possible protocols.

7. Future research directions

 87

Application

SOAP

BEEPFTPHTTP

TCP

IP

UDP

Other
protocols

Blue-
tooth

UMTSGPRS

ApplicationApplication

SOAPSOAP

BEEPBEEPFTPFTPHTTPHTTP

TCP

IPIP

UDP

Other
protocols

Blue-
tooth
Blue-
tooth

UMTSUMTSGPRSGPRS

Figure 7.2: SOAP over different protocols

 BEEP is an integrated collection of building blocks that gives you "best in class" data
transmission solutions for everything from framing to security. Whether you're writing a simple
"fetch" client/server application or a multi-threaded peer-to-peer relaying system, BEEP
provides the necessary functionality without extra overhead. Different groups are already using
BEEP for SOAP exchanges for desktop Web Services.

A good comparison of SOAP over BEEP and SOAP over HTTP is available at
http://www.xml.com/pub/a/2002/10/16/ends.html. The thesis study mainly considered only
SOAP over HTTP. The feasibility of SOAP over BEEP for the Smart Phones is to be checked.
The specification for SOAP over BEEP is available at http://www.ietf.org/rfc/rfc3288.txt.

Others areas
The successful implementation of Web Service provider on Smart Phone also gives

scope for new distributed architectures for Smart Phones, there-by making new payment
methodologies, new modes of communication between the mobiles etc. in the wireless
networks. Much research is yet to be done in this direction.

The thesis also suggested that much of the delay of a request processing is the
transmission delay. The thesis identified some reasons for the transmission delay. Some
research is still to be done, to eliminate these known problems or come up with different
solutions for the Smart Phones used in Web Services domain.

The thesis introduced many applications with the Mobile Host. There could still be
numerous possible applications of such a Mobile Host developed for Smart Phones, in different
domains. Much research is yet to done. For example, we had already discussed the Mobile
Host�s scope in mobile gaming domain, where the feasibility is yet to be checked.

Summary:
The chapter described different areas opening further research potential.

 88

8 Conclusion
Within the thesis, the usage and feasibility of mobile terminals in the Web Services

domain as both Web Service requestors and Web Service providers, was studied. The thesis
also addressed different methods and architectures for identifying and addressing the Web
Services deployed on the mobile Web Service provider, once it is deployed on the Smart Phone
in a mobile network.

The thesis also realized a standard mobile Web Service provider (�Mobile Host�) for
the Smart Phones. For the performance analysis of the Mobile Host, different services like
mobile photo service and GPS data provisioning service were also developed. These services
proved the feasibility of the Mobile Host even under concurrent access of multiple Web Service
requestors.

The performance analysis of the Smart Phone, with both the mobile Web Service client
and the mobile Web Service provider suggested that the actual Web Service Request
processing time of the Smart Phone is only a small fraction of the total request processing time
observed by the client.

 The thesis also addressed the future research directions for the mobile Web Services.

 The following items summarize the findings of the thesis.

• It is feasible to have mobile terminals in the Web Services domain as service clients.

The study addressed this issue and the performance analysis of such a Web
Service client was compared with other standard protocols like Java RMI. The details
are provided in chapter 6.1.

• It is also possible to deploy Web Services on the mobile terminal, i.e. it is feasible to
have a Web Service provider on a Smart Phone.

To check the feasibility of this, the thesis realized a standard mobile Web
Service provider (�Mobile Host�) for the Smart Phones. The implementation details of
this Mobile Host are discussed in chapter 5.4.

• In both the cases, mobile Web Service clients and mobile Web Service providers, the
total duration of processing at the Smart Phone is only a small fraction of the total
request processing time.

The actual processing time at the Smart Phone is observed to be only a small
fraction of the total time (< 10 %). More details are provided in the performance
analysis of both mobile Web Service client and Mobile Host in chapter 6.

• The Mobile Host can also process concurrent client requests.

The Mobile Host realised during study, processed concurrent requests
successfully. The details about the number of successful concurrent requests and the

9. Conclusion

 89

reasons for failure beyond this number are explained in detail in �concurrent access of
the Mobile Host� subsection of chapter 6.2.3.

• The Mobile Host on Smart Phones promises a new domain of applications, with
applications possible in mobile gaming, transportation & logistics etc.

Chapter 4 discusses the possible use cases with the Mobile Host. The thesis also
realised some of the applications discussed, like mobile photo album service and
location data provisioning service. These services were used for the performance
analysis of the Mobile Host.

• The Mobile Host paves way for new distributed architectures in the mobile
environment.

The successful implementation of Web Service provider on Smart Phone also
gives scope for new distributed architectures for Smart Phones, there-by making new
payment methodologies, new modes of communication between the mobiles etc. in the
wireless networks. Much research is yet to be done in this area. Chapter 7 discusses
many other areas, apart from this, where the research can further be extended.

• The Web Services deployed on the Smart Phones can be addressed and accessed from
Internet using different methodologies explained as in chapter 3.2.2.

Once a Web Service is developed & deployed with the Web Service provider
developed on a mobile terminal, the mobile terminal, that is registered and connected
within the mobile operator network, requires some means of identification and
addressing, that allows the Web Service to be accessible also from outside the mobile
network operator�s network domain. The thesis identified different methodologies and
these are explained in detail in chapter 3.2.2.

 90

LIST OF FIGURES

Figure 2.1: Basic operational relationships between Web Service components..........................9
Figure 2.2: Activity diagrams of service provider and service requestor..................................11
Figure 2.3: SOAP message structure...12
Figure 2.4: The structure of WSDL document ..17
Figure 2.5: Relationships of UDDI data structures ..21
Figure 2.6: The SoapObject structure of a parsed SOAP message[9].......................................26

Figure 3.1: Basic architectural setup of mobile Web Service client ...28
Figure 3.2: Basic architectural setup of Mobile Host...29
Figure 3.3: Architecture for an end-to-end TCP/IP connection between the mobile terminal and
the prototyping network..30
Figure 3.4: The operational setup of Mobile Web Service provider in a live GPRS environment
...32
Figure 3.5: The operational setup of Mobile Web Service provider...32
Figure 3.6: The architectural setup of Virtual mobile Web Service provider34
Figure 3.7: The architecture for identifying IP at NAT translation ..35
Figure 3.8: The architecture for identifying IP with session maintenance36

Figure 4.1: The mobile photo album service scenario ...39
Figure 4.2: The Mobile Host used in Journalism scenario ...40
Figure 4.3: Scenario with Mobile Host in ad-hoc mobile gaming environment........................41
Figure 4.4: Mobile Host used in traffic control systems ..42
Figure 4.5: Guided parcel service scenario..43

Figure 5.1: Architecture of Java 2 Platform [7] ...47
Figure 5.2: General format of HTTP request message...50
Figure 5.3: General format of HTTP response message ..51
Figure 5.4: Core architecture of the Mobile Host ..52
Figure 5.5: Activity diagram showing the core Mobile Host functionality...............................54
Figure 5.6: The packages of the Mobile Host..55
Figure 5.7: Class diagram of SSNHTTPServer package..56
Figure 5.8: Timers class holding the trace parameters of the Mobile Host58
Figure 5.9: Class diagram of SSNHTTPServer package..59
Figure 5.10: The utility classes of the GPSProvider service ..60
Figure 5.11: The Mobile Host GUI...61

Figure 6.1: The experimental setup for mobile Web Service client..64
Figure 6.2: Response sizes for 1 string of different sizes ...66
Figure 6.3: Response sizes for different no of stings of 1 char size..67
Figure 6.4: Response sizes for different no of Integers of 4 digits length.................................67
Figure 6.5: Total response times for the typical case ...68
Figure 6.6: The test setup for mobile Web Service provider ..69
Figure 6.7: Operations performed during a request response scenario70

List of figures

 91

Figure 6.8: Test cases for the Mobile Picture service ..72
Figure 6.9: Difference between the SOAP and HTTP requests..73
Figure 6.10: Difference between the SOAP and HTTP requests - 2...74
Figure 6.11:Time delays of different activities of the Mobile Host processing75
Figure 6.12: Analysis of activity durations with respect to the image sizes..............................76
Figure 6.13: Time delays for the GPS provisioning services ...78
Figure 6.14: Time delays for the GPS provisioning services, shown for the fastest of 10 parallel
threads..80
Figure 6.15: Time delays for the GPS provisioning services, 10 parallel threads81
Figure 6.16: Comparison of total request processing time, for GPRS and HSCSD connections
...82

Figure 7.1: The operational setup of Mobile Host with proxy..86
Figure 7.2: SOAP over different protocols ..87

 92

LIST OF TABLES

Table 2.1: Default data type mapping of kSOAP...25

Table 4.1: Summary of different possible use cases of Mobile Host..44

Table 6.1: WS processing % of the total processing time of the request77

List of tables

 93

 94

Appendix A - Test case images

1555.jpg (92.81Kb)

BabaJaiGuruDeo
TempleAgra.jpg

(20.72 Kb)

Kathakali.jpg (3.26 Kb)

manade1.jpg (7.95 Kb)

MangrowForest.jpg
(46.42 Kb)

NalandaRuins.jpg

(51.29 Kb)

peacock.jpg (9.74 Kb)

peee.jpg (23.2 Kb)

RiceFarming

Terraced.jpg (28.36 Kb)

SanchiGates.jpg

(33.35 Kb)

stigerpond.jpg

(15.81 Kb)

sunderbans8sb.jpg

(49.84 Kb)

Appendix A

 95

sunset.jpg (12.91 Kb)

tajmahal.gif (5.45 Kb)

tajmahal1.gif

(73.77 Kb)

 96

Appendix B � Some facts and findings

The thesis realized the Mobile Host, where different services can be deployed. For the
demonstration of the thesis a standard mobile picture service was developed, that also included
the location-based data (GPS data), which provided the exact location (as a map), where the
picture was taken. The following subsection gives a brief description of the effort taken.

• The Mobile Host was implemented in PersonalJava, and took approximately 3500 lines
of coding (Lok).

• The demo application was developed in swing and took approximately 1000 Lok.

• The utility classes used in the performance analysis were all Java components, requiring
approximately 7000 Lok.

• The Mobile Host was tested in real time for more than 100 hrs successfully.

• Approximately 200 data traces were taken under different conditions and were analyzed
to reach the experimental results (including all the experiments).

• The Mobile Host was added as an additional component in different projects at
Ericsson, where the thesis was performed.

• Further research is being continued at Ericsson research in the domains like Over The
Air (OTA) deployment, different possible applications with Mobile Host like Location
Based Services (LBS) etc.

Appendix B

 97

 98

BIBLIOGRAPHY

[1] Steve Graham, Simon Simeonov, Toufic Boubez, Doug Davis, Glen Daniels, Yuichi

Nakamura, Ryo Neyama:
Building Web Services with Java
SAMS 2002.

[2] Jeames Snell, Doug Tidwell, Powell kulchenko:
Programming Web Services with SOAP
O�Reilly, 2002

[3] James F.Kurose, Keith W. Ross:
Computer Networking, A top-down approach featuring the Internet
Addison Wesley, 2001

[4] SOAP, Simple Object Access Protocol, version 1.1
 http://www.w3.org/TR/SOAP

[5] WSDL, Web Services Description Language, version 1.1
http://www.w3.org/TR/wsdl

[6] HTTP, Hypertext Transfer Protocol version 1.1, IETF RFC 2616
http://www.ietf.org/rfc/rfc2616.txt

[7] �An introduction to J2ME TM development� from Sun TM Tech Days a Developer
Conference

[8] �J2ME building blocks for Mobile Devices�, a white paper on KVM and CLDC by
SUN Microsystems

[9] Micheal Juntao Yuan:
 �Access Web services from wireless devices�
Java World online article, August 2002
http://www.javaworld.com/javaworld/jw-08-2002/jw-0823-wireless.html

[10] kXML online documentation at
http://kxml.enhydra.org/project/aboutProject/index.html

[11] A quick introduction to XML at
http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/overview/1_xml.html

[12] �Java support in Sony Ericsson mobile phones P800 and P802�, January 2003
Developer guidelines from Sony Ericsson Mobile Communications AB,
www.SonyEricssonMobile.com

[13] Using SOAP in BEEP, IETF RFC 3288
http://www.ietf.org/rfc/rfc3288.txt

[14] kSOAP, a SOAP implementation for Java 2 Microedition
http://ksoap.enhydra.org/

Bibliography

 99

[15] Gzip file format specification, IETF RFC 1952
http://www.ietf.org/rfc/rfc1952.txt

[16] Deflate compressed data format specification, IETF RFC 1951
http://www.ietf.org/rfc/rfc1951.txt

[17] W3Cschool Tutorials
SOAP tutorial
http://www.w3schools.com/soap/

[18] �Quick study on Mobile Web Services Performance� at
http://research.eed.ericsson.se/projects/

[19] Chen & Meixell :
Web Services Enabled Procurement in the Extended Enterprise,
http://www.csulb.edu/web/journals/jecr/issues/20034/Paper2.pdf

[20] Sotamaa, Olli 2002. �All The World's A Botfighters Stage: Notes on Location-Based
Multi-User Gaming�. In Frans Mäyrä (ed) Computer Games and Digital Cultures:
Conference Proceedings. Tampere: Tampere University Press.

