
Scalable Mobile Web Services Mediation Framework

Satish Srirama, Eero Vainikko, Vladimir Šor
Distributed Systems group

Institute of Computer Science, University of Tartu
J. Liivi 2, Tartu, Estonia

{srirama, eero, volli}@ut.ee

Matthias Jarke
Information Systems and Databases Group

RWTH Aachen University
Ahornstr. 55, 52056 Aachen, Germany

jarke@dbis.rwth-aachen.de

Abstract— Web services are going mobile. A Mobile Enterprise

can be established in a cellular network by participating

Mobile Hosts, which act as web service providers, and their

clients. Mobile Hosts enable seamless integration of user-

specific services to the enterprise, by following web service

standards, also on the radio link and via resource constrained

smart phones. However, establishing such a Mobile Enterprise

poses several technical challenges, like the quality of service

(QoS) and discovery aspects, for the network and as well as for

mobile phone users. The paper summarizes the challenges and

research in this domain, along with our developed mobile web

service mediation framework (MWSMF). We used a cloud

computing infrastructure to setup one possible load balancing

solution and also conducted number of tests to show that

MWSMF is horizontally scalable. We also showed that

elasticity of cloud platform provides a quick and easy manner

to meet the load requirements of Mobile Enterprise.

Keywords: Mobile web services, Mobile Host, Mobile

Enterprise, cloud computing, QoS and enterprise service bus

I. INTRODUCTION

Mobile data services in tandem with web services [8] are
seemingly the path breaking domain in current information
systems research. In mobile web services domain, the
resource constrained smart phones are used as both web
service clients and providers (Mobile Host). Mobile
terminals accessing the web services cater for anytime and
anywhere access to services. Some interesting mobile web
service applications are the provisioning of services like e-
mail, information search, language translation, company
news etc. for employees who travel regularly. There are also
many public web services like the weather forecast, stock
quotes etc. accessible from smart phones. Mobile web
service clients are also significant in the geospatial and
location based services [4]. While mobile web service clients
are common, the scope of mobile web service provisioning
(MWSP) was studied at RWTH Aachen University since
2003 [17], where Mobile Hosts were developed, capable of
providing basic web services from smart phones. Mobile
web service clients and the Mobile Hosts in a cellular
network, together form a Mobile Enterprise.

Mobile Hosts enable seamless integration of user-specific
services to the enterprise, by following standard web service
interfaces and standards also on the radio link. Moreover,
services provided by the Mobile Host can be integrated with
larger enterprise services bringing added value to these

services. For example, services can be provided to the
mobile user based on his up-to-date user context. Context
details like device and network capabilities, location details
etc. can be obtained from the mobile at runtime and can be
used in providing most relevant services like maps specific
to devices and location information. Besides, Mobile Hosts
can collaborate among themselves in scenarios like
Collaborative Journalism and Mobile Host Co-learn System
and bring value to the enterprise. [16]

Once the Mobile Host was developed, an extensive
performance analysis was conducted to prove its technical
feasibility [17]. While service delivery and management
from Mobile Host were thus shown technically feasible, the
ability to provide proper quality of service (QoS), especially
in terms of security and reasonable scalability, for the Mobile
Host is observed to be very critical. Similarly, huge number
of web services possible, with each Mobile Host providing
some services in the wireless network, makes the discovery
of these services quite complex. Proper QoS and discovery
mechanisms are required for successful adoption of mobile
web services into commercial environments. Moreover, the
QoS and discovery analysis of mobile web services has
raised the necessity for intermediary nodes helping in the
integration of Mobile Hosts with the enterprise. Based on
these requirements a Mobile Web Services Mediation
Framework (MWSMF) [19] is designed as an intermediary
between the web service clients and the Mobile Hosts within
the Mobile Enterprise, using the Enterprise Service Bus
(ESB) technology.

While we were successful in establishing MWSMF on
standard servers, the scale of the Mobile Enterprise is leading
us to the new utility computing paradigm, cloud computing.
In this study we are trying to establish the mediation
framework on a public cloud infrastructure so that the
framework can adapt itself to the loads of the mobile
operator proprietary network, thus mainly helping in
horizontal scaling and load balancing the MWSMF. The
remaining sections of the paper are ordered as follows.

Section II discusses the details and challenges associated
with providing services from smart phones and establishing a
Mobile Enterprise. Section III discusses the details of the
MWSMF. Section IV discusses cloud computing and load
handling issues of the MWSMF along with the analysis and
results. Section V concludes the paper with future research
options.

II. MOBILE ENTERPRISE

A Mobile Enterprise can be established in a cellular
network by participating Mobile Hosts and their clients,
where the hosts provide user-specific services to the clients
as per the WS* standards. However, such a Mobile
Enterprise established, poses many technical challenges, both
to the service providers and to the mobile operator. Some of
the critical challenges and associated research are addressed
in this section.

A. Challenges for establishing Mobile Enterprise

As the Mobile Host provides services to the Internet,
devices should be safe from malicious attacks. For this, the
Mobile Host has to provide only secure and reliable
communication in the vulnerable and volatile mobile ad-hoc
topologies. In terms of scalability, the Mobile Host has to
process reasonable number of clients, over long durations,
without failure and without seriously impeding normal
functioning of the smart phone for the user.

Similarly, huge number of available web services, with
each Mobile Host providing some services in the wireless
network, makes the discovery of the most relevant services
quite complex. Proper discovery mechanisms are required
for successful adoption of Mobile Enterprise. The discovery,
moreover, poses some critical questions like: where to
publish the services provided by the Mobile Hosts? Should
they be published with the centralized Universal Description,
Discovery, and Integration (UDDI) registries available in the
Internet or the operator is going to offer some help? This also
raises questions like whether centralized nodes can withstand
such high loads or some alternatives are to be looked at?

From the mobile operator’s perspective the Mobile
Enterprise poses questions like: what are the services
expected by the mobile users from the operator? Can the
operator monitor the communication and have a bird view of
the complete network, so that business scenarios can be
drawn out of it? Do operators have such infrastructure that
can scale and adapt to such huge oscillating requirements?
What about the scalability of such infrastructure?

Our research in this domain focused at addressing most
of these issues and the remaining parts of this paper
summarize the research and results.

B. QoS aspects of the Mobile Host

Providing proper QoS, especially, appropriate security
and reasonable scalability, for mobile web service
provisioning domain was observed to be very critical. The
security analysis of the Mobile Host studied the adaptability
of WS-Security specification to the MWSP domain and
concludes that not all of the specification can be applied to
the Mobile Host, mainly because of resource limitations. The
results of our analysis suggest that the mobile web service
messages of reasonable size, approximately 2-5kb, can be
secured with web service security standard specifications.
The security delays caused are approximately 3-5 seconds.
We could also conclude from the analysis that the best way
of securing messages in a Mobile Enterprise is to use AES
(Advanced Encryption Standard) symmetric encryption with
256 bit key, and to exchange the keys with RSA 1024 bit

asymmetric key exchange mechanism and signing the
messages with RSAwithSHA1. But there are still high
performance penalties when messages are both encrypted
and signed. So we suggest encrypting only the parts of the
message, which are critical in terms of security and signing
the message. The signing on top of the encryption can
completely be avoided in specific applications with lower
security requirements. [18]

In terms of scalability, the layered model of web service
communication, introduces a lot of message overhead to the
exchanged verbose XML based SOAP messages. This
consumes a lot of resources, since all this additional
information has to be exchanged over the radio link. Thus for
improving scalability the messages are to be compressed
without effecting the interoperability of the mobile web
services. Message compression also improves the energy
efficiency of the devices as there will be less data to transmit.

In the scalability analysis of the Most Host, we have
adapted BinXML [6] for compressing the mobile web
service messages. BinXML is a light-weight XML
compression mechanism, which replaces each XML tag and
attribute with a unique byte value and replaces each end tag
with 0xFF. By using a state machine and 6 special byte
values including 0xFF, any XML data with circa 245 tags
can be represented in this format. The approach is
specifically designed to target SOAP messages across radio
links. So the mobile web service messages are exchanged in
the BinXML format, and this has reduced the message of
some of the services by ~30%, drastically reducing the
transmission delays of mobile web service invocation. The
BinXML compression ratio is very significant where the
SOAP message has repeated tags and deep structure. The
binary encoding is also significant for the security analysis as
there was a linear increase in the size of the message with the
security incorporation. The variation in the WS-Security
encrypted message size for a typical 5 Kb message is
approximately 50%. [16]

C. Discovery aspects of the Mobile Enterprise

In a commercial Mobile Enterprise with Mobile Hosts,
and with each Mobile Host providing some services for the
Internet, expected number of services to be published could
be quite high. Generally web services are published by
advertising WSDL (Web Services Description Language)
descriptions in a UDDI registry. But with huge number of
services possible with Mobile Hosts, a centralized solution is
not the best idea, as they can have bottlenecks and can
introduce single points of failure. Besides, mobile networks
are quite dynamic due to the node movement. Devices can
join or leave network at any time and can switch from one
operator to another operator. This makes the binding
information in the WSDL documents, inappropriate. Hence
the services are to be republished every time the Mobile Host
changes the network.

Dynamic service discovery is one of the most extensively
explored research topics in the recent times. Most of these
service discovery protocols are based on the announce-listen
model like in Jini. In this model periodic multicast
mechanism is used for service announcement and discovery.
But these mechanisms assume a service proxy object that

acts as the registry and it is always available. For dynamic ad
hoc networks, assuming the existence of devices that are
stable and powerful enough to play the role of the central
service registries is inappropriate. Hence services distributed
in the ad-hoc networks must be discovered without a
centralized registry and should be able to support
spontaneous peer to peer (P2P) connectivity. [5] proposes a
distributed peer to peer Web service registry solution based
on lightweight Web service profiles. They have developed
VISR (View based Integration of Web Service Registries) as
a peer to peer architecture for distributed Web service
registry. Similarly Konark service discovery protocol [12]
was designed for discovery and delivery of device
independent services in ad hoc networks.

Considering these developments and our need for
distributed registry and dynamic discovery, we have studied
alternative means of mobile web service discovery and
realized a discovery mechanism in the P2P network. In this
solution, the virtual P2P network also called the mobile P2P
network is established in the mobile operator network with
one of the nodes in operator proprietary network, acting as a
JXTA super peer. JXTA (Juxtapose) is an open source P2P
protocol specification. Once the virtual P2P network is
established, the services deployed on Mobile Host in the
JXME virtual P2P network are to be published as JXTA
advertisements, so that they can be sensed as JXTA services
among other peers. JXTA specifies Modules as a generic
abstraction that allows peers to describe and instantiate any
type of implementation of behavior representing any piece of
“code” in the JXTA world. So the mobile web services are
published as JXTA modules in the virtual P2P network.
Once published to the mobile P2P network, the services can
later be discovered by using the keyword based search
provided by JXTA. This approach also considered
categorizing the services and the advanced features like
context aware service discovery. We address the discovery
solution as mobile P2P discovery mechanism. The
evaluation of the discovery approach suggested that the
smart phones are successful in identifying the services in the
P2P network, with reasonable performance penalties for the
Mobile Host. [20]

III. MOBILE WEB SERVICES MEDIATION
FRAMEWORK

Mobile Hosts with proper QoS and discovery
mechanisms, enable seamless integration of user-specific
services to the Mobile Enterprise. Moreover services
provided by the Mobile Host can be integrated with larger
enterprise services bringing added value to these services.
However, enterprise networks deploy disparate applications,
platforms, and business processes that need to communicate
or exchange data with each other or in this specific scenario
addressed by the paper, with the Mobile Hosts. The
applications, platforms and processes of enterprise networks
generally have non-compatible data formats and non-
compatible communications protocols. Besides, within the
domain of our research, the QoS and discovery study of the
Mobile Host offered solutions in disparate technologies like
JXTA. This leads to serious integration problems within the

networks. The integration problem extends further if two or
more of such enterprise networks have to communicate
among themselves. We generally address this research scope
and domain, as the Enterprise Service Integration.

The mobile web services mediation framework
(MWSMF) is established as an intermediary between the
web service clients and the Mobile Hosts in mobile
enterprise. ESB is used as the background technology in
realizing the mediation framework. Similar mediation
mechanisms for mobile web services are addressed in [11].
Especially, [11] describes the status of research with
provisioning services from resource constrained devices.
When considering mediation within semantic web services,
Web Service Modeling Ontology (WSMO) has significant
contributions [13]. However, we went with the ESB
approach, due to the availability of several open source
implementations.

Figure 1 shows the Mobile Enterprise and the basic
components of the mediation framework. For realizing the
mediation framework we relied on ServiceMix [3], an open
source implementation of ESB, based on the JBI
specification [22]. JBI architecture supports two types of
components Service Engines and Binding Components.
Service engines are components responsible for
implementing business logic and they can be service
providers/consumers. Service engine components support
content-based routing, orchestration, rules, data
transformations etc. Service engines communicate with the
system by exchanging normalized messages across the
normalized message router (NMR). The normalized
messaging model is based on WSDL specification. The
service engine components are shown as straight lined
rectangles in the figure. Binding components are used to
send and receive messages across specific protocols and
transports. The binding components marshall and unmarshall
messages to and from protocol-specific data formats to
normalized messages. The binding components are shown as
dashed rectangles in the Figure 1.

MWSMF

HttpReceiver

Broker

QoSVerifier

HttpInvoker
Normalized

Message

Router

P2PMapper

MWSMF

HttpReceiver

Broker

QoSVerifier

HttpInvoker
Normalized

Message

Router

P2PMapper

WSWSWSWS

WSWSWSWS

WSWSWSWS

WSWSWSWS

InternetInternet

Mobile Enterprise

InternetInternet

Service

Provider

JXTA network

WS Client

JXTA

Rendezvous

Peer

Mobile Host

MWS Client

Figure 1. Mobile Enterprise setup with Mobile Hosts and MWS clients

The HttpReceiver component shown in figure 1 receives
the web service requests (SOAP over HTTP) over a specific
port and forwards them to the Broker component via NMR.
The main integration logic of the mediation framework is
maintained at the Broker component. For example, in case of
the scalability maintenance, the messages received by Broker
are verified for mobile web service messages. If the

messages are normal Http requests, they are handled by the
HttpInvoker binding component. If they comprise mobile
web service messages, the Broker component further ensures
the QoS of the mobile web service messages and transforms
them as and when necessary, using the QoSVerifier service
engine component, and routes the messages, based on their
content, to the respective Mobile Hosts. The framework also
ensures that once the mobile P2P network is established, the
web service clients can discover the services using mobile
P2P discovery mechanism and can access deployed services
across MWSMF and JXTA network. [19]

Apart from security and improvements to the scalability,
QoS provisioning features of the MWSMF also include
message persistence, guaranteed delivery, failure handling
and transaction support. External web service clients, that do
not participate in the mobile P2P network, can also directly
access the services deployed on the Mobile Hosts via
MWSMF, as long as the web services are published with any
public UDDI registry or the registry deployed at the
mediation framework and the Mobile Hosts are provided
with public IPs. This approach evades the JXME network
completely. Thus the mediation framework acts as an
external gateway from Internet to the Mobile Hosts and
mobile P2P network. The framework also provides a bird
view of the mobile enterprise to the cellular operator, so that
business scenarios can be drawn out of it. Preliminary
analysis of the mediation framework is available at [16].

IV. MWSMF ON THE CLOUD

While the MWSMF was successful in achieving the
integrational requirements of the Mobile Host and the
Mobile Enterprise, a standalone framework again faces the
troubles with heavy loads. The problems with scalability are
quite relevant in such scenarios and the system should scale
on demand. For example number of Mobile Hosts providing
the services and the number of services provided by the
Mobile Hosts can explode while some events are underway;
like Olympics or national elections etc. Some of these
application scenarios are addressed in [16]. This increases
the number of MWS clients the framework has to support.
Elasticity of the framework can be defined as its ability to
adjust according to the varying number of requests, it has to
support. As the study targets the scales of mobile operator
proprietary networks, to achieve elasticity, horizontal scaling
and load balancing for the MWSMF, we tried to realize the
mediation framework on a public cloud.

A. Cloud computing

Cloud computing is a style of computing in which,
typically, real-time scalable resources are provided “as a
service (aaS)” over the Internet to users who need not have
knowledge of, expertise in, or control over the cloud
infrastructure that supports them. The provisioning of cloud
services can be at the Infrastructural level (IaaS) or Platform
level (PaaS) or at the Software level (SaaS). A cloud
computing platform dynamically provisions, configures,
reconfigures, and de-provisions servers as requested. Cloud
computing mainly forwards utility computing model, where
consumers pay based on their usage. Cloud computing also

benefits from economies of scale. Servers in the cloud can be
physical machines or virtual machines.

While there are several public clouds on the market,
Google Apps (example of SaaS, includes Google Mail, Docs,
Sites, Calendar, etc), Google App Engine (example of PaaS,
provides elastic platform for Java and Python applications
with some limitations) and Amazon EC2 (example of IaaS)
are probably most known and widely used. Elastic Java
Virtual Machine on Google App Engine allows developers to
concentrate on creating functionality rather than bother about
maintenance and system setup. Such sandboxing, however,
places some restrictions on the allowed functionality [8].
Amazon EC2 [1] on the other hand allows full control over
virtual machine, starting from the operating system. It is
possible to select a suitable operating system, and platform
(32 and 64 bit) from many available Amazon Machine
Images (AMI) and several possible virtual machines, which
differ in CPU power, memory and disk space. This
functionality allows freely select suitable technologies for
any particular task. In case of Amazon EC2 price for the
service depends on machine size, its uptime, and used
bandwidth in and out of the cloud.

Figure 2. Load test setup for the MWSMF

Flexibility of EC2 environment and existing MWSMF
implementation were some of the reasons EC2 was chosen
for the experiment. Moreover, there are free implementations
of EC2 compatible cloud infrastructure – Eucalyptus [7].
Eucalyptus allows creating private clouds compatible with
Amazon EC2. Our research group is in the process of setting
up a scientific computing cloud (SciCloud) on one of our
clusters, using Eucalyptus technology. With this cloud,
students and researchers can efficiently use the already
existing resources of university computer networks, in
solving computationally intensive scientific, mathematical,
and academic problems [15].

B. Load balancing the MWSMF from the cloud

To achieve the scalability for the mediation framework,
the MWSMF was installed on the Amazon EC2 cloud. Once
the Amazon Machine Images (AMI) are configured, stateless
nature of the MWSMF allows, fairly easy horizontal scaling
by adding more MWSMF nodes and distributing the load
among them with the load balancer. Figure 2 shows the
deployment scenario with the load balancer (LB) and the
MWSMF worker AMI nodes (W-1, W-2, W-3, and W-n).

There are several load balancing techniques that can be
used in this scenario. One approach is to use DNS based load
balancing, where each call to the DNS server will result in
different IP address. This means that each MWSMF node
will be accessed by certain subset of clients directly, without
an intermediary load balancing proxy as discussed below.
This approach is not fault tolerant in case the framework
node would crash but its IP would be cached on the client’s
DNS cache. However, this approach is inevitable, if loads on
the single proxy based load balancer will grow to a level that
a single load balancer itself will become a bottleneck.
Another approach is to use load balancing proxy server in
front of MWSMF nodes. Among other options, Apache
HTTPD server with mod_proxy and mod_load_balancer is
probably most commonly used configuration. It has one
major drawback in elastic environment, as it doesn’t allow
dynamic reconfiguration of worker nodes. If we add or
remove some MWSMF nodes we are required to restart load
balancer as well, which is not convenient and potentially
introduces some failed requests during restart. Alternative
http proxy load balancer HAProxy [21] allows such dynamic
behavior. However we used Apache HTTP server with
mod_proxy and mod_load_balancer [2] as a load balancer
for the MWSMF because it is more widespread and we had
experience in configuring such setup, which was important,
as the aim of this research was to show the horizontal
scalability rather than achieve maximum automation.

C. Scalability of the MWSMF

Load testing of MWSMF on the cloud was performed in
a distributed manner using JMeter – open source load testing
software. Figure 2 shows the deployment setup in detail.
JMeter was deployed on one of the clusters in the University
of Tartu (UT Cluster). Deployment consisted of 4 slave
nodes (L-1, L-2, L-3, and L-4) and 1 master node (L-S).
Load testing scenario (called a test plan in Jmeter) is loaded
on the master node, which sends it to the slave nodes and
initiates load testing. During the test run each slave node
sends testing results back to the master node, where results
are aggregated into a single report.

In our test scenario we performed 5 consequent requests
by n concurrent threads, where n varied between 75 and 250
per slave node, which makes 300 to 1000 concurrent
requests on a load balancer, thus simulating a large number
of simultaneous clients for the MWSMF and the Mobile
Host in Mobile Enterprise. Another important factor that
impacts test results is a connection and response timeout on
the client, in our test case – the slave node. Connection
timeout is a time until connection to the server is established
and response timeout is the time since call starts on the client
side until response is received. If these timeouts are long
enough, then observations showed, that even single
MWSMF node can withstand large loads, due to the
sufficient QoS of the ESB. However, in such scenario a call
may last too long for a mobile client ant it may start
retransmitting instead of waiting. In our tests we set
connection-response timeout to 50-70 seconds. It must be
also noted that, in the real life connection timeout on a client
side is not a parameter that the service provider can affect
nor predict. In case of interactive applications, where user

interaction is involved, response should be preferably
delivered in less than 10 seconds to keep user’s attention
[14].

Figure 3. Success rate of concurrent requests over multiple server nodes

On the cloud front a load balancer (LB) and up to 10
MWSMF worker nodes were set up. To show the elasticity
of the cloud we increased the number of the server nodes
from 1 to 10 after each test. All servers were running on
Amazon EC2 infrastructure and all of them were using EC2
small instances. Small instance has 1.7 GB of memory, CPU
power of 1 EC2 Compute unit, which is equivalent to CPU
capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor as of 07.12.2009 (CPU capacity of an EC2
compute unit do change in time). Both load balancer and
worker nodes were running 32 bit Linux platforms. Apache
HTTP server version 2.2.8 with mod_proxy and
mod_load_balancer were used as a load balancer. Load
balancer was setup to use request based scheduling, which
means that all worker nodes received equal amount of
requests. However, it is possible to configure load balancer
based on traffic or busyness. Busyness means how many
concurrent requests a worker node has at the moment the
new request arrives. In real-life situation best load balancing
algorithm for a particular scenario should be chosen based on
the services provided by the mobile enterprise and the nature
of the request/response traffic. For more details on load
balancing algorithm refer [2].

In the load test of the MWSMF, we measured how
success rate of the requests depends on a number of worker
nodes depending on a number of concurrent requests.
Success means that a request will get a response before
connection or response timeout occurs and success rate
shows how many requests from all performed requests
succeeded. The results of the experiment are shown in figure
3. From the diagram it can be clearly seen that the percentage
of succeeded requests grows logarithmically with the number
of nodes and degrades exponentially as load grows.
Performance of a single node drops rapidly already after 300
concurrent requests and even with 300 concurrent requests
success rate is only 77%, however 3 nodes can handle this
load with 100% success rate. It can be also seen, that with
current setup adding more nodes does not show any visible
effect after 6 nodes and performance is improved by an
insignificant fraction in contrast to difference between 1, 2
and 3 nodes. In summary we observed that, with current
MWSMF implementation one single node can handle around

100-130 concurrent MWS requests with 100% success rate.
Adding an additional node adds roughly 100 new concurrent
requests to the total capability until the load grows up to 800
concurrent requests, when load balancer itself becomes a
bottleneck and adding any additional nodes do not give
desired effect. This analysis showed mediation framework to
be horizontally scalable. However, certain loads demand
more advanced load balancing techniques. The elastic cloud
environment helps to achieve this required setup very
quickly.

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The developments in the web services domain, the
improved device capabilities of the smart phones and the
improved transmission capabilities of the cellular networks
have lead to the mobile web services provisioning domain.
With this paper, we tried to summarize the challenges and
research associated in this domain and establishing the
Mobile Enterprise. The QoS aspects of the developed Mobile
Host, like providing proper security and scalability, and the
discovery of the provided services are addressed briefly.
Further, the QoS and discovery analyses of the Mobile Host
have raised the necessity for a middleware framework and
the features and realization details of the MWSMF are
discussed. This paper showed that MWSMF is horizontally
scalable, thus allowing to utilize cloud’s elasticity to meet
load requirements in an easy and quick manner.

In these experiments we configured load balancer
manually and one of future research directions is to achieve
more automation in scaling process – detect loads
automatically, dynamically add more working nodes and
automatically configure load balancer to accommodate new
worker nodes. After loads drop, dynamically scalable
MWSMF should shutdown unnecessary worker nodes.
Another future research direction is to use Eucalyptus
framework for cloud infrastructure instead of Amazon EC2,
to show that public cloud’s elasticity is achievable also in
private clouds. We also want to extend this experience to our
scientific computing cloud (SciCloud) project.

ACKNOWLEDGMENT

The research is supported by the Estonian Science
Foundation under Mobilitas program and the European
Regional Development Fund through the Estonian Centre of
Excellence in Computer Science. The work was earlier
supported by the Ultra High-Speed Mobile Information and
Communication (UMIC) research cluster at RWTH Aachen
University. The authors would also like to thank R.
Levenshteyn and M. Gerdes of Ericsson Research for their
help and support.

REFERENCES

[1] Amazon Inc, “Amazon Elastic Compute Cloud (Amazon EC2)”,
http://aws.amazon.com/ec2/ 10.12.2009.

[2] Apache Software Foundation, “Apache Module mod_proxy_balancr”,
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
10.12.2009.

[3] Apache Software Foundation, “Apache ServiceMix”,
http://incubator.apache.org/servicemix/home.html 10.12.2009.

[4] B. Benatallah and Z. Maamar, “Introduction to the special issue on m-
services”, IEEE transactions on systems, man, and cybernetics - part
a: systems and humans, 33(6):665–666, November 2003.

[5] S. Dustdar and M. Treiber, "Integration of transient Web services into
a virtual peer to peer Web service registry", Distributed and Parallel
Databases, 20: 91–115, 2006.

[6] M. Ericsson and R. Levenshteyn, "On optimization of XML-based
messaging", In Second Nordic Conference on Web Services (NCWS
2003), pages 167–179, 2003.

[7] Eucalyptus Systems Inc, “Eucalyptus”, http://www.eucalyptus.com/
10.12.2009.

[8] Google Inc, “App Engine Java Overview”,
http://code.google.com/appengine/docs/java/overview.html
10.12.2009.

[9] K. Gottschalk, S. Graham, H. Kreger, and J. Snell, ”Introduction to
web services architecture”, IBM Systems Journal: New
Developments in Web Services and E-commerce, 41(2):178–198,
2002.

[10] M. Keen, S. Bishop, A. Hopkins, S. Milinski, C. Nott, and R.
Robinson, “Patterns: Implementing an SOA using an Enterprise
Service Bus”, IBM RedBooks, July 2004.

[11] Y. Kim and K. Lee, "A lightweight framework for mobile web
services", Journal on Computer Science - Research and Development,
24(4):199-209, Springer.

[12] C. Lee, A. Helal, N. Desai, V. Verma, and B. Arslan, "Konark: A
System and Protocols for Device Independent, Peer-to-Peer
Discovery and Delivery of Mobile Services", IEEE transactions on
systems, man, and cybernetics - part a: systems and humans,
33(6):682–696, 2003.

[13] A. Mocan, E. Cimpian, M. Stollberg, F. Scharffe, and J. Scicluna,
"WSMO Mediators", December 2005. http://www.wsmo.org/TR/d29/
10.12.2009

[14] J. Nielsen, “Usability Engineering”, Morgan Kaufmann, San
Francisco, 1994.

[15] S. N. Srirama, “Scientific Computing on the Cloud (SciCloud)”,
http://ds.cs.ut.ee/research/scicloud 10.12.2009.

[16] S. N. Srirama and M. Jarke, “Mobile Hosts in enterprise service
integration”, International Journal of Web Engineering and
Technology (IJWET), 5(2):187-213, 2009. Inderscience Publishers.

[17] S. N. Srirama, M. Jarke, and W. Prinz, “Mobile web service
provisioning”, In AICT-ICIW ’06: Proceedings of the Advanced
International Conference on Telecommunications and International
Conference on Internet and Web Applications and Services, page
120. IEEE Computer Society, 2006.

[18] S. N. Srirama, M. Jarke, and W. Prinz, "Security analysis of mobile
web service provisioning", International Journal of Internet
Technology and Secured Transactions (IJITST), 1(1/2):151–171,
Inderscience publishers, 2007.

[19] S. N. Srirama, M. Jarke, and W. Prinz, "MWSMF: A Mediation
Framework Realizing Scalable Mobile Web Service Provisioning", In
International Conference on MOBILe Wireless MiddleWARE,
Operating Systems, and Applications (Mobilware 2008), Innsbruck,
Austria, ACM Int. Conf. Proceeding Series; Vol. 278, Article No. 43,
2008.

[20] S. N. Srirama, M. Jarke, and W. Prinz and H. Zhu, "Scalable Mobile
Web Service Discovery in Peer to Peer Networks", In IEEE Third
International Conference on Internet and Web Applications and
Services (ICIW 2008), Pages 668-674, IEEE Computer Society,
2008.

[21] W. Tarreau, “HAProxy Architecture Guide, version 1.1.34”, Jan,
2006, http://haproxy.1wt.eu/download/1.3/doc/architecture.txt
10.12.2009.

[22] R. Ten-Hove and P. Walker, "Java TM Business Integration (JBI) 1.0
-JSR 208", Final Release, Technical report, Sun Microsystems Inc.,
2005.

