
Mobile Access to

MPEG-7 Based Multimedia Services

Yiwei Cao, Matthias Jarke, Ralf Klamma, Oscar Mendoza, and Satish Srirama

Lehrstuhl für Informatik 5

RWTH Aachen University

Ahornstr. 55, 52056 Aachen Germany

{cao|jarke|klamma|mendoza|srirama}@dbis.rwth-aachen.de

Abstract—Multimedia information systems have been developed

into service-ware. With the paradigms of web services, service

oriented architectures (SOA), and Web 2.0 widgets, multimedia

has become truly ubiquitous. However, interoperability,

scalability, reliability and security are arising challenges at

mobile multimedia service development. This paper focuses on

the analysis, design, development and evaluation of a middleware

that allows access from mobile devices to a bundle of multimedia

services. The services are based on the international multimedia

metadata description standard MPEG-7. The implementation is

based on new generation of service-oriented application servers

called Lightweight Application Server (LAS). Mobile web

services refers to the fact that mobile servers host web services. A

prototype was developed as a proof of concept, showing how to

access MPEG-7 based multimedia services from a mobile host

and the analysis results of providing MPEG-7 based multimedia

services in the form of web services from the mobile host to other

mobile devices. An alternative solution is to apply enterprise

service bus as middleware. The performance evaluation results of

both approaches show the reliable accessibility of MPEG-7 based

multimedia services via the enterprise service bus solution.

Keywords-mobile data management; MPEG-7; SOA; web

services; mobile web services, middleware; multimedia; enterprise

service bus

I. INTRODUCTION

Developing community information systems on various
mobile handheld devices is one of the most promising research
areas of future mobile computing. Next to games, location-
based services for social networks on the iPhone have been the
biggest force in accelerating the changes showing mobile
devices can do. Although mobile networks are getting much
faster, there is still much challenges in practice. Theoretically
3G cellular, advanced Wi-Fi, and Mobile WiMax provide
maximum data rates of 3.6, 100, and 70 megabits per second,
respectively [18]. There is often a broad problem between the
theoretical and the practical settings, especially in the research
area of mobile computing. Therefore, community-based
multimedia services are a true performance challenge for
mobile data communication and management.

Also the development of middleware for information
systems on mobile devices is a challenging. Firstly, it is
constrained by limited resource capacity of handheld devices
[17]. Secondly, middleware on desktops builds up a framework

to support data communication and management in a better
way. It brings also additional communication cost. The
middleware facilitates hosting mobile web services on mobile
devices that enable them to be service providers in addition to
consumers. Because of the high costs in developing
middleware infrastructure we aim at a high level of
interoperability on the data management level. MPEG-7 [12] is
a well-established an widely used standard in multimedia data
management. However, due to its inherent complexity it was
not used in mobile data management that often. With new
initiatives like the application profiles the use of MPEG-7 has
become much easier, also for mobile data management. New
services could be developed and deployed to achieve
accessibility to MPEG-7 based multimedia services while
being mobile. Since the middleware is capable of publishing
services from a mobile device, Peer-to-Peer (P2P) service
consumption is also possible. This enables sharing of possible
MPEG-7 based multimedia services with mobile peers in P2P
manner.

Within the research cluster Ultra High-Speed Mobile
Information and Communication (UMIC) in the German
Excellence Initiative, this research work focuses on realizing
the distributed infrastructure for mobile web services. We use
mobile multimedia information systems as scenarios to make
clear the future requirements in this area. Examples for such
scenarios are mobile health care, mobile tourists guides, and
mobile cultural heritage management. As part of the later
scenario, we developed a mobile social software called Virtual
Campfire [4], Virtual Campfire, is an advanced framework to
create, search, and share multimedia artifacts with context
awareness across communities. We have chosen this scenario
because its high demands for scalability (multimedia
information for cultural heritage management may contain
image collections, drawings, videos, 3D animations etc.),
reliability (information management must be guaranteed also in
remote areas and developing countries like Afghanistan) and
security (the existences and location of cultural artifacts may
not be disclosed to tomb raiders). The framework provides a
set of multimedia processor components to communities
connecting the many different multimedia data sources.
Connections are made context-aware concerning time, place
and community [5]. The framework is built on top of services
implemented on the Lightweight Application Server (LAS).

 The Lightweight Application Server (LAS) hosts a set of
web services such as the high-security user management
service and MPEG-7 based multimedia annotation, sharing and
deploying services. With the core services service designers
can create community information systems to facilitate and
support professional communities. LAS services access user
profiles, multimedia and metadata from database servers. In
addition, LAS uses also streaming servers as multimedia
repositories. Streaming is a technology creating new demands
in bandwidth in mobile communication.

Many community information systems have been built on
top of this framework including MIST, a MPEG-7 based non-
linear digital storytelling system, NMV, a MPEG-7 multimedia
tagging system, ACIS, a GIS enabled multimedia information
system, or CAAS, a mobile application for context-aware
search and retrieval of multimedia and community members,
They proved LAS as a service-oriented application server
capable running highly interoperable MPEG-7 based
multimedia services. With the increasing users’ mobility needs
and with the rapid development of mobile technologies, new
challenges to establish a mobile LAS framework with
distributed LAS services are posed. One major goal is the
mobilization and distribution of LAS services.

The challenges for mobilization and distribution of MPEG-
7 based multimedia services are as follows. Firstly, there are
bottlenecks concerning the multimedia communication
between servers and the backend databases. Secondly, the
distribution of MPEG-7 based services to a wide range of
service consumers is partly limited, because they are not
implemented according to the W3C web service standard.

Figure 1. A scenario of mobile LAS services

A scenario is demonstrating how user communities might
use mobile handheld devices to share MPEG-7 based
multimedia services among themselves in order either to
reduce communication costs or to set up an ad-hoc community
network (cf. Fig. 1).

• Reducing cost: LAS users Alice and Bob are visiting a
museum and want to use the MPEG-7 based
storytelling service. Alice's smart phone has a flat rate
GPRS contract, while Bob needs to pay a lot for each
GPRS data transmission on his PDA. To reduce Bob's

communication fee, an e.g. Bluetooth connection can
be set up between Bob's PDA and Alice's smart phone.
So Bob and Alice can both use different MPEG-7
based services while only Alice uses directly the
MPEG-7 based services deployed on the server.

• Ad-hoc community network: A group of cultural
scientists are working on excavation of an
archaeological site and are equipped with laptops or
PDAs that have limited resources. They communicate
among themselves via some low-cost ad-hoc network
technologies such as wireless mesh networks. They
wish to share MPEG-7 based services among
themselves, in order to reduce resource occupation on
their own devices.

The rest of paper is organized as follows. Section 2
describes basic concepts such as service-oriented architecture
concepts and web service technologies. Section 3 presents the
mobile host, the LAS server, and the design of two different
types of architecture for connecting mobile devices to LAS.
The first architecture allows mobile devices to connect to LAS
with mobile web services provided by a mobile host. The
second architecture allows mobile devices to connect to LAS
through an enterprise service bus middleware platform. Section
4 describes the software implementation and evaluation of both
approaches. Section 5 concludes the paper with some
suggestions for future work.

II. RELATED WORK

Before discussing the approaches to mobile access of LAS
services, we give a short overview of related technologies
including Service Oriented Architecture, web services, mobile
web services and enterprise integration solutions as
middleware.

A. Service Oriented Architecture (SOA) and Web Services

Service Oriented Architecture (SOA) [3] is a component
model that delivers application functionality as services to end-
user applications and other services, bringing the benefits of
loose coupling and encapsulation to the enterprise application
integration. The definition of a Service Oriented Architecture is
highly related to business/enterprise applications. From the
technical point of view, SOA is like any other distributed
architecture in that it enables you to build applications that use
components across separate domains boundaries, however,
SOA is also unique in that it incorporates those factors that are
critically important to business: service reliability, message
integrity, transactional integrity, and message security [8].

During the last years, Service-oriented design is becoming
more popular. Service orientation retains the benefits of
component-based development (self-description,
encapsulation, dynamic discovery and loading), but there is a
shift in paradigm from remotely invoking methods on objects,
to one of passing messages between services. A service is
generally implemented as a course-grained, discoverable
software entity that exists as a single instance and interacts
with applications and other services through a loosely coupled,
message-based communication model.

Meanwhile web services have evolved as the best means of
achieving SOA. Web services are distributed software
components which can be accessed over the Internet using well
established web mechanisms and XML-based open standards
and transport protocols such as SOAP and HTTP (HyperText
Transfer Protocol). Public interfaces of web services are
defined and described using W3C (World Wide Web
Consortium) based standard, Web Service Description
Language (WSDL). Web Services are moving Internet from
program to user, business to consumer (B2C) interactions to
program to program, business to business interactions [7].

B. Mobile Applications and Mobile Web Services

Concurrent to the developments in SOA domain, the
capabilities of high-end mobile phones and PDAs (Personal
Digital Assistant) have increased significantly, both in terms of
processing powers and memory capabilities. The smart phones
are becoming pervasive and are being used in wide range of
applications like location based services, mobile banking
services, ubiquitous computing etc. The higher data
transmission rates achieved in wireless domains with Third
Generation (3G) and Fourth Generation (4G) technologies and
the fast creeping of all-ip broadband based mobile networks
also boosted this growth in the cellular market. The situation
brings out a large scope and demand for software applications
for such high-end smart phones.

Although mobile commerce poses to bring tremendous
opportunities, we have to be cautious and understand the risks.
Historically, technology adoption was never a smooth or linear
process in cellular domain. Only recently, the Java technology
is emerging as one of the most important enablers for mobile
enterprise solutions. All major mobile device vendors,
including Nokia, Motorola, Siemens, Samsung, Fujitsu,
Mitsubishi, NEC, Panasonic, and Sony, have adopted J2ME as
part of their core strategy for future smart devices. Major
wireless carriers such as NexTel, SprintPCS, and ATT have
committed to support Java devices and applications on their
networks. Moreover, the communication between mobile
nodes involved proprietary and application- and terminal-
specific interfaces.

To meet the demand of the cellular domain and to reap the
benefits of the fast developing web services domain and
standards, the scope of the mobile terminals as both web
services clients and providers is being observed. Mobile web
services enable communication via open XML web service
interfaces and standardized protocols also on the radio link. To
support the mobile web services, there exist several
organisations such as Open Mobile Alliance (OMA), Liberty
Alliance (LA) on the specifications front; some practical data
service applications such as OTA (over-the-air provisioning),
application handover etc. on the commercial front; and SUN,
IBM toolkits on the development front. Thus, though this is
early stages, we can safely assume that mobile web services are
the road ahead.

Mobile terminals accessing the web services cater for
anytime and anywhere access to services. Some interesting
mobile web service applications are the provisioning of
services like e-mail, information search, language translation,

company news etc. for employees who travel regularly. There
are also many public web services accessible from smart
phones like the weather forecast, stock quotes etc. Mobile web
service clients are also significant in the geospatial and location
based services [2]. While mobile web service clients are
common, the research with providing web services from smart
phones is still sparse. The scope of mobile web service
provisioning was studied by two projects at RWTH Aachen
University since 2003 [15][6], where Mobile Hosts were
developed, capable of providing basic web services from smart
phones. The Mobile Host was developed in PersonalJava, later
upgraded to J2ME, on a SonyEricsson P800 smart phone. Open
source kSOAP2 was used for creating and handling the SOAP
messages. Once the Mobile Host was developed, an extensive
performance analysis was conducted, proving its technical
feasibility [15].

Mobile Hosts enable seamless integration of user-specific
services to the enterprise. Moreover services provided by the
Mobile Host can be integrated with larger enterprise services
bringing added value to these services. For example, services
can be provided to the mobile user based on his up-to-date user
profile. The profile details like the device capabilities, network
capabilities, location details etc. can be obtained from the
mobile at runtime and can be used in providing most relevant
services like maps specific to devices and location information.
Besides Mobile Hosts can collaborate among themselves and
bring value to the enterprise. [16]

C. Enterprise Integration

Nowadays enterprises are not limited to the physical
boundaries of an organization. The proliferation of open
systems and open IT infrastructures increases the possibility of
interoperability not only between platforms, runtimes, and
languages but also across enterprises. When our concerns shift
from networked systems to networked enterprises, a whole lot
of opportunities open up to interact with enterprise applications
and the opportunities are endless.

However, many of today's companies have Line of
Businesses (LOB) and systems within a single enterprise that
were not intended to interact together. Moreover these
enterprise networks generally deploy disparate applications,
platforms, and business processes that need to communicate or
exchange data with each other. The applications, platforms and
processes of enterprise networks generally have non-
compatible data formats and non-compatible communications
protocols. This leads to serious integration troubles within the
networks. The integration problem extends further if two or
more of such enterprise networks have to communicate among
themselves.There are basically four different alternatives for
integrating such disparate applications.

Point-To-Point: One of the first methods used to integrate
applications has been by using point-to-point integration
solutions. Under this scheme a protocol or format transformer
is built at one or either end between a pair of applications. One
of the advantages of this scheme is that both applications have
good knowledge about each other thus getting to a tight
coupling. The principal disadvantage of this scheme is the
difficulty to integrate a new application to the system due to the

high number of protocols or format transformers which have to
be implemented. This architecture is very popular solution for
small scale integration problems.

Hub-And-Spoke: This architecture is also known as the
message broker and it provides a centralized point where all
applications connect to by using lightweight connectors. This
centralized point is called hub or broker. The connectors act as
adapters and translate data and messages between different
applications to canonical formats. Two of the advantages of the
hub-and-spoke architecture are that all the message
transformation and routing is done by the hub and the number
of connections for the integration is reduced with respect to the
point-to-point architecture. Unfortunately like any centralized
architecture, the centralized hub becomes a single point of
failure.

Enterprise Message Bus: an enterprise message bus is an
infrastructure of communication where the integration between
applications can be done in a platform and language
independent way. It is composed by a message router and
publishing (subscription) channels where applications use
request and response queues to interact with each other via a
message. Two new concepts are introduced here. They are
applications which provide services, called providers, and
applications which consume services, called consumers.
Consumers write request to the request queue and providers
listen to the request queue waiting for request to their services.
The result messages are then added to the response message
queues.

Enterprise Service Bus: By using Enterprise Service Bus
integration [10], applications do not communicate to each other
directly, they communicate by using a SOA based middleware
backbone. ESB basically consists of a set of service containers
that are interconnected with a reliable messaging bus. The ESB
supports multiple integration paradigms in order to fully
support the variety of interaction patterns that are required in a
comprehensive SOA between these service containers. So it
has support for service-oriented architectures in which
applications communicate through reusable services with well-
defined and explicit interfaces, message-driven architectures in
which applications send messages through the ESB to
receiving applications and event-driven architectures in which
applications generate and consume messages independently of
one another.

Thus, we adapted an ESB based middleware to integrate
LAS services as the other approach in comparison to the
Mobile Web Service solution.

III. DESIGN OF MOBILE ACCESS TO LAS SERVICES

Due to the current increasing development of mobile
devices, technologies and connectivity, everyday a lot of end
users are demanding to have more access and capabilities on
their own mobile devices. Most cell phones have audio and
video features which are used by people for fun, business and
research.

A. The Light Application Server (LAS)

First of all, we give an insight into the concept and
architecture of LAS. Since a couple of years different kinds of
internet communities, either of interest or of practice have
emerged. All of those communities use different applications to
interactively cooperate, coordinate and communicate. A vast
number of systems offering community services was created.
Some of them were commonly used in many systems (e.g.
calendar, forums, polls, etc.), while others were tailored to a
community-specific task. But what if all of those communities
and their tools could be maintained centrally? What if
communities could extend their service portfolio and share it
with other communities? This is, where LAS comes into play.
LAS is a lightweight application server designed as a
community middleware that is capable of managing users and
multiple hierarchically structured communities along with their
particular access rights as well as a set of services accessible to
users. LAS also includes security management to guarantee
access control. LAS is implemented in Java. A community
application can make use of the offered services by simply
connecting to the server and then remotely invoking service
methods. A very prominent feature of LAS is that the server
functionality is easily extensible by implementing and plugging
in new services resp. components. The main intent of this
document is to encourage and enable you to develop and use
own LAS extensions tailored to the needs of your communities.

LAS serves as a server and perform many tasks. LAS is
capable of managing users and multiple hierarchically
structured communities along with their particular access rights
as well as a set of services accessible to users. LAS also
guarantees access control by including security management.
LAS is a platform independent JAVA implementation that can
be combined with different tools and communities. A
community application can make use of the offered services by
simply connecting to the server and then remotely invoking
service methods. A very prominent feature of LAS is that the
server functionality is easily extensible by implementing and
plugging in new services respective components [14].

Development of mobile technologies during last years is
demanding the creation of mobile social software that is able to
run on mobile devices and to offer the same functionality like
the offered by desktop applications. However, in practice,
some weaknesses of LAS become evident. Even though, LAS
is a reliable application server offering MPEG-7 multimedia
services, it is not pure web service architecture, it was not
designed under the SOA paradigm and important aspects like
scalability and distributed services were not taken into account.

Quality of service and performance problems have been
observed recently by LAS users. For many years, LAS has
been used on top of traditional networks infrastructures for
providing the services required by social software such as
Virtual Campfire, now some researches on mobile technologies
focus on the problem of offering LAS services to mobile social
software by using new affordable communication technologies.

In technical terms, the LAS Java API based on J2SE can be
used to extend the server functionality by adding three basic
element types: LAS Connectors realize client-server
communication using a particular protocol. LAS come with

connectors for HTTP and SOAP, while the current developed
SOAP connector just provided limited support to Web
Services. LAS Components are internal elements encapsulating
functionality for common tasks shared by services or other
components. LAS Services define the actual functionality that
LAS offers to its clients including core services and service
mash-ups. A service defines public methods which can be
remotely invoked by clients via one of the connectors (cf. Fig.
2).

LAS user-, object- and session manager build up the so
called LAS core services. Session Manager maintains a session
for a user connection and dispatch the invocation to the
respective service, if the user has sufficient access rights for
accessing service methods and possibly security objects that
are used inside service methods. LAS user manager maintains
users, hierarchically organized groups of users and user roles
defining access rights to service methods. LAS object manager
maintains security objects of arbitrary types and their access
rights.

Figure 2. LAS Architecture [5]

Based on the technical requirements of LAS platform, an
application to access LAS services needs to be developed,
including:

• Requirement elicitation of LAS Mobile services;

• Compatibility analyses of LAS service messaging
constructs with the existing middleware;

• LAS Mobile Web Services;

• LAS Application Midlet;

• Mobile LAS Communication Module;

• LAS Data Management Module.

The services deployed on the middleware could be
synchronous or asynchronous in nature based on the
application requirements. Among other requirements, this
should be identified during the requirement elicitation phase of
the project.

On the LAS servers, the base requirements on MPEG-7
based multimedia services are as follows. There should not be
one monolithic MPEG-7 service, but a set of services, each of
them offering functionality for a given domain of the MPEG-7
standard (e.g. multimedia content, collections, classification
schemes, etc.). Since MPEG-7 is XML-based, the basic
functionality of an MPEG-7 LAS service, i.e. its methods, is to

work on XML documents conforming to the MPEG-7 XML
schema. MPEG-7 documents should be stored in an XML
database, that supports execution of XPath, XQuery and
XUpdate expressions. An MPEG-7 service should offer
support for the following basic tasks:

• Creation of new MPEG-7 descriptions

• Query for complete or partial MPEG-7 descriptions

• Modification of MPEG-7 descriptions

Each MPEG-7 XML document must be valid against the
MPEG-7 XML schema at all stages. This includes, that after
having performed modification operations on a valid
document, the resulting document is valid again. Work of an
MPEG-7 service developer should be supported by tools, that
guarantee validity.

MPEG-7 based multimedia services refer to services such
as nonliear digital storytelling, multimedia upload, download
and tagging/annotation services. They all make use of the the
aforementioned basic MPEG-7 services. They are deployed on
the LAS server and are a sub category of the LAS services. To
enable the access of those services. We proposed two types of
architecture in the following subsections.

B. Accessing LAS Services through Mobile Web Services

Since LAS as of now supports the access of services only
across the HTTP protocol, the invocation of these services
from mobile phones becomes a little tricky. While studying
mobile web service clients and providers, we have taken the
design decision that the exposure and access of services
from/to mobiles would be only through web services and
WSDL. Mobile web services basically enable communication
via open XML web service interfaces and standardized
protocols also on the radio link, where today still proprietary
and application- and terminal-specific interfaces are required.

Figure 3. The architecture to access LAS with Mobile Web Services

Following this design decision, Fig. 3 shows the proposed
architecture that will help in connecting to LAS services with
mobile web services. In the figure there are two smart phones,
one of them acting as a mobile web services provider while the
other acting as a mobile web services consumer. Here basically
the Mobile Host provides a web service interface of the LAS
services, for the external nodes. Under this architecture only
the Mobile Host directly connects to the LAS and it is the only
access point to the LAS services from mobiles. Theoretically

the Mobile Host can be replaced by a standalone node that
provides web service interfaces for the LAS services. Since we
are also interested in personalized services and user specific
profiles, we were still proceeding with Mobile Host. Services
provided by the Mobile Host are published using WSDL in
order to enable the consumer to find those services and invoke
them. Once the services are found, the consumer can bind to
them and use them. Srirama et al. have studied alternatives for
mobíle web service discovery using the features of P2P
networks. The discussion of the solution is beyond the scope of
the paper and can be found at [15], for enthusiastic reader.

C. Mobile Access through ESB

Every day the usage of LAS at our chair of Information
Sytems Group becomes more frequent and the number of users
is continuously increasing. That is demanding a high
performance and scalability of LAS which is putting it to the
test. Most users are asking for LAS services in a distributed
way which offers a better performance and response times.

If one takes into account that today LAS is offering its
services to multiple users who have different purposes, it
would be good to think about LAS like a set of servers, acting
as a cluster, with each of them specialized in a specific field
and offering services related to that field. However, if many
users are interested in the same kind of services, the server will
be overloaded and its performance will degrade and users will
be unsatisfied. That is why this subsection introduces enterprise
service bus based architecture like a middleware solution
which provides distribution of LAS services from different
LAS servers under a service oriented architecture point of
view.

The main advantage of an ESB middleware solution is its
transparency to users and programmers on the client side as
well as on the server side. Inside LAS there are no necessary
changes to do in order to couple it with an ESB and users of
LAS only need to connect to a single point, the ESB, in order
to access any LAS server they are interested in. This solution
adds also the common advantages offered by ESB architecture,
such as support for multiple integration paradigms (i.e.
Service-oriented architectures, Message-driven architectures
and Event-driven architectures), guaranteed delivery, control
centralization and distributed processing.

Imagine a set of LAS servers, which could be different
instances of the same implementation or servers completely
different from each other. Now consider a group of Mobile
Hosts or mobile web service clients trying to access many
services from those LAS servers. The current way to achieve
this goal would be configure each Mobile Host with the
specific connection to the right LAS server based on the
services offered by it. What is proposed here is implementing
an ESB middleware solution in charge of receiving requests
from many Mobile Hosts and processing connections to
different LAS servers which are able to response those requests
successfully (cf. Fig. 4). The primary advantage of such an
approach is that it reduces the number of point-to-point
connections required to allow applications to communicate
with LAS servers. This, in turn, makes impact analysis for
major software changes simpler and more straightforward. By

reducing the number of points-of-contact to a particular
application, the process of adapting a system to changes in one
of its components becomes easier.

Figure 4. Architecture of accessing LAS services through ESB

Under this new architecture the ESB should be able to
replace all direct contact between Mobile Hosts and LAS
servers, so that all communication takes place via the bus. As
described in Figure 4, the ESB must receive all the requests
from Mobile Hosts and apply a management process to select
the right LAS server to be called. Once the LAS server has
been selected, the ESB must call the appropriate service. As
soon as the response from the LAS server is received by the
ESB, it has to encapsulate the response and forward it to the
Mobile Host requester. This is typically accomplished through
the use of an enterprise message model. The message model
defines a standard set of messages that the ESB will both
transmit and receive.

IV. IMPLEMENTATION AND EVALUATION

Since this research work is in principal divided into the
development of a connection to LAS services with Mobile
Web Services and the development of a connection to LAS
services through an ESB, the evaluation is also described
separately for each part. An evaluation of the photo service
functionality was also performed and is presented like a point
of comparison to see the effect of adding a connection to LAS
server to the basic Mobile Host architecture.

A. Implementation of Both Types of Architecture

With the approach of invoking mobile web services, by
creating a request, the mobile application is creating the object
in charge of preparing the SOAP message read later by the web
service provider. The web service requester needs to
encapsulate into a SOAP envelope all the parameters needed
by the Mobile Web Service invoked. The SOAP envelope is
sent to the web service provider that invokes the Mobile Web
Service and returns its response. The Mobile Web Service
response is encapsulated into the SOAP message and returned
to the mobile application requester. At the end, the mobile
application requester is able to process the response received.

With the approach of invoking the MPEG-7 based
multimedia service through an ESB, OpenESB is an open
source platform for business and enterprise integration and for

Service Oriented Architectures [9]. The wide range of
components included in this platform involves communication
with back-end systems and ESBs and document
transformation, process transaction, among others. All the
components are interconnected with a messaging bus called the
Normalized Message Router (JBI bus). All the message
exchanges performed in OpenESB are done using standardized
message exchange patterns (MEP) based on abstract WSDL.
By creating a request, the mobile application is creating the
object in charge of preparing the SOAP message read later by
the ESB. The SOAP message is sent to the Enterprise Service
Bus. The ESB must read internally the SOAP message and get
the information needed. That information is passed to an
Enterprise Java Bean, created in this case to perform the LAS
server selection and the connection to the server selected. Once
the LAS server returns the response, it is encapsulated by the
ESB into the SOAP message that will be returned to the mobile
application. At the end, the mobile application requester is able
to process the response received.

Figure 5. Screenshots of the mobile clients

The prototype is run on the Sun Wireless Toolkit emulator
(cf. Fig. 5). Users are able to check whether the Mobile Host
server runs properly by clicking the menu of Server Status.
Users can set the Mobile Host in debug mode to see all
messages on the console and configure the IP address of the
Mobile Host, using the settings menu. By using the option of
the LASViaESB menu, the MPEG-7 based multimedia service
is invoked via the ESB, instead of via the Mobile Web
Services.

For the system test and evaluation, it is important to
analyze not only the fulfillment of requirements but also the
application performance. Detailed challenges are discussed in
depth in [1]. In mobile environment users need reasonable

response times from central servers even with limited hardware
resources. Most mobile devices have limited resources, low
processing capacity and low data transmission rates, but users
want their mobile devices to response as well as a laptop or
personal computer and the application developer must try to
satisfy as well as possible that desire.

B. Evaluation of Connection with Mobile Web Services

Due to the simple functionality offered by the mobile
application developed, the set of tests performed to evaluate the
viability of the application were focused on measuring the
performance of the application under different circumstances.

In order to test the performance of the connection to LAS
with Mobile Web Services, the following test case was
developed. Two Mobile Hosts were executed on the emulator
provided by the Wireless Toolkit 2.5.2. One Mobile Host was
acting like server while the other one was acting like client.
During the test case the Mobile Host client requested each
picture to the Mobile Host Server that connects to the LAS
service and gets the picture. The request round trip of that
process was measured and is analyzed in the present section. In
order to have a stable base for the analysis, all the requests
were repeated 10 times and the first request to the server was
always omitted to avoid measuring the initialization process on
the server side. This case test was designed in the same way as
the case test designed for the Photoservice functionality in
order to be able to compare them.

The first variation observed after including the connection
to LAS Services to the basic Mobile Host architecture is the
growth in the size of the request. This increasing amount is
almost 178 bytes on average due to the overhead caused by the
LAS URL, the listening port, login and password that must be
informed to the Mobile Host in order to create a successful
connection. Even though this kind of request could be designed
in a different way, an overhead in the request is almost
inevitable because additional information must be transmitted.

Figure 6. Round trip time of request handling using Mobile Web Services

 Since the response obtained from the LAS server is exactly
the same as the one obtained from the Mobile Host in the
Photoservice case test, no variation in the size of the response
is observed, and the same almost linear behavior is obtained.
This is due to the fact that no additional information must be
added to the response when it comes from the LAS server to

the Mobile Host server and only the encoded picture is
transmitted.

Comparing the required time for processing the response
between the Photoservice functionality and the LASService
functionality, an average increase of only 0.037 milliseconds is
noticed which is negligible and one might assume that no
increase is observed. That variation might be caused due to the
environment used for testing, where the LAS Server, Mobile
Host server and Mobile Host client were running on the same
computer and processing time must be shared between all the
applications.

The most important result of this case test is the total time
elapsed since the request is sent by the Mobile Host client until
the picture is received. This time is the time perceived by the
final user and is one of the decisive factors for a user to select
an application. The introduction of a connection to a LAS
server with Mobile Web Services using a Mobile Host server
as middleware is not a viable solution, at least it is not a viable
solution for the transmission of pictures from Mobile Hosts to
other mobile devices. The average increase in the round trip
time of the LASService request with respect to the round trip
time of the Photoservice request is 2.95 times greater, which
means that a user has to wait 151 seconds more for a picture of
96.5Kb. The response time obtained for connections to LAS
services with Mobile Web Services are not competitive in the
real market, where users expect high performance applications
and response time relatively short. Fig. 6 shows how it takes
for each picture to be received on the Mobile Host client.

C. Connection Through ESB

Due to the new functionality implemented on the Enterprise
Service Bus, additional to the existing functionality on the
Mobile Host side, three different tests were performed for this
architecture. A set of unit test was developed to ensure the
correctness of the ESB and the EJB implemented; a set of
performance tests similar to those performed on the Mobile
Host for testing the viability of the architecture from the user
point of view, it means, focusing the attention on response
times; and a set of tests for showing the load balancing done by
the ESB using two instances of a LAS server for attending
requests.

In order to test the correctness of the Enterprise Service Bus
and the Enterprise Java Bean implementation, a composite
application (CA) was developed in NetBeans. The JBI
Composite Application (CA) project system allows the
developer to create a Service Assembly (SA) artifact that
contains all the subprojects as Service Units (SUs). The SA can
then be deployed to the JBI component containers on the JBI
Meta-container. It provides a project folder with subfolders on
the local file system for storing project specific design and
configuration data.

The ConnectionToLASPort consumer endpoint connects to
the ConnectionToLASPartnerLink provider endpoint in order
to call the service offered. Once the EJB processes the request,
uses its consumer end point to return the response. That
response is obtained by the ConnectionToLASPort by using its
provider endpoint.

Once the correctness of the functionality of the Enterprise
Service Bus was tested, a set of tests was designed to measure
the performance of the architecture managing access to LAS
services from mobile devices. The design follows the same
schema used for testing the performance of the Photoservice
functionality and the LASService functionality. In this case
test, a Mobile Host acting like client and without running its
internal server tries to access a LAS service by using a
middleware architecture, in this case the Enterprise Service
Bus.

Since the ESB does not add any additional content to the
response obtained from LAS, the size of the response is also
very similar to the size of the responses for the case tests
analyzed. No important variation in the time for processing the
response is observed either with respect to the other case tests,
where only a difference of more or less 0,03 milliseconds is
presented.

Even though the size of the response for all the
functionalities (Photoservice, LASService and LASViaESB) is
very similar, two important advantages regarding the request
round trip time is observed. The first advantage is that the
request round trip time increases linearly with respect to the
picture size, contrary to the behavior observed for the
Photoservice functionality and the LASViaESB functionality,
where the increase was always exponential. The other
advantage is the short time elapsed from the request is sent to
the response is received. In this case the average time for the
request round trip was 3.65 seconds, a much lower time than
22.08 seconds required in the Photoservice functionality and
even lower than 65.24 seconds required in the connection to
LAS service with Mobile Web Services (LASService
functionality).

The advantages of using ESB as middleware to support
LAS scalability are listed as follows:

• Transparency: No changes on the client side or on the
LAS server must be done. The ESB is able to use the
existing mechanisms on LAS for connecting to it and
consume its services.

• Scalability: ESB is already an architecture highly
scalable that follows all the integration patterns and
standards existing on the market.

• Performance: Tests demonstrated that an ESB acting
like a middleware connection between clients and LAS
servers keeps a high performance and is even more
efficient that having a direct connection between a
Mobile Host and LAS.

• SOA paradigm: The introduction of an ESB for
connecting to LAS brings a world of opportunities and
introduces LAS to the Service Oriented Architecture
paradigm.

The MobSOS test bed for multimedia community services
[13] was used to see what was happening inside each LAS
server during the test phase. Due to the fact that MobSOS was
originally designed for monitoring only one LAS server, it was
necessary to create two MobSOS databases and monitor each
server separately. For measuring the load balancing done by

the ESB in a randomly way, each picture was requested 10
times, therefore, one hundred requests were sent to the ESB
from a mobile device and the results obtained using MobSOS
are summarized in Table 1.

TABLE I. LOAD BALANCE BETWEEN TWO LAS SERVERS

Measure Server 1 Server 2

Number of connections 52 48

Total rrequest bytes 7775 5788

Average request bytes 55.53 56.19

Max. request bytes 113 113

Total response bytes 3370982 2368598

Average response bytes 24078.44 22996.09

Max. response bytes 136258 136258

Even though the load balancing implemented on the ESB
was only a random selection between two different servers, the
statistics obtained from MobSOS show how equitable is the
distribution of processing. 100 connections were established
and almost a perfect distribution between both servers was
obtained (52 percent for server 1 and 48 percent for server 2).

The request and the response with the maximum number of
bytes is the same on both servers because it corresponds to the
biggest picture requested. Other measures taken by MobSOS,
such as the number of bytes requested, the number of bytes
responded, and the average of those values, show how well
distributed is the load on each server. Further load balancing
criteria could be created to produce interesting results.

D. A Comparison between Mobile Web Services and ESB

This comparison allows seeing how using an Enterprise
Service Bus as middleware for connecting mobile devices to
LAS services improves the response time and makes the
developed application a viable solution for the real world
requirements.

Figure 7. Test results of request round trip time through ESB

Fig. 7 shows the size of the images used during the testing
phase, the size of the requests formed for getting the picture in
each case test and the size of the response returned for all the
implemented functionalities (Photoservice, LASService and
LASViaESB). Even though the similarity between the data
shown in Fig.7, it must be highlighted that connecting to LAS
services through the implemented ESB reduces the average
size of requests in 16 bytes and the average size of responses in
1537.7 bytes with respect to connecting to LAS services with
Mobile Web Services.

Using an ESB like middleware for connecting to LAS from
mobile devices reduces the average response processing time in
46 percent with respect to the connection done with Mobile
Web Services using a Mobile Host like middleware.

The advantages of using ESB as middleware for
connections to LAS services instead of using Mobile Web
Services can be found clearly. The ESB keeps the response
time perceived by the user almost constant in comparison with
the exponential growth perceived when a Mobile Host and
Mobile Web Services are used. The response time perceived by
the user is inside competitive ranges for mobile applications (1-
4 seconds). There is a low relation between the size of the
picture and the response time perceived by the user (cf. Table
2).

TABLE II. A COMPARISON OF USING MOBILE WEB SERVICES AND ESB
AS MIDDLEWARE

Factors Mobile Web Services ESB as middleware

Performance Response time is

proportional to response

size and increases

exponentially

Response time increases

linearly and at a low rate

Scalability Not scalable, only one

LAS server is connected

Scalable, distributed LAS

services

Implemen-

tation
Details must be known by

clients

WSDL is used to publish

and find Web services on
the ESB

Viability Response time makes it

unfeasible

Short response time makes

it attactive for users

V. CONCLUSIONS AND FUTURE WORK

This paper presents the ongoing research results of
realization of mobile access to MPEG-7 based multimedia
services. Two different kinds of architecture are applied:
Mobile Web Services and Enterprise Service Bus as
middleware.

The Mobile Web Service architecture makes use of a
Mobile Host acting like a server and providing Mobile Web
Services to connect to LAS. The function of this Mobile Host
is processing requests from other mobile devices that consume
its web service where the connection to LAS is encapsulated.
The request as well as the response of both the mobile device
and the Mobile Host is embedded inside SOAP messages
created using the functionality offered by kSOAP. The
connection to LAS is completely transparent for the mobile
device which makes the request and it only needs to know how
to consume the Mobile Web Service offered by the Mobile
Host. This architecture is a good solution for mobile devices

that do not have a direct connection to LAS but are able to
consume Mobile Web Services provided by the Mobile Host.
However, the response time for pictures whose size is greater
than 1k makes this implementation few attractive for users.

The ESB architecture makes use of the OpenESB
technology developed by Sun Microsystems for creating a
single access point to LAS servers for multiple mobile devices.
In this architecture, the LAS service is accessed directly from
the ESB by using an Enterprise Java Bean. In this way the LAS
service is encapsulated into a web service that can be
consumed by any application that knows its WSDL file. Under
this schema, applications that want to connect to LAS only
need to be able to establish a connection to the ESB and
consume the web service. This architecture follows the entire
standards for integrating applications and SOA, and can be
easily scalable since the OpenESB was designed from the
beginning on with that characteristic.

Both kinds of architecture were put to the test and
interesting performance results were found. The ESB solution
advances in lowing request response time with higher
scalability.

The attempts done in this project is only the beginning of a
new research field around the LAS server. As the proof of
concept, only the prototype of the Photoservice as one of the
MPEG-7 based multimedia services running on the LAS server
is tested. Further services including storytelling services,
multimedia annotation services, and context-aware services etc.
should be distributed via the mobile access in future research
work. In addition, the current test data set does not cover a
large amount of multimedia data, due to the complexity of
multimedia retrieval evaluation processes [11]. Above all, the
both types of architecture for mobile access to MPEG-7 based
multimedia services need to be evaluted on large multimedia
repositories.

REFERENCES

[1] A. Barbir, C. Hobbs, E. Bertino, F. Hirsch and L. Martino, “Challenges
of Testing Web Services and Security in SOA Implementation”, L.
Baresi, E. Di Nitto (Eds.): Test and Analysis of Web Services, Spring,
2007, pp. 395-440.

[2] B. Benatallah and Z. Maamar, “Introduction to the special issue on m-
services”, IEEE transactions on systems, man, and cybernetics - part a:
systems and humans, 33(6):665–666, November 2003.

[3] S. Burbeck, “The Tao of e-business services - The evolution of Web
applications into service-oriented components with Web services”, IBM
DeveloperWorks, October 2000.

[4] Y. Cao, M. Spaniol, R. Klamma, D. Renzel, “Virtual Campfire - A
Mobile Social Software for Cross-Media Communities”, K.
Tochtermann, H. Maurer, F. Kappe, A. Scharl (Eds.): Proceedings of I-

Media'07, International Conference on New Media Technology and
Semantic Systems, Graz, Austria, September 5 - 7, 2007, J.UCS (Journal
of Universal Computer Science) Proceedings, pp. 192-195.

[5] Y. Cao, R. Klamma, M. Hou, M. Jake, “Follow Me, Follow You -
Spatiotemporal Community Context Modeling and Adaptation for
Mobile Information Systems”, X. Meng, H. Lei, S. Grumbach, H. V.
Leong (Eds.): Proc. of the 9th International Conference on Mobile Data
Management, April 27-30, 2008, Beijing, China, pp. 108-115.

[6] G. Gehlen, “Mobile Web Services - Concepts, Prototype, and Traffic
Performance analysis”, PhD thesis, RWTH Aachen University, October
2007.

[7] K. Gottschalk, S. Graham, H. Kreger, and J. Snell, ”Introduction to web
services architecture”, IBM Systems Journal: New Developments in
Web Services and E-commerce, 41(2):178–198, 2002.

[8] J. Hasan and M. Duran, “Expert Service-Oriented Architecture in C
sharp”, Apress, 2006.

[9] F. Jennings and D. Salter, Building SOA-Based Composite Applications
Using NetBeans IDE 6, Packt Publishing, 2008.

[10] M. Keen, S. Bishop, A. Hopkins, S. Milinski, C. Nott, R. Robinson, J.
Adams, P. Verschueren, and A. Acharya, “Patterns: Implementing an
SOA using an Enterprise Service Bus”, IBM RedBooks, July 2004.

[11] M. Lux, G. Dösinger and G. Beham, “User-Centered Multimedia
Retrieval Evaluation Based on Empirical Research”, M. Granitzer, M.
Lux and M. Spaniol (Eds.): Multimedia semantics – The Role of
Metadata, Springer, 2008.

[12] J. M. Martinez, C. Gonzalez, O. Fernandez, C. Garcia, and J. de Ramon,
“Towards universal access to content using MPEG-7”, In Proceedings of
the 10th ACM International Conference on Multimedia, ACM Press,
2002, pp. 199–202.

[13] D. Renzel, R. Klamma, M. Spaniol, “MobSOS - A Testbed for Mobile
Multimedia Community Services”, 9th International Workshop on
Image Analysis for Multimedia Interactive Services (WIAMIS '08), May
7-9, 2008, Klagenfurt, Austria.

[14] M. Spaniol, R. Klamma, H. Janßen, D. Renzel, “LAS: A Lightweight
Application Server for MPEG-7 Services in Community Engines”, K.
Tochtermann, H. Maurer (Eds.): Proceedings of I-KNOW '06, 6th
International Conference on Knowledge Management, Graz, Austria,
September 6 - 8, 2006, J.UCS (Journal of Universal Computer Science)
Proceedings, Springer, pp. 592-599.

[15] S. N. Srirama, M. Jarke, and W. Prinz, “Mobile web service
provisioning”, In AICT-ICIW ’06: Proceedings of the Advanced
International Conference on Telecommunications and International
Conference on Internet and Web Applications and Services, page 120.
IEEE Computer Society, 2006.

[16] S. N. Srirama, “Mobile Hosts in enterprise service integration”, PhD
thesis, RWTH Aachen University, October 2008.

[17] H. Paulino, “Mobile Service Development and Deployment with
Remotely Launched Service-Oriented Mobile Agents”, C. Becker, C.S.
Jensen, J. Su and D. Nicklas (Eds.): 8th International Conference on
Mobile Data Management (MDM 2007), Mannheim, Germany, May 7-
11, 2007, IEEE, pp. 412-416.

[18] S. J. Vaughan-Nichols, “The mobile Web comes of Age”, IEEE
Computer, vol. 41, No. 11, November, 2008, IEEE Computer Society,
pp. 15-17.

