
Zompopo: Mobile Calendar Prediction based on Human Activities Recognition using
the Accelerometer and Cloud Services

Satish Narayana Srirama, Huber Flores, Carlos Paniagua
Institute of Computer Science, University of Tartu

J. Liivi 2, Tartu, Estonia
{srirama, huber, paniagua}@ut.ee

Abstract—Both cloud computing and mobile computing
domains have advanced rapidly and are the promising tech-
nologies for the near future. Furthermore, the proliferation
of mobile devices is fostering the emergence of ubiquitous
environments, and thus the development of pervasive and
context-aware applications is increasing. Mobile technologies
are mainly drawing their attention to the clouds due to the
increasing demand of the applications for processing power,
storage space and energy. This paper introduces Zompopo,
an Android application that provides an intelligent calendar,
combining Google Calendar and the accelerometer sensor of
the mobile, which allows the user to schedule his/her activities
from the beginning of the day according previous week’s activ-
ities. The application is explained with detailed architectural
and technological choices. The application uses MapReduce to
analyze the accelerometer sensor data to deduce any diversions
from the regular calendar activity, thus efficiently utilizing the
cloud computing resources. A detailed performance analysis
of the application is also provided, showing how mobile
application benefit by going cloud-aware.

Keywords-Mobile computing; cloud computing; context-
aware; accelerometer; MapReduce;

I. INTRODUCTION

Both cloud computing [1] and mobile computing domains
have advanced rapidly and are the promising technologies
for the near future. Cloud computing is a style of computing
in which, typically, resources scalable on demand are pro-
vided ”as a service (aaS)” over the Internet to the users who
need not have knowledge of, expertise in, or control over
the cloud infrastructure that supports them. The provisioning
of cloud services occurs at the Infrastructural level (IaaS)
or Platform level (PaaS) or at the Software level (SaaS).
Clouds are looking forward to the mobile domain, having
their expectations focused in the idea of data synchronization
services. Mobile sync refers to the synchronization of data
in the handset with a server and a portal in the cloud.
Some of the most popular vendors offering synchronization
services are Funambol [2], Mobical.net, rseven.com and
Memotoo.com.

Similarly, improvements in mobile devices, on hardware
(embedded sensors, memory, power consumption, touch-
screen, better ergonomic design, etc.), in software (more
numerous and more sophisticated applications due to the

release of iPhone [3] and Android [4] platforms) and in
transmission (higher data transmission rates achieved with
3G and 4G technologies), have contributed towards having
higher mobile penetration and better services provided to
the customers. Also, those improvements have enabled the
mobiles to become a source of information in order to
understand the user in multiple ways (interaction, movement,
location etc.).

Furthermore, the proliferation of mobile devices is foster-
ing the emergence of ubiquitous environments, and thus the
development of pervasive and context-aware applications is
increasing. Examples include, AAMPL [5], MetroSense [6],
Place-Its [7] etc. Context-aware applications are those that
utilize the user’s context for providing environmental adapt-
ability. These kinds of applications enable user interaction
by combining the functionality of a mobile application with
a variety of sensors (accelerometer, magnetic field, gravity,
etc.) within the handset and with external entities as location
information systems (GPS). Sensor’s information allows the
applications to learn from the user in order to provide better
services. However, the use of sensors in the applications is
limited due the lack of resources in the handset for storing
and processing the data collected.

Mobile technologies are drawing their attention to the
clouds due to the increasing demand of the applications for
processing power, storage space and energy. Applications
involving the use of sensors can rely on Hadoop [8] as mo-
bile cloud service for processing (identification, recognition,
classification etc.) large amounts of data. Therefore, to bring
the benefits from these different domains together, we tried
to build an Android application that relies on the cloud
to bring its functionality on the provisioning of context-
aware services. Its aim is to provide an intelligent calendar
(combining Google Calendar and the accelerometer sensor)
that allows the user to schedule his or her activities from the
beginning of the day according to previous week’s activities.
The application is explained in detail with the technological
and architectural choices. We have organized the rest of this
paper in the following way.

Section II describes the developed application in detail,
with screenshots. Section III discusses the accelerometer



data used in the application and how it is processed on
the cloud. Later, section IV discusses the considered ar-
chitectural and technological choices. Section V provides
a detailed analysis of the application. Section VI discusses
the related work and Section VII concludes the paper with
future research directions

II. ZOMPOPO: APPLICATION DESCRIPTION AND
SCREENSHOTS

Lately, mobile devices have become an indispensable
tools in everyday life due enables the ubiquity access for
storing user’s information (contacts, agenda etc.) and for
executing low demanding computational tasks (calendar, text
editor etc.). Moreover, handsets are too attached to the user
that may be used for capturing his or her context for en-
hancing the mobile applications with proactive behavior. For
instance, the light sensor within the smartphones increases
or decreases the brightness in the screen depending in the
environmental changes with the purpose of saving energy.
Services which are used often, such as mobile calendar it
can enrich monitoring the way in which the carrier behaves.

A calendar service for mobiles can be provided locally
within the handset as widget application (e.g. Android
calendar etc) or externally as mobile cloud service using
SyncML [9] (e.g. Google Calendar, Funambol etc), the
difference between them relies in the fact that using an
external source multiple handsets can be synchronized with
the cloud, meanwhile the local source is only useful for one
individual user. Zompopo makes use of the second approach
since it uses cloud services (Hadoop) for processing the data
gathered by the accelerometer. Zompopo is an application
that tries to extend the capabilities of a generic calendar
adding a feature that makes use of the accelerometer sensor
for predicting the activities which the user will perform
during the day based on the sensing of previous week’s
activities. Since the accuracy of the prediction depends on
a set of data collected in advance, the use of the Zompopo
application is restricted to collecting information one week
before the activation of the prediction feature. The follow-
ing description assumes that the information was already
collected.

While Zompopo is executing in the handset background;
the data from the accelerometer is gathered and stored in
a SQLite database (the accelerometer analysis is discussed
in detail in section III). By default the accelerometer is
always sensing environmental changes that is appended to
the database file and then offloaded from the mobile to the
cloud storage once per day (23:00 pm). The file is uploaded
though MCM (Mobile Cloud Middleware) to the cloud with
an unique Id that consist in the date plus the prefix zompopo.
For example: The offloading of today was stored as ”09-05-
2011-zompopo”. At the beginning of each day (generally
7:00 am), Zompopo sends a request to MCM for obtaining
the set of activities to be included in the calendar. Since

Figure 1. Zompopo application flow

MCM implements an asynchronous notification feature for
decoupling the handset from the mobile cloud services; the
hadoop task for analyzing all the set of historical files is
delegated to MCM, releasing the mobile from the activity.
The progress of the task is monitored by MCM, which
informs the user through a notification message when the
task is finished along with the information about its final
result (refer to figure 1). MCM is discussed in detail in
section IV.

Once the handset is notified about the results, Zompopo
shows a screen with the list of suggested activities (hour
+ name of the activity) that could be included in the daily
calendar. Since Zompopo was developed for Android; the
activities are created using the default calendar application
which comes with the OS. The android calendar allows to
use SyncML for the synchronization with Google calendar
service, and thus changes are replicated to the cloud calendar
service automatically. However, the creation of activities
is also possible from MCM as is able to access Google
cloud services. Therefore Zompopo is not tied to the mobile
platform and can be easily extended.

III. HUMAN ACTIVITIES RECOGNITION USING THE
ACCELEROMETER AND HADOOP PROCESSING SERVICE

Nowadays mobile devices are equipped with a variety of
sensors (GPS, magnetic field, etc) that enrich the mobile ap-
plications with location awareness and sensing capabilities.
Those advances enable fitting contextual requirements for
improving the quality of service (QoS) in the applications
as it allows adapting the interaction between the handset
and the user in real-time. For example, a sensor such as the
accelerometer is used for sensing how the user is holding the
handset, and thus changing the position of the screen as a
result. The accelerometer is a sensing element that measures
the acceleration associated with the positioning of a weight



Figure 2. 3-axis readings for different activities

in which it has being embedded (device). Depending on the
number of axes, it can gather the acceleration information
from multiple directions. Generally a triaxial accelerometer
is the most common in mobiles from vendors such as HTC,
Samsung, Nokia etc. Therefore, acceleration can be sensed
on three axes, forward/backward, left/right and up/down. For
example: in the case of a runner, up/down is measure as
the crouching when is warming up before starting to run,
forward/backward is related with speeding up and slowing
down, and left/right involves making turns while he is
running.

While the accelerometer is able to track information
for the recognition of multiple human activities (walking,
running, etc) for an immediate response, each activity is
differentiated according to the behavior of the data collected
by the accelerometer as shown in figure 2. In the context of
Zompopo it can be used altogether with cloud services for
the prediction of repetitive activities based on a historical set
of data. The accelerometer provides information across time
related with acceleration along x axis, acceleration along y
axis and acceleration along z axis. This information may
be used for the identification and classification of certain
patterns which are defined in the Zompopo criteria as;
standing, walking and running. However, for performing
such analysis a classification algorithm using Hadoop is
used, which is shown in figure 3. Hadoop is a framework that
provides support for the analysis of data-intensive distributed
applications (thousands of nodes) within the cloud. The
algorithm applies map/reduce for matching the patterns
described above, but since the actual aim of the Zompopo is
the invocation of data-intensive processing services from the
cloud, a basic algorithm is introduced. This algorithm was
implemented using Hadoop 0.20 and Java as programming
language.

The MapReduce algorithm consists of two basic steps,
the Map and the Reduce functions. The Map function takes
one set of key value pairs and maps them to intermediate
key pairs. The intermediate key pairs are sorted and grouped
together by the framework and passed to the reduce function.
The Reduce function takes the intermediate key pairs and
produces the output. The input process is showed in figure 4

Figure 3. Classification algorithm using Hadoop map/reduce

Figure 4. Sequential file procedure

and uses a CSV file to start the algorithm. Each line within
the file contains the following information <index, time, x,
y, z>, where time is measured in hours, x, y and z are the 3
axis measured by the accelerometer. Those data is mapped
individually to one key value with the following structure
<time, [x, y, z] >to produce one Sequential File that is the
input for the MapReduce process.

The Map function takes each key <time, [x, y, z]>from
the Sequential File and creates one temporary key <time,
x>(figure 5). The value of x is considered more repre-
sentative than y and z since x measures the change of
position when person is moving forward or backward and the
prediction is based on the idea of movements that involves
the carrier locomotion from one place to another. Thus, the
recognition is based on x axis. In future improvements of the
algorithm the values y and z will be considered to produce
more accurate results.

Later, the Reduce function receives the temporary keys
grouped and sorted by time. Each key represents one set
of x values and each key is processed by one Reducer. Two
statistical measures, the mean and the standard deviation are
used for analyzing the data, and thus determining whether

Figure 5. Segregation of accelerometer data based on x axis



Figure 6. Reduce Function

the user is moving or not. The standard deviation indicates
how the data is spread out over a range of values. Based
on figure 2 the more spread out the values are the more the
user moves and in the opposite way the more the values are
close to each other the less the user is moving. The Reduce
function (figure 6) calculates the two statistical measures and
uses the standard deviation to determine if the user is moving
or not for the given set of values. One threshold value for
the standard deviation is defined with a value of 1 for this
experiment. If the standard deviation is below the threshold
values the algorithm infers that the user was not moving. If
the standard deviation is greater than the threshold value it
means the data is spread enough to infer that the user was
moving by the time the data was measured. The Reduce
produces the output in CSV file with information such <time
during the day, Accelerometer Measure, Standard Deviation,
Action>, where accelerometer Measure is the mean value
of the x values received by the Reducer and Action is the
activity inferred by the algorithm.

IV. GENERIC MIDDLEWARE FOR MOBILE CLOUD
SERVICES INVOCATION

The direct invocation of a cloud service (such as Hadoop)
is resource consuming for a mobile phone, as the operating
system tends to get stuck if the computation offloading
requires long waiting time for getting a response back.
Moreover, meanwhile the handset is waiting for an answer,
it cannot make another application call from the user, hence
the mobile is not able to execute concurrent tasks. Also
such waiting time is not tolerable for the user and mobile
application usability perspective. Consequently, its necessary
to rely on a middleware solution for getting the results
asynchronously.

Several cloud services are considered in the Zompopo
application, most of them are bounded by numerous con-
straints like cloud provider’s technology choices, platform
restrictions etc. Cloud providers offer proprietary APIs and
routines to consume the services, e.g. Google (Gdata API
suite) and JetS3t API [10] (Amazon S3 [11] and Eucalyp-
tus [12]). Therefore, cloud interoperability is not possible
and when a mobile mashup application is to be created, it
has to be developed for a specific cloud provider. Moreover,
the devices need to have the APIs specific to the mobile plat-
forms like Android or iOS, and cloud vendors are generally
observed to be slow in providing APIs for multiple mobile

Figure 7. Architecture of the Mobile Cloud Middleware

platforms. For example, at the time of writing this paper,
Amazon has just released the mobile API for Android and
still in beta. To counter most of these problems in general,
Mobile Cloud Middleware (MCM) has been developed.

MCM is introduced as an intermediary between the mo-
bile phones and the clouds in the mobile cloud service in-
vocation cycle. The architecture is shown in figure 7. MCM
fosters mobile platform heterogeneity and the combination
of different cloud services into a mobile mashup application.
When an application tries to connect to a basic cloud service,
it connects to the TP Handler component of the middleware,
which receives the request. The transportation handler can
receive the requests based on several protocols like the
Hypertext Transfer Protocol (HTTP) [13] or the Extensible
Messaging and Presence Protocol (XMPP) [14] The request
is then processed by the Interoperability API engine, which
selects the suitable cloud API and creates a unique adapter
that ensures the transactional process with the cloud.

When the request is forwarded to the MCM Manager,
it first creates a session assigning a unique identifier for
saving the system configuration of the handset (OS, clouds
credentials, etc.) and the service configuration requested (list
of services, cloud providers, types of transactions, etc.) in a
temporal storage space, respectively. The identifier is used
for handling different requests from multiple mobile devices
and for sending the notification back when the process
running in the cloud is finished. Later, the interoperability
API engine verifies the service configuration for selecting
the suitable API, depending on the cloud vendor. A temporal
transaction space is created for exchanging data between the
clouds. The aim of the temporal space is to avoid offloading
the same information from the mobile, again and again.

Once the interoperability API engine decides which API
set it is going to use, the MCM Manager requests for the
specific routines from the Adapter Servlets. The servlets
contain the set of functions for the consumption of the cloud
services. Finally, MCM Manager encapsulates the API and
the routine in an adapter for performing the transactions and
accessing the SaaS. The result of each cloud transaction
is sent back to the handset in a JSON (JavaScript Object
Notation) [15] format, based on the application design. In



case of the Zompopo application the final result is sent just
once, after all the cloud services are finished. The adapter
keeps the connection alive between MCM and the cloud, and
monitors the status of each task running within the cloud.

When all the cloud services are completed, MCM Man-
ager uses the asynchronous notification feature to push
the response back to the handset. Since, Zompopo is an
Android application, it follows the Android Cloud to Device
Messaging Framework (AC2DM) [16] protocol for this task.
AC2DM is a lightweight mechanism which lets to push a
message into a queue of a third party notification service,
which is later sent to the device. Once the message is
received, the system wakes up the application via Intent
Broadcast, passing the raw message data received straight
to the Zompopo application.

V. ZOMPOPO PERFORMANCE MODEL: ASYNCHRONOUS
SERVICE INVOCATION

On the basis of the functional Zompopo prototype, the
application was tested extensively for understanding its in-
teraction performance with the user. The performance model
and the analysis are addressed here. Figure 8 shows the se-
quence of activities that are performed during the execution
of the application. Here the total application duration i.e. the
total mobile cloud service invocation time, is:

Tmcs
∼= Ttr+Tm+∆Tm+

n∑
i=1

(Ttei
+Tci

)+Tpn+Tsync (1)

Where, Ttr is the transmission time taken across the radio
link for the invocation between the mobile phone and the
MCM. The value includes the time taken to transmit the
request to the cloud and the time taken to send the response
back to the mobile. Apart from these values, several param-
eters also affect the transmission delays like the TCP packet
loss, TCP acknowledgements, TCP congestion control etc.
So a true estimate of the transmission delays is not always
possible. Alternatively, one can take the values several times
and can consider the mean values for the analysis. Tm is
the time taken to process the request at the middleware.
∆Tm is the minute extra latency added to the performance
of the MCM, as the mobile is immediately notified with
the acknowledgment. Tte is the transmission time across the
Internet/Ethernet for the invocation between the middleware
and the cloud. Tc is the time taken to process the actual
service at the cloud. This process is repeated several times in
the Zompopo application, as it is contacting different clouds
like Eucalyptus, Google and Amazon. Hence the sigma is
considered in the equation.

Similarly, Tpn represents the push notification time, which
is the time taken to send the response of the mobile cloud
service to the device via the AC2DM. Once the notification
is received by the mobile phone the activities are created
locally in a generic calendar. Since the information calendar

Figure 8. Mobile cloud service invocation cycle: Activities and timestamps

is an inherent Mobile sync feature for Android; an extra
time is introduced, Tsync is the time in which the hand-
set synchronizes the data with the cloud service (Google
Calendar) though SyncML protocol. While Tmcs may seem
a bit higher, the phone is rather free to continue with its
tasks, so not much load on it. This is possible only due to
the support for push notifications at the MCM. The mobile
phone just sends the request and gets the acknowledgment
back. Actual response from the cloud is sent to the mobile
asynchronously. Thus the delay perceived at the mobile
rather stays constant however big the Tmcs may be. ∼= is
considered in the equation as there are also other timestamps
involved, like the client processing at the mobile phone.
However, these values will be quite small and cannot be
calculated exactly.

To analyze the performance of the Zompopo application,
Eucalyptus Walrus storage services are used for saving the
information collected by the accelerometer. A historical set
consisting in one week of accelerometer data (one file per
day) was stored in a Walrus bucket (objects are stored
in buckets). HTC desire phone, with a 5 megapixel color
camera with auto focus and flash was considered for the
analysis. It has a CPU speed of 1GHz, 576 MB of RAM and
storage that can be extended up to 32GB. The application is
developed based on the Android platform, compatible with
Android 2.2 API or higher. Wifi connection was used to
connect the mobile to the middleware. So, test cases were
taken in a network with an upload rate of ≈ 1409 kbps and
download rate of ≈ 3692 kbps, respectively. However, as
mentioned already, estimating the true values of transmission
capabilities achieved at a particular instance of time is not
trivial. To counter the problem, we have taken the time
stamps several times (5 times), across different parts of the



Figure 9. Timestamps of the application scenario

day and the mean values are considered for the analysis.
The timestamps are shown in figure 9. The value of Ttr

+ ∆Tm is quite short (< 870 msec), which is acceptable
from the user perspective. So, the user has the capability to
start more data intensive tasks right after the last one or go
with other general tasks, while the cloud services are being
processed by the MCM. The total time taken for handling
the cloud services at MCM, TCloud (

∑n
i=1(Ttei

+ Tci
) ),

is also logical and higher as expected (≈100 sec). The Tpn

varies depending on current traffic of the C2DM service and
has an average of ≈6 seconds.

VI. RELATED WORK

Lot of literature exists about the accelerometer and how
to use it for the recognition of human activities, the most
extensive work is the one performed by Bao & Intille
(2004) [17]. In their experiments they used 5 biaxial ac-
celerometers on multiple parts of the body for the recogni-
tion of activities such as eating, sitting, reading etc. Several
mobile applications that enrich their functionality with the
accelerometer are developed, most of them context-aware
applications. However, these application do not make use of
cloud services since they use accelerometer for a proactive
response in real-time. For example, AAMPL (Accelerom-
eter Augmented Mobile Phone Localization) is a mobile
application that claims that localization of the mobiles can
get affected slightly as GPS information is not sufficient;
therefore the application enhances the localization of the
user’s context using the accelerometer.

Similarly, SAPM (sleep activity pattern monitoring) [18]
is a health care proactive application that makes use of the
accelerometer altogether with cloud services to monitor and
to study in a remote way the sleep-wake cycle of elderly
people staying at nursing homes. SAPM collects and stores
the sensors information in a remote server (middleware
analogy), later after updating the system with sleep diaries,
it sends the information to the cloud for being processed
by an algorithm that matches and annotates the sensor data
with manual sleep diary information.

Middleware approaches similar to our MCM have also
been addressed in the literature. MCCM (Mobile Cloud
Computing Middleware) [19] is a project which involves the
use of a middleware for the consumption of web services
(WS) [20] in a mobile mashup WS application. However,
we have observed their middleware and the API support to
be tightly coupled. Cloud agency [21] is another solution
that aims to integrate GRID [22], cloud computing and
mobile agents. The specific role of GRID is to offer a
common and secure infrastructure for managing the virtual
cluster of the cloud through the use of mobile agents.
Agora [23] is another middleware solution which is in the
development, which will enable new large-scale mobile-
cluster applications and will use mobile devices as nodes
of a large-scale cloud-computing infrastructure. Agora will
enable the devices to work together seamlessly. Although,
we could not find any concrete implementations yet.

MCM mainly enables interoperability across multiple
cloud architectures. One feature which really separates it
from other approaches is its support for asynchronous push
notification, which frees the mobile resources during most of
the invocation process. Moreover, our earlier research also
involved working with middleware for mobile web services,
where Srirama et al. have realized a mobile web service
mediation framework (MWSMF) [24] that helps in offering
proper QoS and discovery mechanisms for the services being
provided from the smart phones [25]. MWSMF is shown to
be reasonably scalable and our future research will try to
add the MCM as a component to the MWSMF.

VII. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

The cloud services invocation from the handset enables a
next generation of mobile applications that are not limited
by storage space and processing power. These kinds of
applications access the shared pool of computing resources
provided by the cloud on demand, and thus are able to handle
tasks that require data-intensive processing. Zompopo is an
Android application that makes use of cloud services for
extending the capabilities of a generic calendar within the
mobile phone. Zompopo fosters the provisioning of context-
aware services from the cloud, since it tries utilizing a his-
torical set of data collected by the accelerometer (stored and
processed in the cloud) for predicting activities that may help
the user for scheduling his or her calendar with the activities
that will be performing during the day. The processing of
historical data using Hadoop (MapReduce) allows finding
trends that enable to context-aware applications fitting proac-
tive responses for better adapting in the user’s context. The
paper explained the application with detailed architectural
(services, hardware, etc) and technological choices. The
performance analysis of the application shows that Zompopo
can utilize cloud services for processing historical data with
significant ease and reasonable performance latencies on the



devices. Based on the Zompopo application performance,
we can think of several other application scenarios that can
benefit by going cloud-aware from the mobile devices.

Zompopo’s principal aim was the consumption of cloud
services from the handset for enriching mobile applications;
a basic MapReduce algorithm for matching patterns is
introduced. However, such algorithm will be improved in
next application release for getting more precise activities
prediction. Regarding future work, we are also interested in
implementing more context-aware services from the cloud
that involve the data analysis from other kind of sensors
like magnetic field, in order to find patterns that can be use
for predicting actions, such as direction, presence, rotation,
angle, etc.

ACKNOWLEDGMENT

The research is supported by the European Social Fund
through Mobilitas program and the European Regional De-
velopment Fund through the Estonian Centre of Excellence
in Computer Science.

Zompopo is a flying ant that appears only in May specif-
ically in the Central American region. The application is
called Zompopo due to its predictive behavior.

REFERENCES

[1] M. Armbrust et al., “Above the clouds, a berkeley view of
cloud computing,” University of California, Tech. Rep., Feb
2009.

[2] A. Onetti and F. Capobianco, “Open source and business
model innovation. the funambol case,” in International Con-
ference on OS Systems Genova, 11th-15th July, 2005, pp.
224–227.

[3] Apple Inc, “IPhone,” http://www.apple.com/iphone/.

[4] Google Inc, “Android,” http://www.android.com/.

[5] A. Ofstad, E. Nicholas, R. Szcodronski, and R. Choudhury,
“Aampl: Accelerometer augmented mobile phone localiza-
tion,” in Proceedings of the first ACM international work-
shop on Mobile entity localization and tracking in GPS-less
environments. ACM, 2008, pp. 13–18.

[6] S. Eisenman, N. Lane, E. Miluzzo, R. Peterson, G. Ahn, and
A. Campbell, “Metrosense project: People-centric sensing at
scale,” in First Workshop on World-Sensor-Web (WSW2006).
Citeseer, 2006.

[7] T. Sohn, K. Li, G. Lee, I. Smith, J. Scott, and W. Griswold,
“Place-its: A study of location-based reminders on mobile
phones,” UbiComp 2005: Ubiquitous Computing, pp. 232–
250, 2005.

[8] Apache Hadoop, “Apache Hadoop,”
http://hadoop.apache.org/.

[9] U. Hansmann, R. Mettala, A. Purakayastha, and P. Thompson,
SyncML: Synchronizing and managing your mobile data.
Prentice Hall, 2003.

[10] jets3t, “jetS3t - An open source Java
toolkit for Amazon S3 and CloudFront,”
http://jets3t.s3.amazonaws.com/toolkit/guide.html, 2011.

[11] Amazon, Inc, “Amazon - Amazon Web Services,”
http://aws.amazon.com/.

[12] D. Nurmi, R. Wolski, C. G. G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The Eucalyptus Open-source Cloud-
computing System,” 2011, uRL last visited on 5th Nov 2010.

[13] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee, “Hypertext transfer protocol–
http/1.1,” RFC 2616, June, Tech. Rep., 1999.

[14] P. Saint-Andr, K. Smith, and R. Troncon, XMPP: the defini-
tive guide : building real-time applications with Jabber.
O’Reilly Media, 2009.

[15] JSON, “JSON,” http://www.json.org/.

[16] Google Inc., “Google code labs - Android Cloud to De-
vice Messaging Framework,” http://code.google.com/intl/es-
ES/android/c2dm/index.html.

[17] L. Bao and S. Intille, “Activity recognition from user-
annotated acceleration data,” Pervasive Computing, pp. 1–17,
2004.

[18] J. Biswas, J. Maniyeri, K. Gopalakrishnan, L. Shue, P. Eu-
gene, H. Palit, F. Siang, L. Seng, and L. Xiaorong, “Pro-
cessing of wearable sensor data on the cloud-a step towards
scaling of continuous monitoring of health and well-being,” in
Engineering in Medicine and Biology Society (EMBC), 2010
Annual International Conference of the IEEE. IEEE, 2010,
pp. 3860–3863.

[19] Q. Wang and R. Deters, “Soas last mile connecting smart-
phones to the service cloud,” in 2009 IEEE International
Conference on Cloud Computing, 2009, pp. 80–87.

[20] E. Cerami and S. Laurent, Web services essentials. O’Reilly
& Associates, Inc. Sebastopol, CA, USA, 2002.

[21] R. Aversa, B. Di Martino, M. Rak, and S. Venticinque,
“Cloud agency: A mobile agent based cloud system,” in
2010 International Conference on Complex, Intelligent and
Software Intensive Systems. Ieee, 2010, pp. 132–137.

[22] F. Berman, G. Fox, and A. J. Hey, Overview of the Book:
Grid Computing–Making the Global Infrastructure a Reality.
Wiley Online Library, 2003.

[23] P. Narasimhan, “Agora: mo-
bile cloud-computing middleware,”
http://www.cylab.cmu.edu/research/projects/2010/agora.html.

[24] S. N. Srirama, M. Jarke, and W. Prinz, “Mobile web services
mediation framework,” in Middleware for Service Oriented
Computing (MW4SOC) Workshop @ 8th Int. Middleware
Conf. 2007. ACM Press, 2007.

[25] S. N. Srirama and M. Jarke, “Mobile hosts in enterprise ser-
vice integration,” International Journal of Web Engineering
and Technology (IJWET), vol. 5, no. 2, pp. 187–213, 2009.


