
 1

Rheinisch-Westfälische Technische Hochschule Aachen

Lehrstuhl für Informatik V

Prof. Dr. Matthias Jarke

Security Aspects Analysis in Mobile Web Service

Provisioning

Master Thesis

Kiran Kumar Pendyala
Matriculation number: 248254

September 29
th
 2006

First Supervisor: Prof. Dr. Matthias Jarke

 Lehrstuhl für Informatik V, RWTH Aachen

Second Supervisor: Prof. Dr. Wolfgang Prinz

 Lehrstuhl für Informatik V, RWTH Aachen

Advisor: M. Sc. Satish Narayana Srirama

 Lehrstuhl für Informatik V, RWTH Aachen

 2

 3

Statement

I guarantee that this thesis is done independently, with support of the Informatik V

department at RWTH Aachen University and no other unmentioned helping resources are

used.

Aachen, September 29, 2006

(Kiran Kumar Pendyala)

 4

 5

Abstract

As pervasive mobile data applications are becoming ubiquitous in parallel with

the fast developing and easily readable web services (WS), the ability to provide secure

and reliable communication across mobile web service applications became utmost

important. Even though a lot of standardized security specifications and implementations

exist for web services in the wired networks, not much has been standardized in the

wireless environments. This thesis report addresses some of the critical challenges in

providing WS-Security to the mobile web services domain.

The thesis first addresses security challenges for mobile web services, then

discusses existing standards in the wired and wireless web service environments. It

further tries to propose basic security requirements in the mobile web services domain.

Then the thesis presents design models to achieve the WS-Security with various

architectures and describes the implementation model and its details in an elaborative

way. Finally the thesis presents evaluation details including performance model, generic

mobile WS-Security evaluation analysis, and Mobile Host performance analysis and

evaluation.

In summary, the thesis tries to show that at the least WS message-level security is

achievable on mobile devices and on our Mobile Host. The thesis also draws out various

possible design scenarios, especially Single Sign-on, for achieving WS end-point security

with Mobile Host in the picture. Further, the thesis concludes with the summary of best

possible scenario to achieve WS-Security in mobile web services domain and closes out

explaining the future research directions in the mobile web service security domain.

 6

 7

Table of Contents

Abstract ...5

Table of Contents ..7

1 Introduction ..9

1.1 Motivation ...9

1.2 Overview ...9

2 State of the art ..11

2.1 Mobile Web Services ..11

2.1.1 Introduction ...11

2.1.2 Mobile Web Service Provider ...12

2.2 Security Challenges for Web Services and Wireless Environments13

2.2.1 Background for Security aspects ...13

2.2.2 Spoofing & Unauthorized Access ...15

2.2.3 Tampering ...16

2.2.4 Network Eavesdropping ..17

2.2.5 Disclosure of Configuration Data ...17

2.2.6 Message Replay ..18

2.2.7 Denial of Service ...19

2.2.8 Repudiation ...19

2.2.9 Other Notable Issues ...20

2.3 Existing/Emerging Standards for Web Services and Wireless Environments20

2.3.1 Web Services Security Introduction ..21

2.3.1.1 XML Security Specifications ...21

2.3.1.2 SAML Security Specification... 22

2.3.2 WS-Security (WSS) Standard Specification ...23

2.3.2.1 WS-Security Building Blocks .. 24

2.3.2.2 Security Header Structure .. 24

2.3.2.3 Types of Tokens ... 27

2.3.2.4 Referencing .. 28

2.3.3 WSS Message Protection Methods ...29

2.3.3.1 Integrity ... 29

2.3.3.2 Confidentiality .. 30

2.3.3.3 Freshness .. 30

2.3.4 WSS Access Control Methods ..30

2.3.4.1 Introduction .. 30

2.3.4.2 Authentication .. 30

2.3.4.3 Authorization .. 31

2.3.4.4 Policy Agreement .. 31

2.3.5 Liberty Alliance ..32

 8

2.3.6 Open Mobile Alliance ...32

2.4 Existing Mobile Technology Standards ..33

3 Mobile WS-Security Design ..35

3.1 Security requirements for Mobile Web Services ...35

3.2 Message-level Security Design Models ..36

3.2.1 Public Key Infrastructure ..37

3.2.2 Public Key Encryption and Digital Signature Workflow ..38

3.3 End-Point Security Design Models ...39

3.3.1 Public SourceID Liberty 2.0 Beta ...40

3.3.2 SSO Scenario I ..42

3.3.3 SSO Scenario II ...43

3.3.4 SSO Scenario III ...44

3.3.5 SSO Scenario IV ...44

4 Mobile WS-Security Implementation ..47

4.1 Development Tools/Platform ..47

4.1.1 J2ME – Java 2 Platform, Micro Edition ..47

4.1.2 Sun Java Wireless Toolkit ...49

4.1.3 Lightweight Bouncycastle Cryptographic API ...50

4.1.4 Adapted KSOAP2 API ..51

4.1.4.1 KSOAP2 .. 52

4.1.4.2 KXML2 ... 52

4.1.4.3 Custom SOAP Envelope .. 53

4.2 WS Message-level Security Implementation ..54

4.2.1 Implementation Model ..54

4.2.2 Implementation Details ...55

4.2.2.1 General provisions of the Security API ... 55

4.2.2.2 The Security API Package Analysis .. 55

4.2.2.3 Resultant SOAP Message Structures .. 58

4.3 WS End-point Security Implementation Model ..60

5 Mobile WS-Security Evaluation ...63

5.1 Performance Model ...63

5.2 Test-bed and Test-case Model ...65

5.3 Mobile Host Performance Analysis and Evaluation with Message-level Security66

6 Conclusion ..73

7 Future Work ...75

List of Figures ...77

List of Equations ...79

List of Examples ...80

Appendix – Test Bed Images ...81

References ... 82

 9

1 Introduction

1.1 Motivation

As mobile and wireless applications are becoming ubiquitous in conjunction with

the fast growing web services and related domains, the ability to provide secure and

reliable communication even in the vulnerable and volatile mobile ad-hoc topologies is

vastly becoming necessary. Web services are simple and versatile XML-based

communications, described by an XML-based grammar, called Web Services Description

Language (WSDL), which binds abstract service interfaces, consisting of messages,

expressed as XML Schema, and operations, to the underlying wire format.

Unfortunately in the pervasive networks, where a central administration is not

always possible, the security implementation is extremely hard and challenging with the

advent of easily readable web services. Secure provisioning of mobile web Services

needs proper Identification mechanism, Access control, Data Integrity and

Confidentiality. It also requires policies and trust relations to be established between

users as well as between users and service providers.

Even though a lot of standardized security specifications, protocols and

implementations like WS-Security [5], SAML [11] etc., exist for web services in

traditional wired networks, not much has been explored and standardized in wireless

environments, with feasibility, till date. Some of the reasons for this poor state might be

the lack of active commercial data applications due to the extremely limited resources of

the mobile terminals like memory, processing capability, and the low transmission rates

of the wireless mediums. My thesis contributes to this work and tries to bridge this gap,

with main focus at realizing some of the existing security standards even in the mobile

web services domain.

1.2 Overview

The thesis report starts with discussing briefly the base project “Mobile Web

Service Provisioning“ [1]; the security issues, challenges and difficulties in inducing the

current existing security standards; and the realization proposals of the basic security

issues in mobile web services domain. Common security breaches like Man-in-the-

middle attacks, Denial of Service Attacks are considered along with the web services

security breaches such as illegal access to services, Spoofing, Tampering, Reply Attacks

etc. Further, the thesis describes the existing standards, followed by design,

implementation and evaluation of WS-Security in mobile web service domain. The paper

is organized as follows:

 Section 2 addresses the complete state-of-the-art objects in the following order.

First, the basic concept and applications of mobile web services are addressed along with

Mobile Host. Second, the QOS challenges for web services and wireless environments

are addressed which covers most of the existing security aspects and the relevant

scalability aspects. Further, I have discussed the existing standards of web services and

wireless environments which primarily covers WS-Security standard along with brief

1. Introduction

 10

introductions about Liberty Alliance and Open Mobile Alliance projects. Finally, the

section ends with discussing some of the existing mobile technology standards.

 Section 3 addresses the basic security requirements that need to be addressed in

our Mobile Host to successfully deploy Web Services. This section then further presents

both message-level security design models and end-point security design models

including some of the existing design workflow methodologies.

 Section 4 explains the mobile WS-Security implementation details. It first covers

the relevant development tools and platforms such as J2ME, Sun Java Wireless Toolkit,

Lightweight Bouncycastle Cryptographic API, and the adapted KSOAP2 API in detail.

Then I have described the implementation model and details with a class diagram. The

section ends with representing the output SOAP message structures produced with this

implementation.

 Section 5 addresses the mobile WS-Security evaluation details. I have started this

section describing the performance model to understand various timestamps used for

analysis. Then the section continues analyzing the generic experimental results and

evaluation model of the complete web service cycle. Finally, Mobile Host performance

evaluation model and analysis were explained to end the section.

 Section 6 starts with conclusion, summarizing the thesis work, and section 7 ends

this report with presenting the relevant future research directions.

 11

2 State of the art

This section presents an overview of the state-of-the-art technologies related to this

master thesis. The scope of the thesis topic will be outlined through the study of

literature.

2.1 Mobile Web Services

2.1.1 Introduction

Web services are software components that can be accessed over the Internet

using established web mechanisms and protocols such as SOAP [13] and HTTP [3].

Public interfaces of web services are described using Web Service Description Language

(WSDL) [14]. Examples of web services range from simple requests, such as stock

quotes or user authentication, to more complex tasks, such as comparing and purchasing

items over the Internet.

Service
Registry

Find

SOAP

Publish

UDDI

Service
Provider

Service
Requestor

Service
Registry

Find

SOAP

Publish

UDDI

Service
Provider

Service
Requestor

Figure 1: Basic Web Services Architecture

The basic Web Services Architecture consists of three basic components: the

Service Provider, the Service Requestor (Client), and the Service Registry (UDDI [15]).

The Service Provider basic functionalities are owns a service, registers a service at

Service Registry and provides services to the Service Requestor. The Service Requestor

functionalities include searching for a service at Service Registry and invoking services

from the Service Provider. The Service Registry is a repository where you can register a

service description and you can find a service description.

The basic web services component technologies are Simple Object Access

Protocol (SOAP), Web Services Description Language (WSDL) and Universal

2. State of the art

 12

Description, Discovery and Integrity (UDDI) protocol. SOAP is a simple lightweight

XML messaging protocol by which applications can exchange information over various

transport layer protocols such as HTTP, BEEP etc. Its typical structure contains

mandatory SOAP Envelope, optional SOAP Header and mandatory SOAP Body. The

Envelope is the root element. Body contains the mandated information to be sent to the

intended receiver. As this proposal concerns security as a prime aspect, the optional

SOAP header where one can provide Authentication information, Transactional &

Payment details will be considered as an essential component.

With the introduction of Third and Interim Generation mobile communication

technologies in the cellular domain like UMTS [22], GPRS/EDGE [23], the speed of

wireless data transmission has increased significantly. Also processing power and device

capabilities of mobile phones have increased drastically, thereby enabling better

applications and usage of mobile devices in different application domains.

Combining these developments it is a logical next step to turn mobile devices into

wireless web service requestors (clients). This enables communication via open XML

web service interfaces and standardized protocols also on the radio link, where today still

proprietary and application- and terminal-specific interfaces are required. Mobile web

service clients lead to manifold opportunities to mobile operators, wireless equipment

vendors, third-party application developers, and end users. It is easy to imagine that in the

future mobile applications based on web service clients will generate a large percentage

of all web service requests, and the first such solutions are currently appearing on the

market. [[9], [10]]

However, in a sense, this role of mobile web service clients is still basic and the

combination of cellular and web services domains would only be completed if it would

become feasible to also offer some sort of standard web service providers on small

mobile devices. My basic requirements study is based on one such prototype, the Mobile

Host, which acts as Mobile Web Service Provider.

2.1.2 Mobile Web Service Provider

The Mobile Host, Mobile Web Service Provider, was designed and tested on a

SonyEricsson P800 Smart Phone and was developed in PersonalJava. The footprint of the

fully functional prototype is only 130 KB. The Mobile Host has been developed as a web

service handler built on top of a normal web server. The web service requests sent by

HTTP tunneling are diverted and handled by the web service handler. The evaluation of

Mobile Host showed that service delivery as well as service administration can be done

with reasonable ergonomic quality by normal mobile phone users. As the most important

result, it turns out that the total WS processing time at the Mobile Host is only a small

fraction of the total request-response time (<10%) and rest all being transmission delay.

The following Figure 2 shows the basic architectural setup of the Mobile Host. A

detailed discussion of implementation and evaluation details of this Mobile Host [40] is

beyond the scope of this thesis.

2.1 Mobile Web Services

 13

WS
Mobile Web

Service provider

Service Registry

(WSDL,UDDI)

Service Requester

(Client)
Service Registry

(WSDL,UDDI)

Service Requester

(Client)

Bind(SOAP)Publish

Find

WS
Mobile Web

Service provider

WS
Mobile Web

Service provider

Service Registry

(WSDL,UDDI)

Service Requester

(Client)
Service Registry

(WSDL,UDDI)

Service Requester

(Client)

Bind(SOAP)Publish

Find

Figure 2 : Basic architectural setup of Mobile Host

The Mobile Host, once commercially viable, can serve some useful services. As a

Mobile Host, the mobile terminal becomes a multi-user device where the owner/carrier of

the device can work in parallel with users of the web service without explicit effort on

his/her side. From a commercial viewpoint, there is a reversal of payment structures.

While traditionally the information-providing web service client has to pay to upload his

or her work results to a stationary server (where then other clients have to pay again to

access the information), in the Mobile Host scheme responsibility for payment shifts to

the actual clients -- the users of the information/services provided by the Mobile Host.

Another commercial aspect is the possibility for small mobile operators to set up their

own mobile web service business without resorting to stationary office structures, thus

going one step further in the move from central to P2P architectures [40].

Of course, this additional flexibility generates a large number of interesting

research questions which need further exploration, the immediate topics of interest being

the security implications and the means of achieving them of this approach.

2.2 Security Challenges for Web Services and Wireless
Environments

 This section aims at analyzing most of the security issues in web services and

wireless environments. The following subsections discuss in detail the security aspects,

the security threats- vulnerabilities and their countermeasures of both web services and

wireless domains.

2.2.1 Background for Security aspects

As web services use message-based technologies for complex transactions across

multiple domains, traditional security processes fall short. Potentially, a Web-service

message can traverse through several intermediaries before it reaches its final destination.

2. State of the art

 14

Requester Intermediary

Security

Context

Security

Context

Web ServiceRequester Intermediary

Security

Context

Security

Context

Web Service

Figure 3 : Point-to-Point Security Paradigm

The Point-to-point security represented in figure 3 reflects the traditional security

mechanism. In this case, the security context will change from or pertained to hop-to-hop

when a secured message is transmitted from source to destination. HTTPS and SSL [65]

are some of the examples of this kind. But this point-to-point security strategy is not

recommendable for WS-Security; as web services are purely XML-based, which are

easily readable, and sometimes the web service message might need to be transmitted

through un-trusted intermediaries before reaching the destination.

Requester Intermediary

Security

Context

Web ServiceRequester Intermediary

Security

Context

Web Service

Figure 4 : End-to-End Security paradigm

 Figure 4 depicts the end-to-end security strategy, where the security context holds

till a message reaches its destination. To be summarized further, when the source

transmits the message along with the security context using this end-to-end security

mechanism, only part of the security context that needs will be accessible to the

intermediaries. This partly information is sufficient enough for the intermediate hops to

check the messages’ basic security parameters such as authenticity and routing to the next

immediate hop etc. The destination end can have access to the entire security context

thereby achieving end-to-end security. Thus, this mechanism solves the WS-Security

requirement by hiding the necessary security details from the intermediaries. Therefore,

the need for sophisticated message-level security becomes a high priority and is not

addressed by existing security technologies.

2.2 Security Challenges for Web Services and Wireless Environments

 15

Internet

WS Providers

Mobile

Operator

WS Requestors

GPRS

Unauthorized

Access

DDOS Attacks!

Spoofing

Tampering
Network

Eavesdropping

Replay Attacks

Disclosure of

Configuration Data

Communication Network

WS

InternetInternet

WS Providers

Mobile

Operator
Mobile

Operator

WS Requestors

GPRS

Unauthorized

Access

Unauthorized

Access

DDOS Attacks!

Spoofing

Tampering
Network

Eavesdropping

Replay Attacks

Disclosure of

Configuration Data

Communication Network

WS

Figure 5 : Typical Security breaches in Mobile Web Services

The Figure 5 shows some of the typical security breaches [41] in web service and

wireless environments. The following subsections discuss the breaches and their possible

countermeasures in a step by step manner:

2.2.2 Spoofing & Unauthorized Access

Spoofing is a means of gaining access to a system by using a false identity. To

accomplish this, an attacker can use fake source address that does not represent the actual

source address or stolen user credentials. The purpose of spoofing would be to hide the

original source of an attack or to gain access to a service as a legitimate user or host,

thereby elevating sensitive privileges. Although carefully crafted spoofed packets may

never be tracked to the original sender, a combination of filtering rules prevents spoofed

packets from originating from your network, allowing you to block obviously spoofed

packets.

Therefore, web services that provide sensitive or restricted information should

authenticate and authorize their callers. Weak authentication and authorization can be

exploited to gain unauthorized access to sensitive information and operations at the

Mobile Host. Vulnerabilities that can lead to unauthorized access through a web service

include [41]:

• No authentication used

• Passwords passed in plaintext in SOAP headers

• Basic authentication used over an unencrypted communication channel

2. State of the art

 16

To counter the above mentioned vulnerabilities, we should use password digests,

Kerberos tickets [63] and X.509 certificates [64] in the SOAP headers for authentication.

Since SOAP messages are XML-based, all the digests and certificates should be

converted to plain text while exchanging via network, which in turn inherits the risk of

their disclosure. To accomplish this, the sensitive credentials and authentication can be

encrypted using cryptographic hashing or signatures and are need to be addressed in

mobile web service provisioning. After message has been received and successfully

validated, the receiver side must decide [41]:

• Does it know who is requesting the operation (Identification)

• Does it trust the caller's identity claim (Authentication)

• Does it allow the caller to perform this operation (Authorization)

There is not much WS-specific activity that takes place at this stage – just several

new ways of passing the credentials for authentication. Most often, authorization tasks

occur completely outside of the web service implementation, at the Policy Server that

protects the whole domain. There is another significant problem here – the traditional

HTTP firewalls do not help at stopping attacks at the web services. An organization

would need a XML/SOAP firewall, which is capable of conducting application-level

analysis of the web server's traffic and make intelligent decision about passing SOAP

messages to their destination.

2.2.3 Tampering

Tampering or Parameter manipulation is referred as unauthorized modification of

data or message during network travel between web service Requestor and web service

Provider. Attackers have high chance of intercepting and modifying web service

messages passes through several intermediate nodes before reaching their intended

destination points. The potential vulnerabilities of this kind of attack are the following:

• Messages are not digitally signed

• Messages are not encrypted

In communication protocols, there are usually some mechanisms like checksum

applied to ensure packet's integrity. However, this mechanism is not sufficient in case of

publicly exposed web services, since checksums are relatively easy to modify and

difficult to track at the receiver end. The possible solution would be to combine message

digests with either cryptographic signatures or with symmetric key-encryption to ensure

that any change will immediately result in a cryptographic error.

Therefore, to counter tampering attacks, the messages should be digitally signed

and encrypted. The digital signature will then be used at the recipient side to verify the

message to find tampering attacks if any. Furthermore, message’s timestamps will be

helpful to detect the parameter manipulations in the middle at the receiver end.

2.2 Security Challenges for Web Services and Wireless Environments

 17

2.2.4 Network Eavesdropping

Eavesdropping or sniffing is termed as an act of monitoring traffic on the network

for sensitive data such as plaintext passwords or configuration information. This can be

accomplished by means of simple packet sniffers placed in the path of a network. Even

encrypted packets by lightweight hashing algorithms can be easily deciphered by

attackers.

With web services, the threat with this kind of network eavesdropping attacks will

be potentially high since SOAP messages are XML-based and easily readable. The

attackers can use network monitoring software to retrieve sensitive application level data

or credential information from the web service messages as they flow across the network.

Vulnerabilities that can enable successful network eavesdropping include [41]:

• Credentials passed in plaintext in SOAP headers

• No message level encryption used

• No transport level encryption used

The countermeasures for these kinds of attacks would be to use strong message

level encryption to protect sensitive SOAP messages. Even though transport level

encryption can be achieved using SSL or IPSec which effectively protects only between

two service endpoints, the approach would not work in web services scenario where

SOAP messages travels through several intermediary nodes before reaching final

destination. Thus, encrypting the message payload is necessary most of the times.

With message level encryption, we can encrypt the entire message being

processed or only to certain parts of the message. Normally, symmetric encryption

algorithms are used to encrypt bulk data, since it is significantly faster than the

asymmetric ones. Asymmetric encryption is useful to protect the symmetric session keys

and can be discarded once the session is established after exchanging the secret

symmetric keys.

Applying encryption requires conducting an extensive setup work, since the

communicating parties now have to be aware of which keys they can trust, deal with

certificate and key validation, and know which keys should be used for communication.

In many cases, encryption is combined with signatures to provide both integrity and

confidentiality. Normally, signing keys are different from the encrypting ones, primarily

because of their different lifecycles – signing keys are permanently associated with their

owners, while encryption keys may be invalidated after the message exchange.

One more important issue for the above mentioned kind of attack would be

Information disclosure. Information disclosure is the unwanted exposure of private data.

Any sort of readable information can be very useful to the attacker. So, the message

constructor should be well aware about what should be exposed and what should not.

2.2.5 Disclosure of Configuration Data

There are two main ways in which a web service can disclose configuration data.

First, the web service may support the dynamic generation of Web Service Description

Language (WSDL) or it may provide WSDL information in downloadable files that are

2. State of the art

 18

available on the web server. This may not be desirable because WSDL describes the

characteristics of a web service such as method signatures and supported protocols.

Second, with inadequate exception handling the web service may disclose sensitive

internal implementation details useful to an attacker. Vulnerabilities that can lead to the

disclosure of configuration data include [41]:

• Unrestricted WSDL files available for download from the Web server

• An unrestricted web service at Mobile Host supports the dynamic generation of

WSDL and allows unauthorized consumers to obtain web service characteristics

• Weak exception handling

To counter the above potential vulnerabilities, use authorization to access WSDL

files at Mobile Host and disable the documentation protocols to prevent the dynamic

generation of WSDL if possible. Furthermore, handle exceptions by throwing

circumspect SoapExceptions through which only minimal and harmless information will

be returned back to the client.

2.2.6 Message Replay

Web service messages can potentially travel through multiple intermediate

servers. With a message replay attack, an attacker captures and copies a valid message

and replays it to the web service impersonating the client. The message may or may not

be modified. Vulnerabilities that can enable message replay include [41]:

• Messages are not encrypted

• Messages are not digitally signed to prevent tampering

• Duplicate messages are not detected because no unique message ID is used

The most common types of message replay attacks are Man in the middle attacks

where the attacker captures the messages, changes the contents, replays them to web

service and Basic replay attacks where the attacker captures and copies messages, replays

the same messages by impersonating the clients. The former attack mentioned can be

counter measured using Encryption and Digital signatures which will prevent man in the

middle attacks where the message contents are modified before being replayed.

The basic reply attacks are the difficult ones to detect because the receiving side

receives the unchanged and expected message. The possible solution would be to use

unique message ID or nonce, a cryptographically unique value, to detect duplicate

messages at the server/receiver side. The unique message ID can be accomplished as

follows. When the server responds to the client it sends a unique ID and signs the

message, including the ID. When the client makes another request, the client includes the

ID with the message. The server ensures that the ID sent to the client in the previous

message is included in the new request from the client. If it is different, the server rejects

the request and assumes it is subject to a replay attack. The attacker cannot spoof the

message ID, because the message is signed.

The basic replay attacks can also be countered by using a relatively short validity

time window. In the web services world, information about the message creation time is

2.2 Security Challenges for Web Services and Wireless Environments

 19

usually communicated by inserting timestamps, which may just tell the instant the

message was created, or have additional information, like its expiration time, or certain

conditions. This solution, however, requires clock synchronization and also sensitive to

issues such as message queuing at busy and non-responsive servers.

2.2.7 Denial of Service

Denial of service is the process of making a system or application unavailable. A

denial of service attack can be accomplished by bombarding a server with requests to

consume all available system resources or by passing it malformed input data that can

crash an application process. Furthermore, this attack can be attained by many methods

aimed at several targets within the infrastructure. At the host, an attacker can disrupt

service by brute force against the application, or an attacker may know of a vulnerability

that exists in the service the application is hosted in or in the operating system that runs

your server.

The SYN flood attack is a common example of a network level denial of service

attack. It is easy to launch and difficult to track. The aim of the attack is to send more

requests to a server than it can handle. The attack exploits a potential vulnerability in the

TCP/IP connection establishment mechanism and floods the server's pending connection

queue.

Though web services have not much to do with this kind of attacks, it should be

addressed in mobile web services domain because of two reasons. First, as the access

point for a mobile device would only be the base station, the channel will be sensitive for

Distributed Denial of service attacks [DDOS] because of limited resources in such

medium. Second, our domain includes a web server in the Mobile Host. The

Countermeasures to help prevent denial of service are as follows [41]:

• Configure applications, services, and operating system with denial of service in

mind.

• Harden the TCP/IP stack by applying the appropriate registry settings to increase

the size of the TCP connection queue, decrease the connection establishment

period, and employ dynamic backlog mechanisms to ensure that the connection

queue is never exhausted.

• Make sure the account lockout policies cannot be exploited to lock out well

known service accounts.

• Make sure that applications are capable of handling high volumes of traffic and

the thresholds are in place to handle abnormally high loads.

• Review the application's failover functionality.

• Use a network Intrusion Detection System (IDS) that can detect potential denial

of service attacks.

2.2.8 Repudiation

Repudiation is the ability of users to deny that they performed specific actions or

transactions [60]. Without adequate auditing, repudiation attacks are difficult to prove.

2. State of the art

 20

Normally, this can be achieved by saving server logs, called audit trails, in a secure

location.

The auditing ensures non-repudiation which means that a message can be

verifiably traced back to the caller. The standard web service practice is to require

cryptographic digital signatures over any content that has to be legally binding and the

documents with such signature are saved in the audit log. With this process, the

information saved in audit log can be reliably traced to the owner of the signing key. In

our Mobile Host scenario, as it can get cumbersome to store the audit logs due to its

scarce resources, a trusted-third party server can solve the purpose by maintaining the

audit logs.

2.2.9 Other Notable Issues

In advent of flexible interoperability in web services between different parties and

domains, the need for tightly controlled authentication and access rights mechanism is

evident. But, it is extremely difficult to have a single authentication and access control

scheme for all the involved parties exchanging multiple formats. Single Sign-on might

help to some extent. It’s possible to map credentials across diverse systems with Single

Sign-on so that each web service can deal with their own credential system.

Another critical factor for mobile web services would be threat containment.

Consistent troubleshooting information is not feasible in mobile wireless networks with

decentralized administration. User mobility and free access to communication channels

make mobile wireless networks more vulnerable. Traditional solution to shut down

systems won’t be possible in this medium. Log format standardization and developing

certain policies for threat containment should help for some extent. Cross network

coordination among administrators should be helpful for better responses in this issue.

On the whole, as mobile networks and devices have relatively less resources when

compared to traditional networks, the efficiency and quality of secure service

provisioning will become critical factors. The considerable factor would be resource

consumption of handheld devices which will increase linearly with security deployments.

But with the emerging new networks such as UMTS [22] technologies and various

optimization techniques for mobile web Services such as WSOAP [18], SOAP

optimization techniques like WBXML [9], Jzlib [12], Differential Encoding [8],

MTOM/XOP [[19],[20]], Fast Web Services [21], HHFR [31], KSOAP [4] etc. should

make the potential security deployments commercially viable in the wireless networks.

2.3 Existing/Emerging Standards for Web Services and
Wireless Environments

In the previous section, security challenges for the mobile web services domain

have been addressed. Before considering the realization of those issues, this section

discusses the current security standards, specifications and some relevant notable projects

in web services and wireless domains. This section starts with detailed explanation of

complete web services security hierarchy and ends with brief descriptions of Liberty

Alliance project and Open Mobile Alliance project.

2.3 Existing/Emerging Standards for Web Services and Wireless Environments

 21

To start with this section, listed below is some of the Standard committees and

organizations working with web services and wireless domain security:

• W3C [39] is an industry group whose contribution in this are XML Schema,

SOAP, XML Encryption, XML Description and WSDL standards.

• OASIS [5] is an organization which has larger interest in web service specific

standards and it owns primary areas of our interest such as WS-Security and

SAML standards.

• Web Service Interoperability group [38] was formed to promote general

framework for interoperable web services. Mostly its work consists of taking

other broadly accepted standards, and develop so-called profiles, or set of

requirements for conforming web service implementations. In particular, its Basic

Security Profile (BSP) relies on the OASIS' WS-Security standard and specifies

sets of optional and required security features in web services that claim

interoperability.

• Liberty Alliance [17] consortium was formed to develop and promote an

interoperable Identity Federation framework. Although this framework is not

strictly web service-specific, but rather general, it is important for this topic

because of its close relation with the SAML standard developed by OASIS.

• Open Mobile Alliance (OMA [36]) was formed to develop and promote

interoperability for mobile data services. The under-development specifications

from this organization have support of all the major mobile related companies,

vendors, operators etc. The OMA Web Service Enabler specification is the

relevant document in this master’s thesis context.

2.3.1 Web Services Security Introduction

The idea of secure web services led to the development of various security

specifications among which WS-Security specification serves as the base for all other

specifications. The rest of the specifications constitute WS-Policy which defines the rules

for service interaction, WS-Trust which defines trust model for secure exchanges, WS-

Privacy which states the maintenance of privacy of information, WS-Secure Conversation

that specifies how to establish and maintain secured session for exchanging data, WS-

Federation which defines rules of distributed identity and its maintenance, and WS-

Authorization specification which processes the access rights and exchangeable

information.

In web services, Traditional SOAP protocol which defines the communication

framework does not exactly provide protection mechanisms for exchanging messages in a

secure way. The following sub-sections describe ways to understand, embed and

implement protection for message security in a step-by-step manner [42]:

2.3.1.1 XML Security Specifications

XML Signature (XML-dsig [26]), and XML Encryption (XML-enc [25]) add

cryptographic protection to plain XML documents. XML-dsig specification provides data

integrity and authentication features which can be wrapped within the XML format while

2. State of the art

 22

XML Encryption specification addresses the data confidentiality issues by supporting

encryption/decryption of whole XML documents or only of some elements inside them.

The highly flexible framework behind these standards provides references to the

data being processed with the help of secret keys and key pairs. The results from signing

and encrypting operations will be in form of XML which makes them relatively easy to

embed into the original document. But XML-Dsig and XML-enc themselves do not the

solve the problem of securing SOAP-based web service interactions because both the end

parties of a message first have to agree on the order of operations, cryptographic token

retrieval methods, signature look-ups, message validation and so on. The following

sections will address those higher level specifications.

2.3.1.2 SAML Security Specification

A broad set of security-related specifications are currently under development for

various aspects of web service operations. One of them is SAML [11], which defines how

identity, attribute, and authorization assertions should be exchanged among participating

services in a secure and interoperable way. Some of the SAML specification standard

features are briefly described below:

Security Assertion Markup Language SAML [11] from OASIS primarily provides

Single Sign-on (SSO), Cross Domain interoperability, means of implementing the basic

WS security standard through assertions, and helps in managing identity control across

domains and organizations - for enhanced user experience. SAML builds on top of the

WS security specifications which are discussed below and provides a means by which

security assertions can be exchanged between different service entity endpoints.

The basic components of interest are Assertions, protocols, bindings and profiles.

SAML Assertions carry the authentication information while SAML Request/Response

protocols tell how and what assertions can be requested. Bindings define the

transportation of SAML protocols over SOAP/HTTP protocol. A SAML profile can be

created using the bindings, protocols along with the assertion structure. The SAML

Requestor or SAML Response will reside in SOAP Body.

SAML Request/Response protocol binding over SOAP will provide Assertions in

the SOAP Body with information about authentication and authorization. Then SAML

Assertions are used along with the WS security element which will reside in SOAP

Header. As the SAML Assertions contain key of the holder, it can be used to digitally

sign the SOAP Body. At the Receiver end, the signature is verified with the help of the

key and the access controls within the Assertion.

 XACML [11] – Extensible Access Control Mark-Up Language defines syntax

and semantics of a language to express and evaluate access control policies. SAML can

also be used independently with other access control mechanisms. When both SAML and

XACML are used together, they result in two additional components: Policy Enforcement

Point (PEP) and Policy Decision Point (PDP). When PEP receives requests from

Requestor, it accesses assertions from the Requestor and extracts other typical

information such as time of request, location etc. and sends it to PDP. PDP then evaluates

the request by obtaining related policies and passes on the decision to PEP which

enforces the decision towards the Requestor.

2.3 Existing/Emerging Standards for Web Services and Wireless Environments

 23

The following sub-section constitutes the core WS-Security specification standard

which is considered as the foundation for all other specifications in this domain, creating

a basic infrastructure for developing message-based security exchange.

2.3.2 WS-Security (WSS) Standard Specification

The WSS standard main aim is to address the specifications of most of the core

security areas and to leave the higher-end details to profiles which will manage them. The

standard designed core areas are [59]:

• Ways to add security headers (WSSE Header) to SOAP Envelopes

• Attachment of security tokens and credentials to the message

• Inserting a timestamp

• Signing the message

• Encrypting the message

• Extensibility

Signing and encrypting message mechanisms are not expected to change

significantly where as types of tokens and ways of attaching those to the message can

change considerably. The WSS standard defines, at high level specification, three basic

types of security tokens which can be attached to WS-Security header. They are

Username/password, Binary, and XML tokens and are explained in detail in the

forthcoming subsections.

One of the main advantages of WS-Security standard is its extensibility. This

feature helps in adding new security token and protocol types developed by defining

additional profiles. These profiles will then make way to add the new tokens into the WS-

Security framework.

Figure 6 : WS-Security Specification Hierarchy [59]

2. State of the art

 24

 The WS-Security standard main goal is to provide the message-level

security to each message or even individual parts of a message, which passes through

network, by ensuring authenticity, confidentiality, integrity and freshness. This is not

possible traditional networks where the entire stream must be presented with the security

context as explained in the security challenges for web services and wireless

environments subsection.

WSS standard is not by itself a way to develop applications to ensure security. It

provides the ways to represent a message with security and leaves the rest to so-called

higher-end protocols. These protocols achieve the security goals by pertaining to the

standards like Liberty Alliance, WS-Policy etc. and use the WSS information to

implement authorization control, message confidentiality, and integrity and so on.

2.3.2.1 WS-Security Building Blocks

The WS-Security standard provides a core document and many other profile

documents. The core document describes the way to add security headers in to the SOAP

envelope and emphasizes the security context information which security header should

contain to regard it as valid. While profile documents take care of defining the higher-end

context which is not represented in core specification and providing extensibility for new

security token types. Core WSS 1.0 specification [31] defines various security tokens and

their referencing mechanisms, way to represent timestamps, and approach to include

XML encryption and signature information in to the security headers.

Associated specifications are [59]:

• Username profile 1.0 [32] which adds various password-related extensions to the

basic UsernameToken from the core specification.

• X.509 certificate token profile [33] which specifies, how X.509 certificates may

be passed in the BinarySecurityToken, specified by the core document.

• SAML Token profile [34] specifies how XML-based SAML tokens can be

inserted into WSS headers.

The WS-Security specification basically works with two different types of data.

One is the security information which consists of signature, digest, timestamps, security

tokens etc. The other is message data which includes all the rest information from the

SOAP envelope excluding the security information. As WS-Security information, XML-

based standard, is represented in XML format, all the binary data produced from the likes

of signatures and security tokens needs to be transformed using Base 64

encoding/decoding. To handle encoding parts, an encoding algorithm’s identifier, defined

in WS-Security specification documents, is carried with the data so that the decoding side

will know how to apply the relevant decoder to interpret it.

2.3.2.2 Security Header Structure

The security header resides in the optional SOAP header within a SOAP

Envelope. It potentially acts as a seal to a letter. The Figure 7 shows the typical structure

of a SOAP message envelope with WS-Security header.

2.3 Existing/Emerging Standards for Web Services and Wireless Environments

 25

Figure 7 : A Typical SOAP message structure with Security header

Multiple security headers can be present in a SOAP Header, provided they are

assigned to different actors. Though there is a scope of referencing each other within the

SOAP Header, its advised to avoid such situations as it presents a complicated logistical

problem in understanding the order of signature or decryption verifications. WS-Security

header is an optional one, as SOAP header is itself optional, to be contained in the SOAP

envelope. The following example 1 represents a minimalist SOAP envelope without a

message:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Header>
 <wsse:Security
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss- wssecurity-secext-1.0.xsd" xmlns:wsu="http://docs.oasis-
 open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 soap:mustUnderstand="1">

 </wsse:Security>
 </soap:Header>
 <soap:Body>

 </soap:Body>
</soap:Envelope>

Example 1 : An empty SOAP message with WS-Security header [59]

SOAP ENVELOPE

Body Entry

Body Entry

SOAP Body

SOAP Header

WSSE Security Header

WSSE Entry

WSSE Entry

2. State of the art

 26

A Typical SOAP message with XML Signature, XML Encryption elements and

one or more security tokens with references will look like the following example 2:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Header>
 <wsse:Security
 xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
 wssecurity- secext-1.0.xsd" xmlns:wsse="http://docs.oasis-
 open.org/wss/2004/01/oasis- 200401-wss-wssecurity-secext-
 1.0.xsd" xmlns:wsu="http://docs.oasis-o
 pen.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 soap:mustUnderstand="1">
 <wsse:BinarySecurityToken
 EncodingType="http://docs.oasis- open.org/wss/2004/01/oasis-
 200401-wss-soap- message-security-1.0#Base64Binary"
 ValueType="http://docs.oasis- open.org/wss/2004/01/oasis-200401-
 wss-x509-token-profile-1.0#X509v3" wsu:Id="aXhOJ5">
 MIICtzCCAi...
 </wsse:BinarySecurityToken>
 <xenc:EncryptedKey xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
<xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-
1_5"/>
 <dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>
<wsse:Reference URI="#aXhOJ5" ValueType="http://docs.oasis-
 open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509v3"/>
 </wsse:SecurityTokenReference>
 </dsig:KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue>...... </xenc:CipherValue>
 </xenc:CipherData>
 <xenc:ReferenceList>
 <xenc:DataReference URI="#aDNa2iD"/>
 </xenc:ReferenceList>
 </xenc:EncryptedKey>
 <wsse:SecurityTokenReference wsu:Id="aZG0sG">
 <wsse:KeyIdentifier ValueType="http://docs.oasis-
 open.org/wss/2004/XX/oasis- 2004XX-wss-saml-token-profile-
 1.0#SAMLAssertionID"
 wsu:Id="a2tv1Uz">1106844369755</wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
<saml:Assertion AssertionID="1106844369755" IssueInstant="2005-01-
 27T16:46:09.755Z" Issuer="www.my.com" MajorVersion="1"
 MinorVersion="1"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">
 ...
 </saml:Assertion>
 <wsu:Timestamp wsu:Id="afc6fbe-a7d8-fbf3-9ac4-f884f435a9c1">
 <wsu:Created>2005-01-27T16:46:10Z</wsu:Created>
 <wsu:Expires>2005-01-27T18:46:10Z</wsu:Expires>
 </wsu:Timestamp>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
Id="sb738c7">
 <dsig:SignedInfo Id="obLkHzaCOrAW4kxC9az0bLA22">
 ...
 <dsig:Reference URI="#s91397860">

2.3 Existing/Emerging Standards for Web Services and Wireless Environments

 27

 ...
 <dsig:DigestValue>
 5R3GSp+OOn17lSdE0knq4GXqgYM=
 </dsig:DigestValue>
 </dsig:Reference>
 </dsig:SignedInfo>
<dsig:SignatureValue Id="a9utKU9UZk">LIkagbCr5bkXLs8l...
</dsig:SignatureValue>
 <dsig:KeyInfo>
 <wsse:SecurityTokenReference>
<wsse:Reference URI="#aXhOJ5" ValueType="http://docs.oasis-
 open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509v3"/>
 </wsse:SecurityTokenReference>
 </dsig:KeyInfo>
 </dsig:Signature>
 </wsse:Security>
 </soap:Header>
 <soap:Body
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss- wssecurity-utility-1.0.xsd" wsu:Id="s91397860">
 <xenc:EncryptedData
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" Id="aDNa2iD"
 Type="http://www.w3.org/2001/04/xmlenc#Content">
<xenc:EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <xenc:CipherData>
 <xenc:CipherValue>XFM4J6C... </xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
 </soap:Body>
</soap:Envelope>

Example 2 : A Typical SOAP message with WS-Security [59]

2.3.2.3 Types of Tokens

A WS-Security Header can contain the following types of security tokens [59]:

• Username Token

The username token defines the way to pass the username and the optional

password. If the token is not encrypted as a whole, then the password should be

transferred through secured channel. If in case the complete secure transmission is

not possible, then sending hashed password with nonce and a timestamp is

recommended. The following password hash algorithm without ambiguity is

defined in the profile document:

Password_Digest = Base64 (SHA-1 (nonce + created + password))

• Binary token

2. State of the art

 28

These binary tokens are required to convert binary data into text-encoded format.

X.509 and Kerberos certificates are examples of binary data and default encoding

format is Base64. BinarySecurityToken element is defined by core specification

and additional attributes and sub-elements are taken care by profile documents.

 <wsse:BinarySecurityToken EncodingType="http://docs.oasis-
 open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
 1.0#Base64Binary" ValueType="http://docs.oasis-
 open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
 1.0#X509v3" wsu:Id="aXhOJ5">

 MIICtzCCAi...

 </wsse:BinarySecurityToken>

Example 3 : A Typical Binary Security Token [Example 2]

• XML token

XML tokens are the carriers of SAML assertions. The WS-Security core

specification points out the possibility of these tokens in the security header. All

the remaining details should be handled by the profile documents.

 <saml:Assertion
AssertionID="1106844369755" IssueInstant="2005-01-
27T16:46:09.755Z" Issuer="www.my.com" MajorVersion="1"
MinorVersion="1"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">

 ...
 </saml:Assertion>

Example 4 : A Typical SAML Assertion structure [Example 2]

2.3.2.4 Referencing

Referencing is one of the essential parts of WS-Security specification. It helps in

recognizing the encrypted and signed message parts and retrieving security tokens

transferred in the message. A special attribute, wsu:Id, has been defined in the core

specification for this purpose. The attribute’s only mandatory clause is that it should be

unique within the scope of XML message where it is defined. The advantage of this

referencing in an application is that the intermediate processors are not required to

understand the XML Schema of the message. Note that in case of encryption and

signature element identification, local referencing should be considered first because the

XML encryption and signature specifications do not allow attribute extensibility.

WS-Security core specification also defines a general mechanism for referencing

security tokens via SecurityTokenReference element. An example of this kind of element

representing a SAML assertion is shown here:

 <wsse:SecurityTokenReference wsu:Id="aZG0sGbRpXLySzgM1X6aSjg22">
 <wsse:KeyIdentifier

2.3 Existing/Emerging Standards for Web Services and Wireless Environments

 29

ValueType="http://docs.oasis-open.org/wss/2004/XX/oasis-
2004XX-wss-saml-token-profile-1.0#SAMLAssertionID"
wsu:Id="a2tv1Uz">

 1106844369755
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>

Example 5 : A Typical Security Token Reference Element [Example 2]

This SecurityTokenReference element supports almost all the token types

including certificates, SAML assertions and encryption keys. This feature makes it

complicated due to its high extensibility. So, the WSS specification suggests only two

reference types, Direct References and Key Identifiers, out of the possible reference

types. Further, profile documents can add extensibility to this mechanism to have custom

token types.

2.3.3 WSS Message Protection Methods

As we discussed previously, traditional transport level security does not serve

well in case of web services. WSS helps addressing some of them at the SOAP message

level, using the mechanisms described in the sections below.

2.3.3.1 Integrity

WS-Security specification ensures message integrity using XML digital signature

standard. Before signing a XML element or document, the XML content should undergo

transformation to result in to canonical representation. XML digital signature standard

provides two main transformations, Inclusive and Exclusive Canonicalization

Transforms. These two transformations differ in their way of declaring namespaces.

Exclusive Canonicalization Transformation is recommended by the WS-Security core

specification as it liberates the duplication of signed XML documents or elements into

other elements with valid signature.

Security Token Reference de-reference transform option is provided by WS-

security to address the digitally signed tokens in a uniform way. Two types of referencing

are possible with Security Token Reference mechanism as mentioned in WSS core

specification. One is addressing the referenced signing keys defined by XML digital

signature standard. The other is to allow referencing to signed security token. The latter

one is possible by creating custom token types extending the profile documents.

Example 2 explained in the previous subsection depicts a typical signature. On a

whole, XML digital signature standard allows the sign secure elements passed in the

SOAP request like SOAP body, user credentials, and the timestamp. Note that a problem

can arise when a definite element is both encrypted and signed as these operations can be

done in any particular order. This problem multiples when the SOAP envelope contains

multiple security headers where encryption and signature content might overlap. To

address this issue to a certain extent, the WS-Security core specification mandates that

each element should pre-pended when adding it into the security header.

2. State of the art

 30

2.3.3.2 Confidentiality

WS-Security specification ensures message confidentiality using XML encryption

standard. This encryption standard works very much similar to the XML digital signature

standard except that it replaces the complete element(s) that are encrypted and placing a

sub-element containing the encrypted bytes. For proper decryption at the other end, the

WSS core specification recommends to use a unique value (nonce/hash) for referencing.

This unique value should be pre-pended, with possible encryption to ensure protection, in

the security header. Example 2 represents a typical SOAP envelope with WS-Security

which also reflects the encrypted body. The specification also supports both symmetric

and asymmetric encryptions to varied encryption requirements.

2.3.3.3 Freshness

Timestamp mechanism is used to address the freshness of the SOAP messages. A

timestamp in a SOAP message helps in preventing reply and tampering attacks. A single

timestamp per security header, based on UTC time, is enough to guarantee the message

freshness. Below explained XML content summarizes further about a timestamp. Note

that a single timestamp pertained to a security header is valid to the entire SOAP message

as the message can have more than one security headers. Clock synchronizations are not

addressed in WSS core specification and should be dealt in external domains.

 <wsu:Timestamp wsu:Id="afc6fbe-a7d8-fbf3-9ac4-f884f435a9c1">
 <wsu:Created>2005-01-27T16:46:10Z</wsu:Created>
 <wsu:Expires>2005-01-27T18:46:10Z</wsu:Expires>
 </wsu:Timestamp>

Example 6 : A Typical Timestamp Element [Example 2]

2.3.4 WSS Access Control Methods

Secured access control methods are not directly offered by WS-Security

specification. Instead the specification provides the way to the access control data and

tokens between sender and receiver SOAP endpoints in a secure manner.

2.3.4.1 Introduction

Identification ensures a claimer’s identity by attaching its relevant information in

the SOAP header. The information can be anything which can represent the identity

claimed by using a token, a Kerberos ticket, a username or a SAML assertion. The WS-

Security core specification extensibility mechanism liberated this usage of different

security token types to a message for different purposes.

2.3.4.2 Authentication

Authentication can be achieved in two ways. One is credentials verification which

can be accomplished quite straightforward by pre-pending the concerned to the security

header. Two is token validation where the token contains the user’s identity with its

integrity proof and these tokens are created prior to the authentication process.

2.3 Existing/Emerging Standards for Web Services and Wireless Environments

 31

WS-Security specification supports most of the standard authentication protocols

by binding sender information with the appropriate protocol relevant tokens. However,

the verification of the authentication information and requirements of a specific authentic

process are left to the web service who wants to claim the identity or authenticity of the

caller. As there no specific standards or requirements mentioned by WSS specification in

this regard, one can choose anything from username/password checks or signature

verification scheme using PKI.

2.3.4.3 Authorization

Authorization can be achieved using XACML explained in the SAML

specification subsection. The authorization rules are not web service-specific and are not

specified by WSS core specification. This mechanism is generally left to the web service

deployment domain. Depending on the scope of security required, domain size etc., there

can be several layers of authorization process at the service provider.

2.3.4.4 Policy Agreement

WS-Policy specification helps in addressing complex policy requirements and the

concerned security parameters to determine to endpoint’s security requirements. This is

needed because the general web services’ communication depends on endpoint’s public

interface defined in WSDL file which does not define any higher-end security

parameters. With this policy specification, the endpoints can publish their security

requirements and clients can fetch those and address them accordingly in their web

service request.

Figure 8 further explains the policy mechanism with the help of WS-Trust

enabled services. The requestor checks the endpoints’ policy and interprets it to construct

the request. If some security tokens are not available at requestor to address the policy, he

will fetch them from WS-Trust component.

Figure 8 : Trust Service [59]

Before reading further sub-sections, the contents of this section can be

summarized as follows. W3C and IETF’s XML Signature specification provides data

integrity and authentication features which can be wrapped within the XML format. XML

Encryption specification by W3C addresses the data confidentiality issues using

encryption techniques. Joining these two specifications, OASIS’s WS-security defines a

way to include integrity, confidentiality and single message authentication features within

a SOAP message.

The WS Security standard basically adds security information to the SOAP

message headers. The optional SOAP headers, security tokens, can carry Authentication

2. State of the art

 32

information, Transactional & Payment details and etc. Security token is also called a term

which represents a collection of claims could be implemented in various forms such as

X.509 certificates, IETF Kerberos tickets, or username and password combinations. An

example security token is a signed certificate that binds a sender’s identity with a public

key. Confidentiality can be achieved with the help of WS security tokens combined with

XML Encryption. Similarly, XML Signatures combined with WS security tokens serves

towards the integrity.

2.3.5 Liberty Alliance

Liberty Alliance [17] Project is the only global body which is working to define

and provide technology, knowledge and certifications to build identity into the foundation

of mobile and web serviced communication. Its main concentration was on Federated

Identity because of the lack of connectivity between identities for internet applications in

the current wireless technology especially in mobile networks.

The Basic components of Liberty Alliance are Principal, Identity Provider and

Service Provider. Principal is the Requestor who needs to be authenticated. Identity

Provider is the one which authenticates and asserts the Principal’s identity. The basic

provisions this project are Federation which establishes relationship between any two of

the above mentioned components, Single Sign-on (SSO) where the authentication

provided to Principal by the Identity Provider can be maintained to other components

such as Service Providers, and Circle of Trust where Trust will be established between

Service Providers and Identity Providers with agreements upon which Principals can

make transactions and exchange information in a seamless and secure way.

2.3.6 Open Mobile Alliance

Open Mobile Alliance (OMA [36]) is an organization whose primary motive is to

drive interoperability of mobile data services. OMA is a collaboration of almost all of the

mobile specific companies, customers, operators etc. The primary benefit of this

approach would be seamless mobile services for end user worldwide, thereby, achieving

end-to-end interoperability of mobile services. It is imperative that once interoperability

standards are available, mobile services can be developed which then can connect users

with all types of services providers and enterprises. The following Figure 9 gives a view

OMA approach towards developing open/global standards and specifications for mobile

data services.

2.3 Existing/Emerging Standards for Web Services and Wireless Environments

 33

Figure 9 : OMA Motive Overview [36]

Though the specifications are still in development phase and not released, it is

worth mentioning, in brief, the current thesis related core web service specification from

OMA, the “OMA Web Services Enabler “[35]. Mobility and roaming are the obvious key

characteristics which are hindrances to mobile web service interactions. The current

possible mobile web service applications have a number of drawbacks as following. First,

the applications should be created through tightly-coupled, costly and close alliances

between value-added service providers. Second, they have to be created based on a

mixture of mostly propriety models and disparate/overlapping standards such as WAP,

Location, Presence, Identity etc. Furthermore, most of the standards to develop those

applications have been devised specifically for the mobile environment from the ground

up. All these drawbacks will draw high complexity to deploy, integrate and use those

applications/services.

The OMA Web Services Enabler specification is destined to cover all the

drawbacks mentioned above and envisioned to support the following mobile web service

interactions [36]:

• Server-to-server

• Server-to-mobile terminal

• Mobile terminal-to-server

• Mobile terminal-to-mobile terminal (peer-to-peer)

2.4 Existing Mobile Technology Standards

Today's second-generation GSM networks deliver high quality and secure mobile

voice and data services like SMS, circuit switched Internet access etc., with full roaming

capabilities and across the world. The GSM platform is a widely successful wireless

technology and it is the world's leading mobile standard. But, with the advent of the 2.5-

2. State of the art

 34

generation (Interim Generation) technologies like GPRS and EDGE, and 3G technologies

like UMTS, higher transmission rates are achieved in the wireless domain.

The General Packet Radio Service (GPRS) is a non-voice value added service that

allows information to be sent and received across a mobile telephone network. The

General Packet Radio Service is an extension to second generation GSM. It provides

short connection setup times and packet switched connections. GPRS offers faster data

transmission via a GSM network within a range of 9.6Kbits to 115Kbits. The available

bandwidth can be shared among different users. The high bandwidth is achieved by

combining up to eight time slots at the radio interface, where the data is transported in a

packet-oriented way.

With the third generation technologies like UMTS (Universal Mobile

Telecommunication System), which specifies 3G IP broadband mobile networks that will

offer data rates between 156 Kbps and 2Mbps, better transmission rates can be achieved.

Some of the UMTS smart phones are already available in commercial market.

Trust Computing Group (TCG [62]) is focusing on mobile hardware security with

increasing data applications on mobile phones. This group which is a coalition of many

big mobile network companies is planning to realize it as soon as year 2008. Adding

hardware-based security to cell phones can enable services such as electronic ticketing

and mobile payments, according to the TCG. It can also provide for secure storage of

personal information such as an address book, text messages, e-mail and pictures. And, in

the future, payment data such as credit card numbers will be also a possibility according

to TCG.

The RIM (Research in Motion) organization is incorporating Intel’s processor

chip called HERMONE into their Blackberry devices which gives 1.0 GHz processing

speed. This will help the smart phone computing power which compensates limited

resources to an extent. Initial realization would be on EDGE (Enhanced Data for GSM

Evolution) i.e., enhancement of 2G and 2.5G wireless networks. The HERMONE

processor can also be tapped into UMTS (Universal mobile Telephony System) wireless

networks.

Based on above security awareness study, I can conclude that securing web

service provisioning in mobile networks is a great challenge. The mechanisms developed

for traditional networks are not always appropriate for the mobile environment. Thus, this

area still holds ample room for further research.

Summary:

This section, in summary, covered the complete state-of-the-art of the thesis. The

section first explained the mobile web services and our working domain in it which

includes our Mobile Host. Then some of the security challenges in both web services and

wireless environment domains are discussed. Further, the section addressed the

existing/emerging standards in web service and wireless domain including the likes of

core WSS specification, LA and OMA specifications etc. Finally, the section ended by

discussing briefly the existing mobile technology standards.

 35

3 Mobile WS-Security Design

This design section will first zero-in on the basic security requirements for mobile

web services to be realized in this thesis domain. Then the section will explain the design

models to realize both the message-level security and end-point security for mobile web

services domain concentrating on our Mobile Host.

3.1 Security requirements for Mobile Web Services

This subsection will address the basic mobile web service centric security

requirements. Though it’s quite complex and not commercial to configure and use the

existing disparate and overlapping standards for developing secure mobile web service

applications, my goal is to round up the best possible standards and ways to achieve the

basic quality of service.

Once the web service is deployed on the Mobile Host, the service is prone to

different types of security breaches mentioned in Section 2. For avoiding these sorts of

attacks, the web service communication should support the following basic security

requirements- Confidentiality and Data Integrity in addition to Authentication and Access

Control. Secure message transmission is achieved by ensuring Confidentiality and Data

Integrity, while authentication and authorization will ensure the service is accessed only

by the trusted service requestors. The overview of the basic security requirements of

mobile web service provisioning is shown in Figure 10.

Message Security

Third party Security

Authentication serviceAuthentication service

Authorization serviceAuthorization service

Digital SignaturesDigital Signatures

EncryptionEncryption

Authentication /

Authorization
Authentication /

Authorization

Confidentiality /

Data Integrity
Confidentiality /

Data Integrity

TrustTrust PolicyPolicy

Secured Mobile

Web service

Communication

Secured Mobile

Web service

Communication

Basic

Security

Requirements

Message Security

Third party Security

Authentication serviceAuthentication service

Authorization serviceAuthorization service

Digital SignaturesDigital Signatures

EncryptionEncryption

Authentication /

Authorization
Authentication /

Authorization

Confidentiality /

Data Integrity
Confidentiality /

Data Integrity

TrustTrust PolicyPolicy

Secured Mobile

Web service

Communication

Secured Mobile

Web service

Communication

Message Security

Third party Security

Authentication serviceAuthentication service

Authorization serviceAuthorization service

Digital SignaturesDigital Signatures

EncryptionEncryption

Authentication /

Authorization
Authentication /

Authorization

Confidentiality /

Data Integrity
Confidentiality /

Data Integrity

TrustTrust PolicyPolicy

Secured Mobile

Web service

Communication

Secured Mobile

Web service

Communication

Basic

Security

Requirements

Figure 10 : Mobile Web Services Security Overview

The means of secure and reliable information exchange in wireless networks is a

fundamental need yet not feasible with the current standards, in the mobile web services

3. MobileWS-Security Design

 36

domain. The flexibility of web services communication between different involved

parties such as providers, suppliers, customers and etc., requires proper Authentication

and Authorization principles, which are considered as two most critical issues in mobile

networks. Authentication is the proof of identity of the mobile nodes in dynamic mobile

networks. The network identity of the nodes should be maintained a bit differently as

opposed to traditional wired networks. As of now, it is only possible with the help of

mobile network operators; the current state-of-the-art suggests that the federated

identities should be maintained at the concerned network operators. Authorization is the

proof of access controls of the mobile nodes. It is also a critical issue in mobile web

service domain as web services are programmatic interfaces with which monitoring

suspicious activities might become difficult. So, there is a need to authorize not only the

users and applications but also the individual operations of an application.

As discussed earlier, in the mobile web service provisioning domain, the web

service Requests/Responses are transmitted as SOAP messages over HTTP. So the

secured HTTPS, with SSL encryption [16] over HTTP can be used for message

transmission. But HTTPS would not be enough to provide confidentiality as it offers only

session based, point-to-point data privacy over transport layer and the SOAP messages

need to pass through many intermediate nodes, across different transport protocols.

Additionally mobile web services are loosely coupled and dynamic; the messages can be

decrypted and encrypted at various intermediate hops with secure transports. So with the

transport layer security mechanisms, the confidentiality and Data Integrity are not

feasible as they can be read and changeable at intermediaries.

XML Encryption [25] of the SOAP messages provides a way to encrypt the

sensitive information and manage the encryption till it reaches its ultimate destination.

This will allow end-to-end data privacy. Also we have to make sure that the messages are

not modified before it reaching final destination. Digital signatures can help in signing

messages to provide end-to-end data integrity among diverse systems. Thus, the above

mentioned basic security requirements can be achieved with the WS-Security

specification and relevant APIs such as WSS4J [37] in standalone web services. But, it is

extremely difficult to adapt the same security specification on to the mobile web services

domain, in view of ad-hoc networks sensitivity and constrained resources of the handheld

devices.

As discussed earlier, secure provisioning of mobile web services needs proper

message-level security consisting data integrity, confidentiality and end-point access

security that constitutes authentication, access control. Since, there exists no approved

specific mobile web service standards and lot of propriety interfaces are involved, the

security was analyzed on a case-by-case scenario.

3.2 Message-level Security Design Models
To start with, the security features confidentiality and data integrity will be

analyzed on Mobile Web Service Client, because not many security implementations are

available even for standalone Web Service applications, let alone Mobile WS clients. The

following Figure 11 shows the basic setup for realizing confidentiality and Data Integrity

on the Mobile WS client.

3.2 Message-level Security Design Models

 37

WS Provider
WS Requestor

GPRS

WS Message Security

Mobile
Operator Internet

WS Provider
WS Requestor

GPRS

WS Message Security

Mobile
Operator Internet

Figure 11 : Proposed Message-level Security Scenario of Mobile WS Client

As mentioned in the state of the art, to achieve confidentiality, the message should

be ciphered by symmetric encryption and the symmetric key generated should be

exchanged using Public Key Infrastructure (PKI [66]). Integrity is achieved by using

digital signatures. Both PKI, public key encryption to exchange symmetric key and

digital signature mechanisms are described below.

3.2.1 Public Key Infrastructure

 Public Key Infrastructure is a mechanism built to manage digital certificates and

their associated keys and uses these managed digital certificates for authentication

purposes. The digital certificates are themselves can identify as users who claim to be

owner of a specific public key. Public key encryption, also called asymmetric encryption,

works with the help of two keys named public key and private key. Public key can be

visible to all the parties who want to involve in encrypted communication where as

private key should be kept secret pertained to the owner. If public key is used to encrypt

the message, then the message decryption is only possible using private key which

provides confidentiality. If private key is used to encrypt the message, then the message

decryption is only possible using this public key which helps to verify the authentication

of the sender. However, the public key authenticity needs to be checked before

considering the asymmetric encryption.

The most common way to authenticate the public keys is using digital certificates.

This is generally being done at a trusted third party named certification authority.

Whenever a user wants to involve in public key encryption, he will generate a key pair

and verifies with the certification authority according to its specific process by sending

his public key. Once verified, the certification authority generates a digital certificate by

binding the information about the user, user’s public key, an expiration date, and the

digital signature of the certification authority (signed with its private key). The

certification authority then places this digital certificate at a public repository which can

be a database, viewed as a commonplace to fetch these certificates. Though these digital

certificates can also made available at user itself, due to our resource constrained mobile

device scenario, the former way of approach looks optimistic.

Thus, we in our public key encryption implementation made assumptions that the

public key is readily available at the required party to make things simpler. This is due to

3. MobileWS-Security Design

 38

our platform and device limitations. The following sub-section will explain the work flow

of both public key encryption and digital signature.

3.2.2 Public Key Encryption and Digital Signature Workflow

Encryption (sender side) Decryption (Receiver side)

Symmetric

Key

Encrypted

Key

Encrypt

Function

Decrypt

Function

Recipient‘s Public Key Recipient‘s Private Key

Symmetric

Key

Encryption (sender side) Decryption (Receiver side)

Symmetric

Key

Encrypted

Key

Encrypt

Function

Decrypt

Function

Recipient‘s Public Key Recipient‘s Private Key

Symmetric

Key

Figure 12 : Public Key Encryption workflow (achieves Confidentiality)

The Figure 12 represents the process of achieving confidentiality using PKI. The

mechanism is quite straight-forward and simple. In this workflow, the sender encrypts the

symmetric key with receiver’s public key using encrypt function (cryptographic encrypt

engine) and sends the encrypted key to the receiver. The receiver then decrypts the

encrypted key with his private key using the same encrypt function.

Figure 13 : Digital Signature workflow (achieves Authentication and Integrity) [61]

Figure 13 explains the workflow of a digital signature lifecycle with which user

authentication and message integrity are achievable. On the sender side, message digest is

calculated from the message by using hash function and then this digest is digitally

signed by signature function (cryptographic signers) using the sender’s private key. Both

the message and the signature are sent to the receiver. On the receiver front, from the

digital signature, the message digest is retrieved by the signature function using sender’s

3.2 Message-level Security Design Models

 39

public key. This message digest when matches with the original sent message’s

calculated digest will be treated as authentic and not tampered with.

Based from the feedback and implementation from the message-level security

realization at mobile client, the security features confidentiality and data integrity was

then realized on the Mobile Host. One of the prime reasons for this modeling is that at the

time of implementation, the Mobile Host was available in Personal Java where as the

security analysis is being carried out in J2ME. By the time of realization of the message-

level security on mobile client in J2ME, the Mobile Host is transformed from Personal

Java platform to J2ME. Then the entire message-level security was realized on Mobile

Host with small modifications. The Figure 14 shows the basic architecture of realizing

the message-level security for the Mobile Host.

Internet
Mobile

Operator

Mobile Host

GPRS

WS

Message Level Security

Internet
Mobile

Operator

Mobile WS Client Mobile Host

GPRSInternet
Mobile

Operator

Mobile Host

GPRS

WSWS

Message Level Security

Internet
Mobile

Operator

Mobile WS Client Mobile Host

GPRS

Figure 14 : Proposed Message-level Security scenario of Mobile Host

3.3 End-Point Security Design Models

Figure 15 depicts our generic architecture to realize the basic security principles

for the Mobile Host including both message-level and end-point security. Once a web

service is deployed on Mobile Host; any WS client can request for the service. The SOAP

message along with the WS-Security information is routed across the internet to the

Mobile Host. The message-level security information is extracted and addressed at the

Mobile Host while the end-point access security is handled by a third party on behalf of

the Mobile Host. The third party requirement depends on the possible end-point security

handling at the Mobile Host. Further, the corresponding service details are extracted and

the service is invoked. The SOAP response is sent back to the client across the same

route.

3. MobileWS-Security Design

 40

Internet
Mobile

OperatorWS Clients

Mobile Host

GPRS

WS

Message Level

Security

End-Point Security

Provider

Internet
Mobile

OperatorWS Clients

Mobile Host

GPRS

WS

Message Level

Security

End-Point Security

Provider

Figure 15 : Proposed WS-Security scenario of Mobile Host

As for basic authentication, it can be done using reverse Public Key

Infrastructure. Here, the use who wants to authenticate will encrypt his

username/message using his private key. Then, whoever wants to test the authenticity of

the user will test by checking the successful decryption of the message using the user’s

public key. The Figure 13 described in the previous section further explains the flow of

the authentication procedure.

One of the best ways to achieve the end-point security for web services is using

Single Sign-on. SAML specification needs to be fulfilled while achieving Single Sign-on.

SAML provides a way to embed both authentication and authorization information into

the SOAP headers. LA and WS-Federation are some of the big groups which provide

architectural infrastructure to use SAML. SAML implementations are in development by

OpenSAML, WSS4J and SourceID projects.

SourceID group provides few toolkits to implement SAML. It is an open source

project and its aim to enable identity federation and cross platform security. They are

SAML1.1 Java Toolkit, ID-FF1.2 Java Toolkit (SourceID Liberty 2.0 Beta) and WS-

Federation Toolkit. We considered the SourceID Liberty 2.0 Beta toolkit to realize our

Sign Sign-on analysis after extensive research on all the available tools.

3.3.1 Public SourceID Liberty 2.0 Beta

SourceID Liberty 2.0 Beta [43] is a Java application developed on JBoss

application server (JBoss 3.2.4). This toolkit, also referred as ID-FF1.2 Java Toolkit,

allows developers build Federated Identity Management services into existing web

service projects easily. Using this open source Java toolkit, we can achieve Single Sign-

on and federated identity exchange by means of Liberty ID-FF v 1.2 protocols. The

toolkit provides generic high-level functionality for user-friendly development by

shielding the developer from the complexities of the Liberty protocol, SAML and other

dependencies.

3.3 End-point Security Design Models

 41

SourceID Liberty 2.0 Beta

JBOSS

Session

Store

Event

Adapter

AuthN

Adapter

Artifact

Store

Federation

Store

Interface Adapter Tier

SourceID Liberty 2.0 Beta

JBOSS

Session

Store

Event

Adapter

AuthN

Adapter

Artifact

Store

Federation

Store

Interface Adapter Tier

Figure 16 : SourceID Liberty 2.0 Beta High-level Architecture [43]

As shown in the Figure 16 architecture, the developer can customize the adapter

tier, a set of Java interfaces, to manage data storage and interactions within and around a

web application. Developers implement these interfaces to integrate SourceID into their

application environments.

 Out of the interfaces, in-memory implementations are available for three of them

namely; Session Store, Artifact Store and Federation Store which can be readily usable

by a developer without any additional configuration. Session Store maintains and

provides the user information as who is logged in and logged out. Artifact Store conform

the artifact profile as per Liberty specification by keeping track of an associated array of

artifacts to assertions. Federation Store keeps track of information about account linkages

by hiding all implementation details of mapping user account identifiers to pseudonyms.

Though these above mentioned three interfaces do not need any changes to use, the

developers have a choice to customize upon their need.

Event and AuthN adapters are the two interfaces which must be implemented by

the developer for his specific deployment. The implementation at Event adapter must

provide a notification mechanism that will be used to update the local session system

when a SSO event occurs. AuthN adapter interface is used to retrieve the session

identifier provided in a previous call to onSessionCreated method on the EventAdapter

interface. Then this session identifier will be used by SourceID to track state information

about a user’s current session to make functionalities such as Single Log-out works

correctly. For both Event and AuthN adapters, separate adapter instances must be created

for handling Identity Provider and Service Provider side behavior.

To summarize, SourceID Liberty 2.0 Beta supports the basic core profiles such as

Single Sign-on (both Artifact and POST), Single Log-out, Register Name identifier,

Federation Termination Notification and Identity Provider Introduction. The current

3. MobileWS-Security Design

 42

provision from SourceID group is to utilize the framework on a standalone system which

possesses the resources like Sun Java JDK 1.4.2, JBoss 3.2.4 and Ant 1.5.1 or higher.

By removing some of the high-end functionality on the Service Provider front

from the toolkit, we can visualize our Mobile Host in this paradigm to achieve Single

Sign-on. Basic possible JBoss compliant features specific to the toolkit needs to be

considered on the Mobile Host. Below explained are the four different scenarios to

achieve Single Sign-on. Upon successful implementation of the Service Provider features

of the SourceID toolkit on the Mobile Host, Scenario I and Scenario II designs can be

achieved. If this implementation is not feasible, then the alternate solutions would be to

choose from Scenario III and Scenario IV. All the Single Sign-on scenarios are explained

below one by one.

3.3.2 SSO Scenario I

In the first Single Sign-on scenario as shown in Figure 17, the workflow is quite

straight-forward. The Mobile Web Service Client logs in with its generic interface. The

interface back-end will request SAML token from the Identity Provider. After receiving

the SAML token, the client then requests for the service access from the Mobile Web

Service Provider (Mobile Host) by providing the SAML token. The Mobile Host will

then requests the client token validation with the Identity Provider for its authenticity and

the corresponding authorities for the client if any. Upon positive confirmation from the

Identity Provider, the Mobile Host will then grants the service access to the Mobile Web

Service Client.

Mobile

Web Service

Client

Identity Provider

idle Ready

waitForToken

Ready

waitForAccess

Login(Browser/Interface)

Request SAML Token

Response SAML Token

Mobile

Web Service

Provider

SSO Scenario I

Service Access Request (with Token)

Request Token Validation

Token Validation OK

Access Grant To Service

waitForOK

Mobile

Web Service

Client

Identity Provider

idle Ready

waitForToken

Ready

waitForAccess

Login(Browser/Interface)

Request SAML Token

Response SAML Token

Mobile

Web Service

Provider

SSO Scenario I

Service Access Request (with Token)

Request Token Validation

Token Validation OK

Access Grant To Service

waitForOK

Figure 17 : Single Sign-on Design Scenario I

3.3 End-point Security Design Models

 43

3.3.3 SSO Scenario II

Figure 18 depicts second Single Sign-on scenario. This workflow is required

when the client does not have information about the Identity Provider. The Mobile Web

Service Client logs in with its generic interface. The interface back-end will then request

the service access with the Mobile Host. As the Mobile Host fails to find a SAML token,

it sends the response redirecting to Identity Provider. Then the interface back-end will

request SAML token from the Identity Provider. After receiving the SAML token, the

client then requests for the service access from the Mobile Web Service Provider (Mobile

Host) by providing the SAML token. The Mobile Host will then requests the client token

validation with the Identity Provider for its authenticity and the corresponding authorities

for the client if any. Upon positive confirmation from the Identity Provider, the Mobile

Host will then grants the service access to the Mobile Web Service Client.

Mobile

Web Service

Client

Identity Provider

idle Ready

waitForToken

Ready

waitForAccess

Login(Browser/Interface)

Request SAML Token

Response SAML Token

Mobile

Web Service

Provider

SSO Scenario II

Service Access Request (with Token)

Request Token Validation

Token Validation OK

Access Grant To Service

Service Access Request (with Login)

Redirect to Identity Provider

waitForOK

Mobile

Web Service

Client

Identity Provider

idle Ready

waitForToken

Ready

waitForAccess

Login(Browser/Interface)

Request SAML Token

Response SAML Token

Mobile

Web Service

Provider

SSO Scenario II

Service Access Request (with Token)

Request Token Validation

Token Validation OK

Access Grant To Service

Service Access Request (with Login)

Redirect to Identity Provider

waitForOK

Figure 18 : Single Sign-on Design Scenario II

When the SourceID toolkit’s Service Provider features are not feasible on the

Mobile Host, the following scenarios will be realizable. In these scenarios, an additional

third party standalone component is required. The primary purpose of this component

would be to validate the client’s SAML token sent from the Mobile Host. There will be a

3. MobileWS-Security Design

 44

mutual trust between the Mobile Host and the third party standalone component thereby

helping the resource constrained Mobile Host in validating the client SAML tokens.

3.3.4 SSO Scenario III

In this third Single Sign-on scenario as shown in Figure 19, the workflow is quite

straight-forward too but with an additional component. The Mobile Web Service Client

logs in with its generic interface. The interface back-end will request SAML token from

the Identity Provider. After receiving the SAML token, the client then requests for the

service access from the Mobile Web Service Provider (Mobile Host) by providing the

SAML token. The Mobile Host simply forwards the token to its mutually trusted third

party component. This third party standalone component will then request the client token

validation with the Identity Provider for its authenticity. Upon positive confirmation from

the Identity Provider, the component sends an OK to the Mobile Host. The Mobile Host

will then grant the service access to the Mobile Web Service Client.

Mobile

Web Service

Client

Identity Provider

idle Ready

waitForToken

Ready

waitForAccess

Login(Browser/Interface)

Request SAML Token

Response SAML Token

Mobile

Web Service

Provider

SSO Scenario III

Service Access Request (with Token)

Request Token Validation

Token Validation OK

Access Grant To Service

Third Party

Identity validator

(Standalone)

Ready

Mutual Trust

Forward OK

Forward Token

waitForOK waitForOK

Mobile

Web Service

Client

Identity Provider

idle Ready

waitForToken

Ready

waitForAccess

Login(Browser/Interface)

Request SAML Token

Response SAML Token

Mobile

Web Service

Provider

SSO Scenario III

Service Access Request (with Token)

Request Token Validation

Token Validation OK

Access Grant To Service

Third Party

Identity validator

(Standalone)

Ready

Mutual Trust

Forward OK

Forward Token

waitForOK waitForOK

Figure 19 : Single Sign-on Design Scenario III

3.3.5 SSO Scenario IV

Figure 20 depicts the fourth Single Sign-on scenario. This workflow with the

additional component is required when the client does not have information about the

Identity Provider. The Mobile Web Service Client logs in with its generic interface. The

3.3 End-point Security Design Models

 45

interface back-end will then request the service access with the Mobile Host. As the

Mobile Host fails to find a SAML token, it sends the response redirecting to Identity

Provider. Then the interface back-end will request SAML token from the Identity

Provider. After receiving the SAML token, the client then requests for the service access

from the Mobile Web Service Provider (Mobile Host) by providing the SAML token. The

Mobile Host simply forwards the token to its mutually trusted third party component.

This third party standalone component will then request the client token validation with

the Identity Provider for its authenticity. Upon positive confirmation from the Identity

Provider, the component sends an OK to the Mobile Host. The Mobile Host will then

grant the service access to the Mobile Web Service Client.

Mobile

Web Service

Client

idle Ready

waitForToken

waitForAccess

Login(Browser/Interface)

Request SAML Token

Response SAML Token

Mobile

Web Service

Provider

SSO Scenario IV

Service Access Request (with Token)

Access Grant To Service

Service Access Request (with Login)

Redirect to Identity Provider

waitForOK

Identity Provider

Ready

Request Token Validation

Token Validation OK

Third Party

Identity validator

(Standalone)

Ready

Forward OK

Forward Token

waitForOK

Mutual Trust

Mobile

Web Service

Client

idle Ready

waitForToken

waitForAccess

Login(Browser/Interface)

Request SAML Token

Response SAML Token

Mobile

Web Service

Provider

SSO Scenario IV

Service Access Request (with Token)

Access Grant To Service

Service Access Request (with Login)

Redirect to Identity Provider

waitForOK

Identity Provider

Ready

Request Token Validation

Token Validation OK

Third Party

Identity validator

(Standalone)

Ready

Forward OK

Forward Token

waitForOK

Mutual Trust

Figure 20 : Single Sign-on Design Scenario IV

Summary:

This section, in summary, addressed the basic security requirements for mobile

web services and then discussed both message-level security design models and end-point

security design models. It also explained some of the used existing technologies such as

Public Key Infrastructure, Public Key Encryption and Digital signature workflows, and

SourceID Liberty Beta toolkit.

3. MobileWS-Security Design

 46

 47

4 Mobile WS-Security Implementation

This section runs through explaining the thesis related development tools and

platforms and WS message-level security implementation details with relevant

implementation model and details with a class diagram. The section further explained the

end-point security implementation model with a Single Sign-on scenario.

4.1 Development Tools/Platform

This subsection explains the J2ME platform in detail and describes the Sun Java

Wireless toolkit and Lightweight Bouncycastle Cryptographic API. Further the

subsection addresses the development of adapted KSOAP2 API from existing KSOAP2

explaining the KSOAP2 and KXML2.

4.1.1 J2ME – Java 2 Platform, Micro Edition

Java 2 Micro Edition is the newest and smallest addition to the Java family. J2ME

is intended for small and constrained devices and it provides an application environment

for applications on consumer and embedded devices, like mobile phones and Personal

Digital Assistants (PDAs) [45]. J2ME contains a set of standard Java APIs focusing on

these devices. J2ME consists of configurations, profiles and optional packages [45], as

shown in Figure 21, where each combination is optimized for the memory, processing

power, and I/O capabilities. The configurations and the profiles provide information

about APIs and different families of devices [46].

Figure 21 : The J2ME Architecture [45]

4. MobileWS-Security Implementation

 48

A configuration consists of a virtual machine and a minimal set of class libraries

designed to provide the base functionality for a distinct set of devices with similar

characteristics, such as network connectivity, processor power and memory [44]. Profiles

are a set of higher level APIs, and they must be combined with the configurations, in

order provide a complete runtime environment. The configurations from J2ME platform

are Connected Limited Device Configuration (CLDC) and Connected Device

Configuration (CDC) as shown in Figure 21. CLDC is the smaller configuration, and it is

designed for devices with intermittent network connections, slow processor and limited

memory. Mobile phones, two way pagers and PDAs are typical devices. It defines the

minimum required Java technology consisting of libraries and components for small-

connected devices [44]. CDC is designed for devices like high-end PDAs with more

memory, faster processors and greater network bandwidth. CDC includes a more

complete JVM and a larger subset of the Java 2 Standard Edition (J2SE) platform.

As our Mobile Host realization is on Sony Ericsson P910i terminal, our interest

will be focused on CLDC 1.0 configuration and Mobile Information Device Profile

(MIDP 2.0) profile which are P910i compatible. MIDP profile is designed for mobile

phones and entry-level PDAs. It contains the core functionality needed by mobile

applications, like the user interface, local data storage, network connectivity, and

application management.

A MIDP application is called a MIDlet. It has access to packages from both the

CLDC and the MIDP, as shown in Figure 22. The CLDC defines the core APIs where

most of them come from J2SE [46]:

CLDC MIDP

java.lang

java.io

java.util

javax.microedition.io

javax.microedition.lcdui

javax.microedition.midle

t

javax.microedition.rms

CLDC MIDP

java.lang

java.io

java.util

javax.microedition.io

javax.microedition.lcdui

javax.microedition.midle

t

javax.microedition.rms

Figure 22 : MIDP Packages [46]

The characteristics of MIDP are [46]:

• 128 KB of non-volatile memory for the MIDP implementation

• 32 KB of volatile memory for persistent data

• a screen of at least 96x54 pixels

• some capacity for input, either by keypad, keyboard, or touch screen

4.1 Development Tools/Platform

 49

• two-way network connection, possibly intermittent

MIDP offers portability, which is achieved through Java. An application that uses

the MIDP APIs will be portable to any MIDP device. MIDP allows the execution of

multiple MIDlets. The model defines how the MIDlet is packaged, what runtime

environment is available, and how it should behave when resources are constrained. The

model also defines how MIDlets can be packaged together in suites and how to share

common resources. Each MIDlet suite has also a JAD file, which is a descriptor file that

allows application management software (AMS) on the device to identify what it is about

to install prior to installation. The model also defines a lifecycle for a MIDlet which

allows starting, stopping and cleanup of a MIDlet [44].

The MIDlet life cycle:

Figure 23 : The MIDlet life cycle [47]

A MIDlet is managed by the Java Application Manager, which executes the

MIDlet and controls its life cycle. The MIDlet can be in one of the following states:

paused, active, or destroyed. When you first create and initialize a MIDlet, it is in the

paused state. If an exception occurs in the MIDlet's constructor, the MIDlet enters the

destroyed state and is discarded. The MIDlet enters the active state from the paused state

when its startApp() method call is completed, and the MIDlet can function normally. The

MIDlet can enter the destroyed state upon completion of the destroyApp (Boolean

condition) method. This method releases all held resources and performs any necessary

cleanup. If the condition argument is true, the MIDlet always enters the destroyed state

[47]. Figure 23 illustrates the various states of a typical MIDlet life cycle.

4.1.2 Sun Java Wireless Toolkit

The Java 2, Micro Edition Wireless Toolkit [48] is a bunch of tools for creating

Java applications that run on Java Technology for the Wireless Industry specification

compliant devices. It enables user-friendly development environment for programmers to

design applications on J2ME devices with the help of its build tools, utilities and a device

4. MobileWS-Security Implementation

 50

emulator for exact offline simulation of the J2ME device to test MIDP applications. The

toolkit supports both versions of CLDC (CLDC1.0 and CLDC1.1) and MIDP (MIDP1.0

and MIDP2.0). The other APIs which the toolkit supports are Wireless Messaging API,

Mobile Media API, and PDA Optional Packages for the J2ME Platform which consists of

File access mechanism, Bluetooth and 3D APIs.

All we got to do is write the source code and the complete building and packaging

will be taken care by the toolkit which includes compilation, pre-verification of class

files, and packaging the MIDlet suite. We can also run the MIDlet suite directly in the

emulator and can analyze the operation of the MIDlets with the help of memory monitor

and network monitor provided by the toolkit. The toolkit also contains tools to test the

operations of MIDlets in protected domains by signing MIDlet suites cryptographically.

The toolkit also supports the usage of obfuscation. Obfuscation is needed to

reduce the size of class files. This is essential because most of the times a MIDlet suite

needs to be compact to minimize download times and to comply with the stringent limits

on JAR size by the device manufacturers. Obfuscators help this requirement by keeping

MIDlet suite JAR quite small when compared to original JAR without obfuscation. Pro

Guard obfuscator is one of them, which can be readily configured to use. The obfuscation

will be carried out during the packaging process of a development cycle.

4.1.3 Lightweight Bouncycastle Cryptographic API

The Bouncy Castle Crypto package is a Java implementation of cryptographic

algorithms. The package is organized such that it contains a light-weight API suitable for

use in J2ME environment with the additional infrastructure to conform the algorithms to

the Java Cryptography Extension framework. The light-weight cryptographic API

consisting of support for the following [49]:

• BlockCipher

• BufferedBlockCipher

• AsymmetricBlockCipher

• BufferedAsymmetricBlockCipher

• StreamCipher

• BufferedStreamCipher

• KeyAgreement

• Integrated Encryption Scheme Cipher (IESCipher)

• Digest

• Message Authentication Code (Mac)

• Password Based Encryption (PBE)

Some of the algorithms of light-weight cryptographic API which are relevant to

my current research will be discussed in brief here. Out of the Symmetric Block

algorithms, the basic interface of interest is BlockCipher and has various implementation

modes. The mode we are interested in is BufferedBlockCipher with default PKCS5/7

padding termed as PaddedBufferedBlockCipher. The cipher engines that we have

implement using this mode are AESEngine, DESEngine, DESedeEngine, and

IDEAEngine with keysizes varying from 64 bit to 256 bit subjectively.

4.1 Development Tools/Platform

 51

We have used BufferedAsymmetricBlockCipher mode from Asymmetric Block

algorithms whose basic interface is AsymmetricBlockCipher. RSAEngine with 1024 bit

and 2048 bit implemented using this mode is the engine used for public key encryption.

In addition, we have used SHA1 digest algorithm which is implemented by basic

interface Digest. Out of supported Signers from the package, we made use of DSA

signers and RSA signers for signing purposes.

To conclude this section, the usage of this light-weight API along with KSOAP2

API to implement WS-message-level security in J2ME has resulted in Adapted KSOAP2

API which is explained in detail in the next subsection.

4.1.4 Adapted KSOAP2 API

As mentioned in the earlier sections, SOAP structure is based on XML and

includes the most of the security information in its header. For standalone web services,

there are a lot of tools and APIs available such as WSS4J by Apache group, JWSDP from

SUN networks etc. in Java oriented development of secure web services supporting WS-

Security specifications. The point to note is that they are still not yet commercialized.

On mobile front, there are some toolkits to support the normal web services but

without security. The most noted ones are KSOAP and SUN related toolkits. As of SUN,

the specifications like JSR 172 has been introduced to support web services.

This JSR is designed to provide an infrastructure as two optional packages for

J2ME to [51]:-

• provide basic XML processing capabilities

• enable reuse of web service concepts when designing J2ME clients to enterprise

services

• provide APIs and conventions for programming J2ME clients of enterprise

services

• adhere to web service standards and conventions around which the web services

and Java developer community is consolidating

• enable interoperability of J2ME clients with web services

• provide a programming model for J2ME client communication with web services,

consistent with that for other Java clients such as J2SE

The Sun Java Wireless Toolkit which we used for the development ease supports

this web service specification. But, as our mobile web server is based on KSOAP which

is based on KXML in personal java environment coupled with the problem that jsr 172’s

primary provision is towards J2ME clients, we chose KSOAP2. As personal java is no

more in use, we transformed the Mobile Host using J2ME. Detailed information about the

transformation will be discussed in later sections. As of toolkits to handle SOAP structure

and its security specification according to WS-Security and SAML specifications, neither

KSOAP nor SUN existing toolkits are sufficient. After intensive research in this domain,

we decided to adapt KSOAP2 which is an extended version of KSOAP API. It is based

on KXML2.

4. MobileWS-Security Implementation

 52

4.1.4.1 KSOAP2

Figure 24 : A Typical KSOAP2 body Structure [50]

The above Figure 24 represents a typical KSOAP2 body structure. Similar to

KSOAP [50], it is an open source API for SOAP parsing. Its primary motive is to convert

the Java request objects into XML based messages with SOAP structure compliance and

revert back the response SOAP complied XML based messages to Java response objects

inline to normal SOAP processing. The advanced toolkit also now supports literal

encoding. The provision of SOAP serialization support is made optional and integrated

several classes into SOAPSerializationEnvelope class whose base class is

SOAPEnvelope.

4.1.4.2 KXML2

KXML2 is a small XML pull parser specially designed for constrained

environments, to access, parse, and display XML files for J2ME devices. As stated on

xmlpull.org, the Common API for XML Pull Parsing (XmlPull) is an effort to define a

simple and elegant pull parsing API that will provide a standardized method to do XML

pull parsing from J2ME to J2EE. It is a minimal API, one that is easy to implement as a

4.1 Development Tools/Platform

 53

stand-alone API or on top of an existing parser. XmlPull allows both fast, high-level

iteration (using next() method) and low-level tokenizing (using the nextToken() token). It

is designed for easy building on top of SAX, XML pull parsers that use iterators with

event objects, and even DOM implementations.

General XML content can be parsed with the XML pull API using a loop

advancing to the next event and a switch statement that depends on the event type.

However, when using XML for data transfer (in contrast to text documents), most XML

elements contain either only text or only other elements (possibly with further sub-

elements). For those common cases, the parsing process can be simplified significantly

by using the XmlPull API methods nextTag and nextText. Additionally, the method

require() may optionally be used to assert a certain parser state. The following sample

illustrates both situations and methods. The outer element elements has element-only

content; the contained text-elements have text-only content:

<elements>
 <text>text1</text>
 <text>text2</text>
</elements>

The relevant parser methods here are:

nextTag()
nextText()
require()

nextTag() advances to the next start or end tag, skipping insignificant events such

as white space, comments and PIs. nextText() requires that the current position is a start

tag. It returns the text content of the corresponding element. The post condition is that the

current position is an end tag. Please note that the calls require() are optional assertions,

they may be left out completely.

4.1.4.3 Custom SOAP Envelope

As our current domain is mobile web service security, there is no literal support

from KSOAP2. So, for our research purposes, we used only SOAPEnvelope class from

KSOAP2 which contains core Write and Parse methods using XMLPullParser. Also note

that in KSOAP2, SOAP headers are handled as elements and SOAP body as objects. For

SOAP WS-Security compliance, we handled SOAP body in elements as well. This is the

only class we have adapted into a new class called CustomSoapEnvelope to serve the

purpose of serializing and de-serializing the Java Objects and SOAP messages

accordingly.

The methods of CustomSoapEnvelope are simple:

Write()
WriteHeader()
WriteBody()

Parse()
ParseHeader()

4. MobileWS-Security Implementation

 54

ParseBody()

The Write() and its sub functions convert the Java Objects into XML data to

streaming via HTTP protocol. Parse() and its relevant functions transforms the received

XML stream in to Java Objects. As the mentioned Java Objects in here are Java Element

Objects, the setup effectively helped us to setup SOAP message structure very much

according to WS-Security and SAML specifications. This will leave the complete Java

Object Interpretation wide open. The Java Object creation and interpretation according to

WS-Security specifications is handled in our mobile web service security API which will

be explained in the forthcoming sections.

4.2 WS Message-level Security Implementation

As there are not any changes in web service message-level security

implementation as described in message-level security design model section when shifted

the implementation from mobile client to Mobile Host, the implementation details in this

subsection will refer to Mobile Host while describing the coding process. The following

subsections will explain the implementation model and the abstract coding details with a

class diagram.

4.2.1 Implementation Model

To realise WS message-level security for Mobile Host, on Sony Ericsson P910i,

as mentioned in earlier sections, we have used J2ME MIDP2.0 for implementation. The

device supports MIDP2.0 with CLDC1.0 configuration. For cryptographic algorithms and

digital signers, java based light weight cryptographic API from Bouncy Castle crypto

package is used. KSoap2, the java API based on KXml2, is adapted by us according to

WS-Security standard and utilized to create the request/response web service messages.

WS Handler

SOAP Processor

Security Handler

KSOAP

KXML

LWC API

Service Handler

MPS WS GPS

WS Handler

SOAP Processor

Security Handler

KSOAP

KXML

LWC API

Service Handler

MPSMPS WSWS GPSGPS

Figure 25 : Web Service Handler of the Mobile Host

4.2 WS Message-level Security Implementation

 55

The web service security enabled WS Handler of the Mobile Host is shown in

Figure 25. The SOAP Processor extracts the SOAP messages from web service requests.

The Security Handler does the respective security tasks/checks over the message and

transfers decrypted message to the service handler, which extracts the service details and

invokes the respective service. Effectively, the handler manages the full message-level

security.

 To realize confidentiality, the message was ciphered with symmetric

encryption algorithm and the generated symmetric key is exchanged by means of

asymmetric encryption method. The message was tested against various symmetric

encryption algorithms including the WS-Security mandatory algorithms, namely,

TRIPLEDES [52], AES-128, AES-192 and AES-256 [53]. The PKI algorithm used for

key exchange was RSA-V1.5 [54] with 1024 and 2048 bit keys. Upon successful

deployment and testing of confidentiality, we considered data integrity on top of

confidentiality. The messages were digitally signed and tested against two signer

algorithms, namely, DSAwithSHA1 (DSS) [55] and RSAwithSHA1 signature

algorithms. Note that, as said earlier, all the algorithms mentioned above have been

implemented using java based light weight bouncy castle cryptographic API.

4.2.2 Implementation Details

This subsection explains the implementation details of the complete message-

level security whose class hierarchy is bundled in to a single package including adapted

ksoap2, security API and the test bed to fetch the experimental results and presents the

resultant SOAP message structure when fed with message security.

4.2.2.1 General provisions of the Security API

The Security API provides the following features for the Mobile host to handle

message-level security:

• Conforms the soap message according to the web service standards

• Capable of handling all the symmetric encryption algorithms as specified by WS-

standards.

• Supports symmetric key generation

• Provides symmetric key exchange using Public Key Infrastructure

• Supports both RSA and DSA signature for message integrity domain.

• Provides file access capability for fetching digital certificates or PKI key-pair

values.

4.2.2.2 The Security API Package Analysis

As said earlier, the entire message-level security functionality of the Mobile Host

is implemented in a single package. The class diagram of the package is shown in figure

26 which provides overview of all the classes and their functionality.

4. MobileWS-Security Implementation

 56

SOAPEnvelopeOps

serialize()

deserialize()

getEncryptedSoapEnvelope()

serializeBody()

deserializeBody()

(from security)

CustomSoapEnvelope

stringToBoolean()

CustomSoapEnvelope()

parse()

parseHeader()

parseBody()

write()

writeHeader()

writeBody()

(from security)

GetRSAKeys

GetRSAKeys()

getPublicKey()

getPrivateKey()

readFromStream()

(from security)

GetDSAKeys

GetDSAKeys()

getPublicKey()

getPrivateKey()

getDSAPara()

readFromStream()

(from security)

SOAPSecurityOps

SOAPSecurityOps()

SOAPSecurityOps()

selectCipher()

selectAsymmetricCipher()

encryptBody()

encryptKey()

decryptKey()

generateSymmetricKey()
generateRSAKeyPair()

getDigest()

getMod()

getPubExp()

RSASign()

RSAVerify()

generateDSAKeyPair()

getG()

getP()

getQ()

getY()

DSAverify()

getEncryptAlgorithm()

setEncryptAlgorithm()

getKeySize()

setKeySize()

getSigningMode()

setSigningMode()

setRunMode()

getKey()

SOAPSecurityOps()

SOAPSecurityOps()

decryptBody()

DSASign()

populateHeader()

populateBody()

decryptEnvelope()

encryptSOAPwithWSS()

getEnvelope()

setEnvelope()

(from security)

-envelope

getKeys

getDSAKeys

MessageLevelSecurityTest

MessageLevelSecurityTest()

startApp()

pauseApp()

destroyApp()

run()

commandAction()

doALL()

main()

(from security)

dummyEnvelope

encSOAP

Figure 26 : Class Diagram of Security API Package

SOAPSecurityOps:

SOAPSecurityOps is the main class which reflects the core message-level security

API. The class has two primary provisions. One is to take a normal soap message, adds

the WS message-level security information and will return back the result WS message-

level security enabled soap message. Two is receive message-level security enabled soap

message, process the security information from the message and send out the result as

normal soap message.

4.2 WS Message-level Security Implementation

 57

In order to work with this class, some initial class variables which are assigned to

default values need to be configured for custom purposes. They are symmetric algorithm,

its key size, and signing mode. One has to also configure the path to access public and

private keys for asymmetric encryption.

The complete process of the class is explained here. Note that one can also access

individual operations to have custom security depending on their application and domain

scenario. In case of adding security information to soap message, the class first extracts

the normal soap body and populates the security enabled soap body. To carry out this,

first a symmetric key will be generated according the specified key size and then the

normal soap body is encrypted using the generated symmetric key with the specified

symmetric algorithm. After this step, the class populates security enabled soap header. In

the resultant soap header, the following will be added. First the symmetric key is

encrypted with default asymmetric algorithm using private key. Then the encrypted body

will be signed using one of the signers from DSA and RSA signers. To achieve the

signature, first the body digest will be calculated. In case of RSA signature, the entire

body will be signed using RSA signer while only body digest will be signed using DSA

signer for DSA signature with their respective public key. The resultant signature value

along with encrypted symmetric key and digest value will be filled into the soap header

thereby producing the entire WS message-level security enabled soap message.

The de-securitization of the message-level security enabled soap message is as

follows. The class first depopulates the soap header. First it verifies the digest value by

comparing the sent digest value from the soap header with the calculated soap body

digest. Then it fetches the signature value to verify the integrity of the message. In case of

RSA signature, the RSA verifier verifies the soap message by using signature value, the

recipient’s RSA private key and the soap body. For DSA signature, the message is

verified with DSA verifier with the help of signature value, the recipient’s DSA private

key and soap body digest value. Upon successful integrity check, the decryption of

encrypted symmetric key takes place using recipient’s private key. Using the symmetric

key, the encrypted soap body is decrypted using the relevant symmetric algorithm

resulting in the normal request/response soap message.

SOAPEnvelopeOps:

SOAPEnvelopeOps class is quite simple and provides two generic functionalities.

One is to receive soap envelope and serialize it to byte stream for SOAP/HTTP transfer.

The provision of serializing either the complete envelope or only the SOAP body is

available for specific usage. The second functionality de-serializes a byte stream received

into a soap envelope or soap body depending on the subject.

GetRSAKeys and GetDSAKeys:

These two classes are basically required to fetch the public and private keys from

a location on the mobile for achieving asymmetric encryption or decryption and RSA or

DSA signature evaluation. As file access in not supported on our current test bed, Sony

Ericsson p910i mobile, the classes generate RSA and DSA key-pair. Since, this problem

would not arise in commercial picture, the timestamps took to generate these key-pairs

are ignored. These are further explained in forthcoming evaluation sections’ test-bed and

test-case subsection.

4. MobileWS-Security Implementation

 58

MessageLevelSecurityTest:

MessageLevelSecurityTest class is the actual test bed to evaluate the message-

level security scenario on the Mobile Host. The test application is a simple sum function.

For simplicity, both client and service provider are considered on the Mobile Host itself

ignoring network delay which is already realized [1]. The class takes care of generating

normal soap message, enabling message security using SOAPSecurityOps and serializing

it as part of mobile client. It then, assuming as Mobile Host, de-serializes the serialized

content, verifies message security using SOAPSecurityOps and reads the resultant normal

soap envelope, processes the result, forms the normal result soap message, adds security

again and serializes it.

For optimized testing purpose, the class is organized such that the entire cycle

mentioned above will run through all specified symmetric algorithms and its varied key

sizes and produces a completed result table as output. This helped in alleviating the cost

for fetching the results.

4.2.2.3 Resultant SOAP Message Structures

A normal J2ME SOAP message before adding WS-Security information

according to advanced KSOAP2 API looks like the following message structure:

Normal SOAP Message:

<v:Envelope xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns:d="http://www.w3.org/2001/XMLSchema"
xmlns:c="http://www.w3.org/2001/12/soap-encoding"
xmlns:v="http://www.w3.org/2001/12/soap-envelope">
<v:Header />

<v:Body>
<n0:input xmlns:n0="CustomMethodURL">
<input1>44</input1>
<input2>55</input2>
<bodyPadding>As pervasive mobile data applications are becoming
ubiquitous in parallel with the fast developing and easily readable web
services (WS), the ability to provide secure and reliable communication
across mobile web service applications became utmost important. Even
though a lot of standardized security specifications and implementations
exist for web services in the wired networks, not much has been
standardized in the wireless environments. This thesis report addresses
some of the critical challenges in providing WS-S...</bodyPadding>
</n0:input>
</v:Body>
</v:Envelope>

Example 7 : Normal SOAP message structure with Adapted KSOAP2 API

A J2ME SOAP request message structure after encrypting body with AES 256 bit

algorithm, RSA 1024 bit symmetric key exchange and signed with RSA signature using

the above mentioned security API is represented below:

4.2 WS Message-level Security Implementation

 59

Message-Level Security Enabled SOAP Message:

<v:Envelope xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns:d="http://www.w3.org/2001/XMLSchema"
xmlns:c="http://www.w3.org/2001/12/soap-encoding"
xmlns:v="http://www.w3.org/2001/12/soap-envelope">
<v:Header>
<Security>
<n1:EncryptedKey xmlns:n1="http://www.w3.org/2001/04/xmlenc#">
<EncryptedMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5" />
<CipherData>
<CipherValue>

UlhOLVkNgWdvP/7r8upPYGSwHzKwG/8hTS9i47NebGmswAXNidZC6GXSN8eaG1jWJNgV6F71
vyeUuHOLxhs2EtiohQLstKB9iqSHxT4Jzqy8SFxxOZgjWRBQxsml8aljLlJ96L7pHQijR/CB
rGF1S97haGx4u8fXeQNY+j87cTg=

</CipherValue>
</CipherData>
<ReferenceList>
<DataReference URI="#441252522" />
</ReferenceList>
</n1:EncryptedKey>
<n2:Signature xmlns:n2="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"
/>
<Reference>
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>

OG9p3JPjFdtLu2ATbXMAYA1DTzQ=

</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>

lPfksxdp53VSscTAhHHJYYfILT+v6xidBVZ0eYPEapXUO8S5XBxvhfXP8GdQoKXv70PA4CHQ
/c5mUhfxPVqzSk2B5GaXqxeLaRnlE3KktNT/Mbo6329MNPblyLbuDIwr+9/Y2V9QfeT54FD0
BxXZ2VZ8IFft4x63xBgmzEjNWrw=

</SignatureValue>
<KeyInfo>
<KeyValue>
<RSAKeyValue>
<Modulus>
AJ64wyiDicWPvy8jfAShT1/pPg6izOMTqiBUHGR5248nU+z0wSObZyKik25j6vwG0dnKb9mm
WVLP/AzHDl3iT8vlOcJp6dGANU4GnOyqEQ9Oy+2pvvGmOHLUedvSKIUKctxbT7UIkVYtkgnw
Ja3VfKXz7oIyXRaa8AXOdhZ1QopR
</Modulus>
<Exponent>AQAB</Exponent>
</RSAKeyValue>
</KeyValue>
</KeyInfo>
</n2:Signature>

4. MobileWS-Security Implementation

 60

</Security>
</v:Header>

<v:Body>
<n0:EncryptedData Id="223940028"
xmlns:n0="http://www.w3.org/2001/04/xmlenc#">
<EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#AESEngine"
/>
<CipherData>
<CipherValue>

Ye/qF76fWiDXQql54OvjmGar4t9Kdyn5aINxqnyxeIv+UPwlzGusvFoe2lpvw0YjA74y+ei4
dGyDXjREOlvqcWJjDW7N6fTjgVGM/r+5LTcTPBk00QwdwEX0uJpkhp7assGPWTLQPenHqwGU
WfkX3czfzo5GNrxwEgRBGqsw4cQJplmQIViijSB8vNBzUnYUHKmGrV56IUrnPM3yWHDnklrc
aiqqtVq7Kgl+S8jDQTeJ1AYOKhgNtZt0iozsh+mM7zIr1cVf1OM9RWpBc4kycL/sl0bLXOMA
N2mJ+eQxnkjwtSdUS8F1SUe2mbZMFdPz2PbPKqhHaq6nUd6VVC2a+MOlLwIghrWCfIdK1zlT
6luRs9uY2/biZdjQF+Qzf2iQMdbNLbshtQ/VhNOKtPIHYiZeNE4WP5b+GqISSXCIMLJFtC1E
xCVnQfeF1tfnlGNpAldTDmNMCydXD+FQdPLXwBJL6bjtqvth9fLvR+zLtViufGiI0RnGuVii
2eTUZcxykT+HVGn7Xcg8Qa2yEp+Dv6GO6fi1Lqx4YTpPGc0qb+Qaf6h7cTDaHz7aFdYBz6JG
6bsZh0BG/LE/+IfSFP+LiyroXR0SHSqmd1WzJ8k2rWJLSH4T1jEl/MAv7TDRRjJWrMNciPER
cY6bKQFGVtH1pNPWXRRmflxlcmqczfLqmjA/pG+mBDVzCdGA/DLg02wDhyNn8vl4zCj+NxyI
+ht4+802Rf2eKyHv5Gv8nTdv3UqdKSDlHSLDO02H4clsjoRwTFjpJ7/Q1Vn5DfJIdJXjPkuO
qn/6bkcwHVtkgTdeQn94SwhSjLFZ41BlAPmiuVb/RMESnqklKDtPQ0Pw3u1eVw==

</CipherValue>
</CipherData>
</n0:EncryptedData>
</v:Body>
</v:Envelope>

Example 8 : A Typical SOAP message generated by Security API Package

4.3 WS End-point Security Implementation Model

This subsection tries to model the WS end-point security in our domain. The

primary design was to analyse to Single Sign-on to provide both authentication and the

possible authorization activities. We considered the SSO scenario III and IV as explained

in end-point security design models subsection. The SourceID Liberty Beta toolkit is

used for the communication between third party identity validation component and the

identity provider.

The basic components, as shown in Figure 27, required to analyze the Single

Sign-on scenario are the Mobile WS client, Mobile Host (Mobile WS provider), Third-

party Identity validator, and Identity provider. The initial federation between the WS

client and the identity provider are not explained in the analysis shown in Figure 27. The

federation process in brief is as follows. WS client authenticates with third party identity

validator and requests for federation with the identity provider which it supports. Then

the identity provider requests the WS client to validate its credentials again to federate

into the domain. Upon the respective successful handshakes, the identity provider

maintains the federated identity of the WS client.

As far as actual Single Sign-on scenario is concerned, two kinds of

communication are evident as shown in the Figure 27. One is WS client SOAP request

4.2 WS End-point Security Implementation Model

 61

initiation with the Mobile Host without security token and the other is to initiate the

SOAP request with security token. When a WS client, already with the identity provider,

requests a web service from the Mobile Host, the request will be parsed to check the

security token for authentication. In case of security token not available, the Mobile Host

will then requests third party identity validator, a standalone component which as mutual

trust with Mobile Host, to authenticate the WS client using Single Sign-on. The third

party component will then ask the WS client to choose the relevant IDP with which it is

federated. Upon receiving the artifact from the WS client, the third party component then

forwards the artifact to the identity provider. The identity provider then requests the

Single Sign-on credentials by providing login page to the WS client. After successful

verification of client credentials at identity provider, an assertion token will be sent back

both to WS client and third party component which forwarded artifact. The WS client

uses the received assertion token along with further service requests which conforms

Single Sign-on. Meanwhile, the third party component sends an OK to the Mobile Host

about the authenticity of the WS client SOAP request. The Mobile Host then grants

access permission to WS client for its concerned web service.

Mobile/Standalone

Web Service

Client

idle Ready

waitForToken/Access

waitForAccess

SOAP request (without token)

Response SSO Login

Mobile

Web Service

Provider

Analysed SSO Scenario

Service Access SOAP Request (with Token)

Access Grant To Service

Service Access Request (SOAP)

Asks to authenticate by choosing IDP

waitForOK

Identity Provider

Ready

Request Token Validation

Assertion Token

Third Party

Identity validator

(Standalone)

Ready

Forward OK

Forward Token

waitForAssertion

Mutual Trust

Trigger Authenticate (using Artifact)
Forwards Artifact for SSO Login

Request SSO Login

Requests SSO for Client

Assertion Token

Assertion Token

Forward OK
Access Grant To Service

waitForOK

Mobile/Standalone

Web Service

Client

idle Ready

waitForToken/Access

waitForAccess

SOAP request (without token)

Response SSO Login

Mobile

Web Service

Provider

Analysed SSO Scenario

Service Access SOAP Request (with Token)

Access Grant To Service

Service Access Request (SOAP)

Asks to authenticate by choosing IDP

waitForOK

Identity Provider

Ready

Request Token Validation

Assertion Token

Third Party

Identity validator

(Standalone)

Ready

Forward OK

Forward Token

waitForAssertion

Mutual Trust

Trigger Authenticate (using Artifact)
Forwards Artifact for SSO Login

Request SSO Login

Requests SSO for Client

Assertion Token

Assertion Token

Forward OK
Access Grant To Service

waitForOK

Figure 27 : Analyzed Single Sign-on scenario in Mobile Web Service Provisioning Domain

4. MobileWS-Security Implementation

 62

Once WS client performed Single Sign-on, it can use the assertion token for

further web service requests with in the domain. The second kind of communication

starts here and is fairly simple. The WS client requests the service by attaching token to

the SOAP request. The Mobile Host then forwards the token to third party identity

validator for token validation. At third party component, the token is validated with the

identity provider for its authenticity. The component then sends an OK upon successful

validation to Mobile Host which in turn grants access to the web service to WS client.

 To sum up, the Single Sign-on scenario depicted in Figure 27 was partially

realized drawing out the feasibility of its full throttle usage. The mutual trust between

Mobile Host and the third party component are assumed. Of course, it is even possible to

exchange the information between these two mutually trusted components in a secure

mode using such as encryption and digital signatures to ensure confidentiality and

integrity. And as session maintenance is not possible at Mobile Host, each service request

with token from WS client will be validated for the clients’ authenticity with the second

type of communication mentioned in Figure 27.

Summary:

This implementation section, in summary, covered the implementation model to

achieve the message-level security and the explanation of the Security API package with

the help of a class diagram and then showed the SOAP message structure with and

without security information. Further, the section covered the analyzed Single Sign-on

scenario to cover end-point security implementation. Note that authentication is also

achievable in much the same way as integrity by sending the username encrypted with

private key of the sender as explained in the end-point security design model section.

 63

5 Mobile WS-Security Evaluation

The WS-Security evaluation section evaluates and analysis the experimental

results. First, performance model with various timestamp definitions in the test bed will

be explained. Then the section describes the generic evaluation model with whole web

service cycle including Mobile Host and the client. Further the section ends with

experimental results and performance analysis of the Mobile Host.

5.1 Performance Model

To analyze the performance of the Mobile Host with the security load, the

durations of different activities during the web service invocation cycle are observed. The

client initiates the call for the web service and the Mobile Host processes the request,

populates the response, and sends response back to the client.

WS request transmission

-

Decrypting Request

Client Mobile Host

WSSE Encrypted request

Request de-serialization

Serialize the request

WS Re
spon

se tra
nsmis

sion

TREQST

TTREQD

TREQDCT

TPROCESST

Create the request
CC
T

REQEC
T

WSSE Encrypted Response

Response serialization

Request processing

T
RESEC

TRESS

Response Processing

Response de-serialization

Decrypting Response

TCPT

RESDC
T

RESD
T

TT REQT

TREST

WS request transmission

-

Decrypting Request

Client Mobile Host

WSSE Encrypted request

Request de-serialization

Serialize the request

WS Re
spon

se tra
nsmis

sion

TREQSTTREQST

TTREQDTTREQD

TREQDCTTREQDCT

TPROCESSTTPROCESST

Create the request
CC
T
CC
T

REQEC
T
REQEC
T

WSSE Encrypted Response

Response serialization

Request processing

T
RESEC
T
RESEC

TRESSTRESS

Response Processing

Response de-serialization

Decrypting Response

TCPTTCPT

RESDC
T
RESDC
T

RESD
T
RESD
T

TT REQTTT REQT

TRESTTREST

Figure 28 : Secure Mobile Web Service Invocation – Operations & Timestamps

The total time taken for this mobile web service invocation (Tmwsp) constitutes,

the time taken by client for constructing valid SOAP message (Tcc), the time taken to

encrypt the message with security information according to WS-Security standard

(Treqec), the time taken to serialize the encrypted message (Treqs), the time taken to

5. MobileWS-Security Evaluation

 64

transmit the SOAP request to Mobile Host (Treqt), the time taken for de-serializing the

XML based SOAP request message (Treqd), the time taken to decrypt the request

message (Treqdc), the time taken by the Mobile Host to execute the respective business

logic and to populate the response (Tprocess), the time taken to encrypt the response

message with security information (Tresec), the time taken for serializing the encrypted

response message back to XML data streams (Tress), the time taken to transmit the

SOAP response back to the client (Trest), the time taken to de-serialize the response at

the client (Tresd), the time taken by the client to decrypt the response message (Tresdc),

and lastly the time taken by the client to process the response (Tcp). The invocation

process is shown in Figure 28 and the total time taken for the mobile web service

invocation is given in the following equation 1.

Tmwsp = Tcc + Treqec + Treqs + Treqt + Treqd + Treqdc + Tprocess + Tresec + Tress + Trest +

Tresd + Tresdc + Tcp

Equation 1 : Total Invocation Cycle

The exact estimation of the Treqt and Trest time is not possible as the process

needs the synchronization of time stamps of both Mobile Host and client. Moreover these

transmission times were observed during previous analysis in Mobile web service

provisioning project [58]. Those results showed 90% of total invocation cycle is

transmission time. So to analyze the minute extra delays due to security load, the whole

invocation cycle is observed with both the invocation and processing of the WS request at

the Mobile Host itself, thus eliminating the transmission aspects.

We can derive the pure message-level secured Mobile Host WS effort (Tmhwse)

from the invocation cycle explained above. This effort only concerns with de-serializing

the incoming request, de-securitizing it, processing the request, creating soap response

with MWS-Security, and serializing the response for bit-stream transfer. The resultant

performance equation is as follows:

Tmhwse ~= Treqd + Treqdc + Tprocess + Tresec + Tress

Equation 2 : Web service effort on Mobile Host

From the invocation cycle, we can also derive the mobile WS message security

effort (Tmwsse), consisting of only the MWS-Security handling timestamps which

includes creating message with security and processing them at relevant end points, as

follows:

Tmwsse ~= Treqec + Treqdc + Tresec + Tresdc

Equation 3 : Message-Level Security effort of Mobile WS cycle

The complete experiment results and analysis that will be explained in the

forthcoming subsections are entirely dependent on these timestamps explained in this

subsection with the invocation cycle.

 65

5.2 Test-bed and Test-case Model

This subsection will discuss the test-bed we used for MWS-Security realization

followed by the test-cases we designed to fetch the experimental results which are based

on the performance model. The subsection also addresses the problems and unsuccessful

methods during the thesis and the temporary solutions to cover them.

Test-bed modules are:

• Sony Ericsson P910i mobile – acted as both Mobile Host and Mobile

Client. Its provisions such as touch-screen with a pen, screen width

enabled us to deal with test cases faster; while on the contrary, its lack of

capability to hand file access (JSR 75) hindered our realization to a certain

extent. The device has 64 MB inbuilt internal memory (RAM) and

supports GPRS from the inbuilt web browser. 32 MB to 1GB external

memory plug-ins’ are also possible. The supported cellular bandwidths are

900, 1800 and 1900 MHz.

• Pro Duo mobile memory card – This memory card is used for the manual

installation of our applications, on to the mobile, developed on our

emulator platform. It also served us to fetch the files containing results

from the mobile.

• T-mobile SIM card – for data access via internet network, if any.

• Redirector Application – The Redirector application on the test-bed

mobile helped us to print the results either in the console or in to a file

located on the mobile itself.

One of the facts is that our smart phone/mobile did not support file access

mechanism i.e. JSR 75 specification. This is required to access the key-pairs, stored in a

specified location on the mobile, for public key encryption and digital signatures. To

overcome this, though it is not practical in commercial applications, we generated the

key-pair each time we took a test case.

As we already mentioned in previous sections, not many security implementations

were available for mobile web services to readily test our Mobile Host WS-Security

performance. So, we decided to test it on a case-by-case scenario. Five test cases have

been taken for each scenario. The mean values of these test cases were considered as that

scenarios’ average performance. Our each test-case general features are:

• As our Mobile Hosts’ performance concerning network latency was

already realized, we ignored it by considering both Mobile Host and the

client on the same test-bed. This also saved our network costs.

• As the test-bed lacked file access feature, we generated the key-pairs

required for the public key encryption and signing on the test-bed itself, if

any.

• Considers all timestamps mentioned in the invocation cycle mentioned in

the performance model section

5. MobileWS-Security Evaluation

 66

• Covers all the symmetric algorithms and its key sizes by running that

many web service request/response cycles.

The SOAP request/response message sizes considered are 1KB, 2KB, 5KB, and

10KB. Note that these are message sizes before adding WS-Security in to them. Note also

that we used padding elements within the request to get the exact size which is also

visible in normal SOAP message structure in implementation details subsection [Example

1].

First, we started testing the Mobile Host against confidentiality using symmetric

encryption of the SOAP body request. The symmetric algorithms, including the WS-

Security mandated ones, with various key sizes we tested are:

• AES with 128, 192 and 256 bit key lengths

• DES with 64 bit key length

• TRIPLEDES with 192 bit key length

• IDEA with 128 and 256 bit key lengths

After successful test-cases against symmetric algorithms, the symmetric key

exchange along with symmetric algorithms and different message sizes was considered as

the second scenario. To exchange the symmetric key, RSA public key encryption is used

with both 1024 and 2048 bits. Both were successful in deployment. But the effort took for

2048 bit RSA encryption is approximately three times when compared to 1024 bit RSA

encrytpion as per our initial test-case reports. So we ignored RSA-2048 bit after one test-

case as it proved too costly. Note also that, for each message size, a separate test case

scenario (mean values of 5 test cases) was taken.

Complete confidentiality feature successful deployment led us to third scenario

which tested the integrity including confidentiality. To accomplish this, we used both

RSA signature and DSA signature with 1024 bit key length. The test-case configuration

was same as the second scenario which includes message sizes, number of test cases etc.

Some of the test-bed/case images are available at

Appendix – Test Bed Images.

5.3 Mobile Host Performance Analysis and Evaluation
with Message-level Security

This subsection evaluates the message-level security on a complete web service

cycle as mentioned in the performance model. For achieving this, different encryption

algorithms, signer algorithms and authentication principles were analyzed in the Mobile

Host domain. The performance of the Mobile Host was observed during the feasibility

analysis, for reasonable quality of service. The parameters of interest were extra delay

and variation in stability of the Mobile Host with the introduction of the security

overhead. The implemented case-by-case solutions were evaluated recursively. Some of

the results are discussed here:

The following feasibility report emphasizes the message-level security analysis

against various symmetric algorithms for an entire request-response web service cycle.

5.3 Mobile Host Performance Analysis and Evaluation with Message-level Security

 67

Symmetric Encryption Algorithms Analysis

(Key exchange with RSA-1024 bit)

3356 3491 3634
3375

3626 3441 3275

5457 5444
5705 5535

6127

5571 5688

0

1000

2000

3000

4000

5000

6000

7000

IDEA-128 IDEA-256 DES-64 DES-192 AES-128 AES-192 AES-256

Algorithms with key sizes

T
im
e
 i
n
 m
il
li
s
e
c
o
n
d
s

RSA Signature DSA Signature

Figure 29 : Comparison of timestamps with various symmetric key algorithms

The analysis shown in Figure 29 emphasizes that not much effort difference exists

on security front, out of all symmetric encryption algorithms including WS specific

mandatory ones. We can interpret that the best way of securing messages in mobile web

service provisioning is to use AES symmetric encryption with 256 bit key, RSA 1024 bit

key exchange mechanism and RSAwithSHA1 signature. From the analysis of Figure 29

scenario, we further tried to analyse the individual timestamps of message-level security

of a complete web service invocation cycle using the best symmetric encryption

algorithm, AES with 256 bit key.

5. MobileWS-Security Evaluation

 68

Advanced Encryption Algorithm(AES) with 256 bit key analysis

(Key exchange with RSA-1024 bit)

28

797

94 84

669

0

722

87 97

697

028

794

275 256

1603

19

725

150 172

1666

0
0

200

400

600

800

1000

1200

1400

1600

1800

Various phases in test cycle

T
im

e
 i
n
 m

il
li
s
e
c
o
n
d
s

Signed with RSA 28 797 94 84 669 0 722 87 97 697 0

Signed with DSA 28 794 275 256 1603 19 725 150 172 1666 0

T_cc
T_req

ec

T_req

s

T_req

d

T_req

dc

T_poc

ess

T_res

ec

T_res

s

T_res

d

T_res

dc
T_cp

Figure 30 : Timestamps of various phases of a Message-level secured web service cycle

Figure 30 depicts times taken for various phases of a message level secured web

service request/response cycle. The original message was ciphered with AES-256

algorithm and its key is exchanged with RSA-1024 PKI algorithm. To summarize further,

the request message was 1 KB and response message was 2 KB. The total cycle for

highly secured communication, AES-256 bit ciphered, cost around ~3 sec with

RSAwithSHA1 signature and ~5.5 sec for DSAwithSHA1 signature. [2]

Further in this subsection, the Mobile Host performance deviations due to

message-level security overhead is analyzed. The experimental process contains five

stages that are de-serializing the incoming request, verifying the security of the message,

processing the soap request and creating response, adding the security back to the soap

response, and serializing the soap response.

5.3 Mobile Host Performance Analysis and Evaluation with Message-level Security

 69

Message Level Security analysis at Mobile Host

across various symmetric algorithms with 1024 Bit

RSA Key encryption, RSA signature for 1KB, 2KB,

5KB and 10KB SOAP Messages

0

500

1000

1500

2000

2500

3000

Symmetric Algorithms with key sizes

T
im
e
 i
n
 m
il
li
s
e
c
o
n
d
s

1KB message 1622 1694 1695 1764 1819 1757 1828

2KB message 1965 2228 1945 1783 1859 1920 1740

5KB message 2300 2441 2342 2374 2282 2332 2450

10KB message 2368 2556 2270 2398 2394 2507 2631

IDEA-

128

IDEA-

256
DES-64

DES-

192

AES-

128

AES-

192

AES-

256

Figure 31 : Timestamps for various message sizes using RSA signature

The following Figure 31 explains various timestamps for different symmetric

algorithms on Mobile Host. The test configuration considered here is RSA-1024 key

exchange and RSA signature. This test is conducted against varied soap message sizes

ranging from 1 to 10 KB. From the outset interpretation of the results, one can visualise

more or less linearly dependency of time-cost against soap message size. The time cost

up to 2 KB soap message exchange with security looks very much possible.

5. MobileWS-Security Evaluation

 70

Message Level Security analysis at Mobile Host

across various symmetric algorithms with 1024 Bit

RSA Key encryption, DSA signature for 1KB and

2KB SOAP Messages

0

1000

2000

3000

4000

Algorithms with key sizes

T
im
e
 i
n
 m
il
li
s
e
c
o
n
d
s

1KB message 2663 2675 2602 2786 2737 2714 2900

2KB message 2832 2947 2779 3023 3075 3148 3075

IDEA-

128

IDEA-

256
DES-64

DES-

192

AES-

128

AES-

192

AES-

256

Figure 32 : Timestamps for various message sizes using DSA signature

The Figure 32 reflects the timestamps on Mobile Host when DSA signature

mechanism is used. Rest of the configuration is very much the same as the previous

configuration details of Figure 31. The observation at these results suggests that the cost

of using DSA signature instead of RSA signature is comparatively higher. Further

interpretation suggests the cost to achieve to message-level security using DSA signature

is approximately 60% more than that of cost using RSA signature. This analysis thus

recommends to RSA signature, especially in resource constrained devices such as in

Mobile Host domain.

5.3 Mobile Host Performance Analysis and Evaluation with Message-level Security

 71

Advanced Encryption Algorithm(AES 256 Bit)

analysis on Mobile Host with RSA Signature

0

200

400

600

800

1000

1200

1400

Various phases in test cycle

T
im
e
 i
n
 m
il
li
s
e
c
o
n
d
s

1KB message 84 669 0 644 87

2KB message 97 697 0 706 72

5KB message 203 978 0 841 172

10KB message 278 1219 3 753 122

T_reqd T_reqdc T_process T_resec T_ress

Figure 33 : Timestamps for various message sizes using AES-256 encryption and RSA
signature

The individual process timestamps of message security effort on Mobile Host are

shown in Figure 33. Symmetric algorithm chosen is AES with 256 bit key which is by far

the best security provider according to the standards. Rest configuration is RSA 1024 bit

public key exchange and signature using RSA signer. To end the message-level security

analysis, we can conclude again that the best way of securing messages in mobile web

service provisioning is to use AES symmetric encryption with 256 bit key, RSA 1024 bit

key exchange mechanism and RSAwithSHA1 signature.

From the evaluation analysis, the extra load to the message size caused by the

added security information and the extra delay thus obtained are not of the main concern

as this all adds to the transmission delay. With the advent of the interim-generation

technologies like GPRS [56] and EDGE [23], and third-generation technologies like

UMTS 21, still higher data transmission rates are achieved in the wireless domain, in the

order of few hundreds of Kbs to 2 Mbs. Most recently with the advent of 4G technologies

and their deployment in south Asian countries suggests that mobile data transmissions of

the rate of few GB is also possible [57]. These developments should drastically reduce

the transmission delays and thus make the Mobile Host soon realizable in commercial

environments also. Based on this, we can say that the additional efforts, as shown in this

evaluation model section, in achieving the highest possible secured web service

communication, are reasonable.

5. MobileWS-Security Evaluation

 72

Summary:

This section can be summarized as follows. The WS-Security evaluation section

evaluated and analyzed the experimental results. First, performance model with various

timestamp definitions in the test bed are explained. Further, the test bed and test cases

scenario are described. Then the section described the generic evaluation model with

whole web service cycle including Mobile Host and the client. Further the section ends

with experimental results and performance analysis of the Mobile Host.

 73

6 Conclusion

The thesis, as a whole, can be summarized as follows. First we have introduced

the base project ‘mobile web service provisioning’. The thesis then discussed and

analyzed the security challenges of mobile web services and wireless environments. Then

the thesis addressed the existing standards and technologies in both web services and

mobile domains relevant to WS-Security.

Further, the thesis addressed the basic security requirements to be realised in

mobile web service provisioning. The thesis then proposed WS-Security design models

including message-level security and end-point security models with various architecures

and scenarios. Next, the implementation models are addressed where message-level

security implementation is carried out by developing custom Mobile WS-Security API.

Further, one Single Sign-on is partially analyzed, due to time constraints, in the mobile

web service provisioning domain as part of implementation of the end-point security.

The mobile WS-Security performance evaluation suggested that very basic

message-level security in mobile web service domain is very much achievable with little

overhead. The study also has drawn out the best way of achieving the confidentiality and

integrity of a web service message in the mobile web service domain. The thesis also

suggested that basic authentication can also be achieved using Public Key Infrastructure

as explained in end-point security design model.

The thesis concludes by emphasizing that the feasibility of Mobile Host

performance in handling the WS message-level security is reasonable and in achieving

the WS end-point security is possible.

Thus, based on our till-date realization on security awareness, we conclude that

secure web service provisioning in mobile networks is a great challenge. And as the

mechanisms developed for traditional networks are not always appropriate for the mobile

environment, this area still holds ample room for further research.

 74

 75

7 Future Work

The future research in mobile web service provisioning domain includes

providing complete end-point security for the Mobile Host using Single Sign-on with

SAML and LA standards. We have studied most of the existing and developing

standalone web service Single Sign-on mechanisms, out of which, we selected the

optimistic SourceID toolkit to achieve Single Sign-on in our domain. We designed four

scenarios to achieve Single Sign-on in this thesis. But, in the implementation phase, we

could analyze only one scenario partially due to time constraints. The complete

implementation and evaluation of all the Single Sign-on scenarios are to be analyzed

further. After achieving Single Sign-on, full fledged detailed performance analysis of the

Mobile Host with full security features through real-time applications is achievable.

One of the striking factors which affect mobile web services is scalability. In

scalability terms, mainly the web service overhead aspect should be considered in future

work. Since both SOAP and WSDL are XML-based, a verbose protocol, XML messages

have to be parsed on both the server and the client side and proxies have to be generated

on the client side before any communication can take place. The XML parsing at runtime

requires additional processing time, which may result in longer response time of the

server in case of a web service server.

The growth of the web service message size, which results in higher data

transmission time, creates a critical problem for delay sensitive applications. One way to

achieve a compact and efficient representation is to compress XML − especially when the

CPU overhead required for compression is less than the network latency. Compression is

both useful for mobile devices that are poorly connected as well as for devices that are

charged by volume and not by connection time by their providers. The latter group

contains mobile users connected with handheld devices such as people accessing a

service via GPRS. This group of users is expected to increase rapidly in the next years.

However, the web service application on the server does not have any information about

the delay, for example the current round trip time estimated by TCP, and about the

available bandwidth between client and server. These overcomings need to be addressed

for having better scenarios in real-time applications in mobile web service provisioning

domain.

 76

 77

List of Figures

FIGURE 1: BASIC WEB SERVICES ARCHITECTURE ...11

FIGURE 2 : BASIC ARCHITECTURAL SETUP OF MOBILE HOST ...13

FIGURE 3 : POINT-TO-POINT SECURITY PARADIGM ...14

FIGURE 4 : END-TO-END SECURITY PARADIGM ..14

FIGURE 5 : TYPICAL SECURITY BREACHES IN MOBILE WEB SERVICES ...15

FIGURE 6 : WS-SECURITY SPECIFICATION HIERARCHY [59] ...23

FIGURE 7 : A TYPICAL SOAP MESSAGE STRUCTURE WITH SECURITY HEADER25

FIGURE 8 : TRUST SERVICE [59] ...31

FIGURE 9 : OMA MOTIVE OVERVIEW [36] ...33

FIGURE 10 : MOBILE WEB SERVICES SECURITY OVERVIEW ..35

FIGURE 11 : PROPOSED MESSAGE-LEVEL SECURITY SCENARIO OF MOBILE WS CLIENT..............37

FIGURE 12 : PUBLIC KEY ENCRYPTION WORKFLOW (ACHIEVES CONFIDENTIALITY)38

FIGURE 13 : DIGITAL SIGNATURE WORKFLOW (ACHIEVES AUTHENTICATION AND INTEGRITY)

[61] ...38

FIGURE 14 : PROPOSED MESSAGE-LEVEL SECURITY SCENARIO OF MOBILE HOST39

FIGURE 15 : PROPOSED WS-SECURITY SCENARIO OF MOBILE HOST ...40

FIGURE 16 : SOURCEID LIBERTY 2.0 BETA HIGH-LEVEL ARCHITECTURE [43]41

FIGURE 17 : SINGLE SIGN-ON DESIGN SCENARIO I ..42

FIGURE 18 : SINGLE SIGN-ON DESIGN SCENARIO II ...43

FIGURE 19 : SINGLE SIGN-ON DESIGN SCENARIO III ..44

FIGURE 20 : SINGLE SIGN-ON DESIGN SCENARIO IV..45

FIGURE 21 : THE J2ME ARCHITECTURE [45]..47

FIGURE 22 : MIDP PACKAGES [46] ..48

FIGURE 23 : THE MIDLET LIFE CYCLE [47] ..49

 78

FIGURE 24 : A TYPICAL KSOAP2 BODY STRUCTURE [50] ...52

FIGURE 25 : WEB SERVICE HANDLER OF THE MOBILE HOST ...54

FIGURE 26 : CLASS DIAGRAM OF SECURITY API PACKAGE ...56

FIGURE 27 : ANALYZED SINGLE SIGN-ON SCENARIO IN MOBILE WEB SERVICE PROVISIONING

DOMAIN ...61

FIGURE 28 : SECURE MOBILE WEB SERVICE INVOCATION – OPERATIONS & TIMESTAMPS63

FIGURE 29 : COMPARISON OF TIMESTAMPS WITH VARIOUS SYMMETRIC KEY ALGORITHMS67

FIGURE 30 : TIMESTAMPS OF VARIOUS PHASES OF A MESSAGE-LEVEL SECURED WEB SERVICE

CYCLE ...68

FIGURE 31 : TIMESTAMPS FOR VARIOUS MESSAGE SIZES USING RSA SIGNATURE69

FIGURE 32 : TIMESTAMPS FOR VARIOUS MESSAGE SIZES USING DSA SIGNATURE70

FIGURE 33 : TIMESTAMPS FOR VARIOUS MESSAGE SIZES USING AES-256 ENCRYPTION AND RSA

SIGNATURE ...71

 79

List of Equations

EQUATION 1 : TOTAL INVOCATION CYCLE ..64

EQUATION 2 : MESSAGE-LEVEL SECURITY EFFORT ON MOBILE HOST ..64

EQUATION 3 : MESSAGE-LEVEL SECURITY EFFORT OF MOBILE WS CYCLE64

 80

List of Examples

EXAMPLE 1 : AN EMPTY SOAP MESSAGE WITH WS-SECURITY HEADER [58]25

EXAMPLE 2 : A TYPICAL SOAP MESSAGE WITH WS-SECURITY [58] ..27

EXAMPLE 3 : A TYPICAL BINARY SECURITY TOKEN [EXAMPLE 2] ...28

EXAMPLE 4 : A TYPICAL SAML ASSERTION STRUCTURE [EXAMPLE 2]..28

EXAMPLE 5 : A TYPICAL SECURITY TOKEN REFERENCE ELEMENT [EXAMPLE 2]29

EXAMPLE 6 : A TYPICAL TIMESTAMP ELEMENT [EXAMPLE 2] ..30

EXAMPLE 7 : NORMAL SOAP MESSAGE STRUCTURE WITH ADAPTED KSOAP2 API58

EXAMPLE 8 : A TYPICAL SOAP MESSAGE GENERATED BY SECURITY API PACKAGE60

 81

Appendix – Test Bed Images

 82

NISCT - Normal Input SOAP Creation Time

EISCT - Encrypted Input SOAP Creation Time

SEISCT - Serialized Encrypted Input SOAP Creation Time

DEISCT - Deserialized Encrypted Input SOAP Creation Time

DDEISCT - Decrypting Deserialized Input SOAP Creation Time

NRSCT - Normal Result SOAP Creation Time

ERSCT - Encrypted Result SOAP Creation Time

SERSCT - Serialized Encrypted Result SOAP Creation Time

Test Case 1

AlgorithmName KeySize

NISCT

(In millisec)

EISCT

(In millisec)

SEISCT

(In millisec)

DEISCT

(In millisec)

DDEISCT

(In millisec)

NRSCT

(In millisec)

ERSCT

(In millisec)

SERSCT

(In millisec) Total time

IDEAEngine 64 62 135422 453 500 1094 15 50156 141 187907

IDEAEngine 128 0 750 125 140 735 0 657 125 2660

IDEAEngine 256 0 797 125 156 891 0 719 125 3069

DESEngine 64 0 844 125 125 703 0 672 109 2642

DESedeEngine 192 0 750 109 157 704 0 672 109 2693

AESEngine 128 0 891 109 125 766 0 687 125 2831

AESEngine 192 16 719 250 125 688 0 687 125 2802

AESEngine 256 0 750 125 125 688 0 687 109 2740

Test Case 2

AlgorithmName KeySize

NISCT

(In millisec)

EISCT

(In millisec)

SEISCT

(In millisec)

DEISCT

(In millisec)

DDEISCT

(In millisec)

NRSCT

(In millisec)

ERSCT

(In millisec)

SERSCT

(In millisec) Total time

IDEAEngine 64 47 23328 79 250 953 0 243109 78 267908

IDEAEngine 128 0 688 94 93 672 0 594 47 2316

IDEAEngine 256 0 625 47 78 813 0 594 63 2476

DESEngine 64 0 719 47 47 657 0 593 32 2159

DESedeEngine 192 0 640 31 94 656 0 609 78 2300

AESEngine 128 0 782 46 63 844 0 656 47 2566

AESEngine 192 0 703 47 62 750 0 610 47 2411

AESEngine 256 0 640 94 31 625 0 609 78 2333

Test Case 3

AlgorithmName KeySize

NISCT

(In millisec)

EISCT

(In millisec)

SEISCT

(In millisec)

DEISCT

(In millisec)

DDEISCT

(In millisec)

NRSCT

(In millisec)

ERSCT

(In millisec)

SERSCT

(In millisec) Total time

IDEAEngine 64 47 46938 281 281 734 0 173328 250 221923

IDEAEngine 128 16 875 218 235 953 0 765 219 3409

IDEAEngine 256 32 781 203 218 829 0 844 203 3366

DESEngine 64 16 938 203 235 734 0 1016 78 3284

DESedeEngine 192 0 688 31 47 625 0 656 32 2271

AESEngine 128 16 766 47 94 688 0 640 31 2410

AESEngine 192 0 657 46 203 672 0 594 47 2411

AESEngine 256 0 672 109 93 625 0 641 94 2490

Test Case 4

AlgorithmName KeySize

NISCT

(In millisec)

EISCT

(In millisec)

SEISCT

(In millisec)

DEISCT

(In millisec)

DDEISCT

(In millisec)

NRSCT

(In millisec)

ERSCT

(In millisec)

SERSCT

(In millisec) Total time

IDEAEngine 64 47 70156 266 516 1079 32 171953 47 244160

IDEAEngine 128 0 750 47 125 656 0 610 94 2410

IDEAEngine 256 0 688 78 110 718 0 640 78 2568

DESEngine 64 16 687 94 93 625 0 797 94 2470

DESedeEngine 192 16 672 94 78 672 0 640 78 2442

AESEngine 128 0 782 46 94 688 0 1391 250 3379

AESEngine 192 15 969 360 281 985 31 1016 265 4114

AESEngine 256 141 1250 93 94 718 0 625 78 3255

Test Case 5

AlgorithmName KeySize

NISCT

(In millisec)

EISCT

(In millisec)

SEISCT

(In millisec)

DEISCT

(In millisec)

DDEISCT

(In millisec)

NRSCT

(In millisec)

ERSCT

(In millisec)

SERSCT

(In millisec) Total time

IDEAEngine 64 47 171172 390 750 1109 125 78953 78 252688

IDEAEngine 128 0 672 46 109 984 0 1031 343 3313

IDEAEngine 256 0 1063 328 500 1031 0 938 313 4429

DESEngine 64 15 1062 281 359 1000 0 953 485 4219

DESedeEngine 192 62 1015 250 328 1047 0 641 31 3566

AESEngine 128 0 797 32 78 672 0 656 62 2425

AESEngine 192 15 625 79 46 750 0 609 47 2363

AESEngine 256 0 672 47 78 688 0 657 78 2476

Mean values of 5 Test Cases - Request Message Size 1KB - RSA 1024 bit Key Exchange - RSA Signature

AlgorithmName KeySize

NISCT

(In millisec)

EISCT

(In millisec)

SEISCT

(In millisec)

DEISCT

(In millisec)

DDEISCT

(In millisec)

NRSCT

(In millisec)

ERSCT

(In millisec)

SERSCT

(In millisec) Total time

IDEAEngine 128 3 747 106 140 800 0 731 166 2822

IDEAEngine 256 6 791 156 212 856 0 747 156 3182

DESEngine 64 9 850 150 172 744 0 806 160 2955

DESedeEngine 192 16 753 103 141 741 0 644 66 2654

AESEngine 128 3 804 56 91 732 0 806 103 2722

AESEngine 192 9 735 156 143 769 6 703 106 2820

AESEngine 256 28 797 94 84 669 0 644 87 2659

NISCT EISCT SEISCT DEISCT DDEISCT NRSCT ERSCT SERSCT

T_cc T_reqec T_reqs T_reqd T_reqdc T_pocess T_resec T_ress

 83

References
1

[1]. S. Srirama, M. Jarke, and W. Prinz. Mobile Web Service Provisioning. In

Int. Conf. on Internet and Web Applications and Services (ICIW06). IEEE

Computer Society, February 2006.

[2]. Srirama, S., Jarke, M., Prinz, W., Pendyala, K., “Security Aware Mobile

Web Service Provisioning”, In Shoniregan C. A. and Logvynovskiy A.

(Eds.), Proceedings of the International Conference for Internet

Technology and Secured Transactions, ICITST’06, Sep 2006, London,

UK, ISBN 0-9546628-2-2, e-Centre for Infonomics, pp. 48-56.

[3]. HTTP, Hypertext Transfer Protocol version 1.1, IETF RFC 2616,

http://www.ietf.org/rfc/rfc2616.txt

[4]. kSOAP, a open source SOAP implementation for kVM,

http://ksoap.enhydra.org/

[5]. WS-Security, http://www.oasis-open.org/specs/#wssv1.0

[6]. “J2ME Web Services Specification”, JSR 172 from Java community

process

[7]. S. Srirama, “Concept, implementation and performance testing of a mobile

Web Service provider for Smart Phones”, Master Thesis, RWTH Aachen

University, Jun. 2004

[8]. Werner, C., Buschmann, C. and Fischer, S. Compressing: SOAP Messages

by using Differential Encoding. IEEE International Conference on Web

Services, July 2004.

[9]. WBXML, Wireless Application Protocol Forum, Ltd. Binary XML

Content Format Specification. WAP Forum, 2001.

[10]. Mark Jones and Paul Krill, InfoWorld: JavaOne: JavaFirst brings Web

Services to mobile devices, http://www.javaworld.com/javaworld/jw-06-

2003/jw-0612-idgns-mobile.html

[11]. SAML V2.0, Security Assertion Markup Language, http://www.oasis-

open.org/committees/download.php/13786/sstc-saml-tech-overview-2.0-

draft-07-diff.pdf

[12]. Jzlib, http://www.jcraft.com/jzlib/

1
 Note that all the Website links mentioned in this literature were accessible as of date 27-Sep-2006.

 84

[13]. SOAP, Simple Object Access Protocol, version 1.1,

http://www.w3.org/TR/SOAP

[14]. WSDL, Web Services Description Language, version 1.1,

http://www.w3.org/TR/wsdl

[15]. UDDI, The Universal Description, Discovery and Integration,

http://www.uddi.org/

[16]. Frier, A., Karlton, P., Kocher, P., eds. (November 1996). Netscape

Communications Corporation "The SSL 3.0 1175 Protocol,"

[17]. Wason, Thomas, eds. "Liberty ID-FF Architecture Overview," Version

1.2, Liberty Alliance 1147 Project (12 November 2003).

http://www.projectliberty.org/specs

[18]. Wireless SOAP: Optimizations for Mobile Wireless Web Services - Apte,

Deutsch, Jain (2005), http://www2005.org/cdrom/docs/p1178.pdf

[19]. World Wide Web Consortium, “XML-binary Optimized Packaging

(XOP)”, Aug. 2004, http://www.w3.org/TR/2005/REC-xop10-20050125/

[20]. World Wide Web Consortium, “SOAP Message Transmission

Optimization Mechanism (MTOM)”, Nov. 2004,

http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/

[21]. P. Sandoz, S. Pericas-Geertsen, K. Kawaguchi, M. Hadley, and E Pelegri-

Llopart, “Fast Web Services”, Aug. 2003,

http://java.sun.com/developer/technicalArticles/WebServices/fastWS/

[22]. UMTS, Universal Mobile Telecommunications System,

http://www.iec.org/online/tutorials/umts/

[23]. EDGE, Enhanced Data Rates for GSM Evolution,

http://www.ericsson.com/products/white_papers_pdf/edge_wp_technical.

pdf

[24]. Cryptographic technologies,

http://www.rsasecurity.com/rsalabs/node.asp?id=2212

[25]. W3C, XML Encryption Syntax and Processing,

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html

[26]. W3C, XML-Signature Syntax and Processing,

http://www.w3.org/TR/2002/REC-xmldsig-core-

20020212/Overview.html

 85

[27]. Bouncy Castle lightweight cryptography API.

http://www.bouncycastle.org/documentation.html

[28]. “Java support in SonyEricsson mobile phones P800 and P802”, Jan. 2003

Developer guidelines from SonyEricsson Mobile CommunicationsAB,

www.SonyEricssonMobile.com

[29]. Trusted Computing Group,

https://www.trustedcomputinggroup.org/groups/network/

[30]. HHFR,

http://grids.ucs.indiana.edu/ptliupages/publications/HHFR_ohsangy.pdf

[31]. Web Services Security: SOAP Message Security 1.0, http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

[32]. Web Services Security: Username Token Profile 1.0, http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

[33]. Web Services Security: X.509 Certificate Token Profile 1.0,

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-

profile-1.0.pdf

[34]. Web Services Security: SAML Token Profile, http://docs.oasis-

open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

[35]. OMA Web Services Enabler (OWSER): Core Specifications,

http://www.openmobilealliance.org/release_program/owser_v1_1.html

[36]. Open Mobile Alliance,

http://www.openmobilealliance.org/about_OMA/index.html

[37]. Apache WSS4J, http://ws.apache.org/wss4j/index.html

[38]. Web Services Interoperability Organization, http://www.ws-i.org/

[39]. Web Services Activity, http://www.w3.org/2002/ws/

[40]. S. Srirama, “Concept, implementation and performance testing of a mobile

Web Service provider for Smart Phones”, MasterThesis, RWTH Aachen

University, Jun.2004

[41]. MSDN: Building Secure Web Services,

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnnetsec/html/THCMCh12.asp

 86

[42]. OWASP Guide to Building Secure Web Applications and Web Services,

http://searchappsecurity.techtarget.com/originalContent/0,289142,sid92_g

ci1157209,00.html

[43]. The ID-FF 1.2 Java Toolkit Overview,

http://www.sourceid.org/projects/id-ff_1_2_java_toolkit

[44]. de Jode, Martin: Programming Java 2 Micro Edition on Symbian OS, A

Developer’s Guide to MIDP 2.0, Apress, 2004

[45]. Sun Microsystems: Java
TM

 2 Platform, Micro Edition, The Java
TM

platform for consumer and embedded devices,

http://java.sun.com/j2me/docs/j2me_cdc.pdf

[46]. Knudsen, Jonathan: Wireless Java
TM

: Developing with Java
TM

 2, Micro

Edtion, Apress, 2001.

[47]. MIDlet Basics,

https://www6.software.ibm.com/developerworks/education/wi-

kxml/section3.html (registration (currently free) required to access the

site)

[48]. J2ME Wireless Toolkit User’s Guide,

http://java.sun.com/j2me/docs/wtk2.2/docs/UserGuide-html/

[49]. Bouncy Castle Crypto package API Specifications,

http://www.bouncycastle.org/specifications.html

[50]. JavaWorld : Access Web Services from Wireless Devices,

http://www.javaworld.com/javaworld/jw-08-2002/jw-0823-wireless-

p2.html

[51]. JSR 172: J2ME
TM

 Web Services Specification,

http://jcp.org/en/jsr/detail?id=172

[52]. TRIPLEDES, Triple Digital Encryption Standard,

http://www.rsasecurity.com/rsalabs/node.asp?id=2231

[53]. AES, Advanced Encryption Standard,

http://www.rsasecurity.com/rsalabs/node.asp?id=2234

[54]. Ronald Rivest, Adi Shamir and Leonard Adleman, RSA,

http://www.rsasecurity.com/rsalabs/node.asp?id=2214

[55]. DSS, Digital Signature Standard,

http://www.rsasecurity.com/rsalabs/node.asp?id=2239

 87

[56]. GPRS, General Packet Radio Service,

http://www.gsmworld.com/technology/gprs/index.shtml

[57]. 4G Press, World's First 2.5Gbps Packet Transmission in 4G Field

Experiment, http://www.4g.co.uk/PR2006/2056.htm

[58]. Srirama S., Jarke M. and Prinz W. (2006), ‘Mobile Host: a feasibility

analysis of mobile web service provisioning’, 4th International Workshop

on Ubiquitous Mobile Information and Collaboration Systems (UMICS

2006), a CAiSE’06 workshop, Springer LNCS

[59]. OWASP Web Services, http://www.owasp.org/index.php/Web_Services

[60]. Stadlober, Stefan:, An Evaluation of Security Threats and

Countermeasures in Distributed RFID Infrastructures (Master's Thesis)

http://www.iicm.tugraz.at/thesis/sstadlober.pdf

[61]. WonderCrypt: What is PKI?, http://www.wondercrypt.com/pkifaq.htm

[62]. Trusted Computing Group, https://www.trustedcomputinggroup.org/home

[63]. B. Clifford Neuman and Theodore Ts'o. Kerberos: An Authentication

Service for Computer Networks, IEEE Communications, 32(9):33-38.

September 1994.

[64]. "Internet X.509 Public Key Infrastructure Certificate and CRL Profile". R.

Housley, W. Ford, W. Polk,D. Solo, ftp://ftp.isi.edu/in-notes/rfc2459.txt

[65]. SSL Tutorial, http://www.franz.com/support/tutorials/ssl-tutorial.htm

[66]. IETF working group on Public-Key Infrastructure (X.509) (pkix)

http://www.ietf.org/html.charters/pkix-charter.html

