Pelle Jakovits

Reducing scientific computing problems to MapReduce
Master's thesis

Supervisor: Satish Srirama
Table of Contents

Acknowledgements ...5

1 Introduction ...6

2 Scientific computing on the cloud ...8

3 Hadoop ..11
 3.1 What is Hadoop ...11
 3.2 Hadoop Distributed File System ...11
 3.3 Hadoop MapReduce ..13
 3.3.1 Map and Reduce ...14
 3.3.2 Execution ..15
 3.3.3 Combining intermediate results and preserving task state17
 3.3.4 Keys and values ...20
 3.4 Other Hadoop Projects ..21

4 Algorithms ..23
 4.1 Choice of algorithms ..23
 4.2 Conjugate gradient method ..24
 4.2.1 CG in MapReduce ..27
 4.2.2 Matrix-vector multiplication in MapReduce ...27
 4.2.3 Result ..28
 4.3 K-medoids ...30
 4.3.1 Partitioning Around Medoids ...30
 4.3.2 PAM in MapReduce ...31
 4.3.3 Clustering large applications ..33
 4.3.4 CLARA in MapReduce ...34
 4.3.5 Comparison ..37
 4.4 RSA breaking ..41
 4.4.1 Integer factoring algorithm ..42
 4.4.2 Integer factoring algorithm in MapReduce ..43
 4.4.3 Result ..44

5 Conclusion ..47

Kokkuvõte ..48

References ...49

Appendices ..51
Index of Figures

Figure 1: Replicating and distributing file blocks on HDFS...12
Figure 2: Asking file block location from the namenode...13
Figure 3: Word count, example MapReduce algorithm...15
Figure 4: MapReduce framework...16
Figure 5: Word count without combiner...18
Figure 6: Word count with combiner..19
Figure 7: Commutativity of a function..19
Figure 8: Associativity of a function...19
Figure 9: Word count map method...20
Figure 10: An example Java class Pair...21
Figure 11: System of linear equations..24
Figure 12: Matrix form of a linear system...24
Figure 13: Conjugate Gradient algorithm..25
Figure 14: Map method of the matrix vector multiplication...28
Figure 15: Reduce method of the matrix vector multiplication..28
Figure 16: PAM process..31
Figure 17: Sequential part of PAM MapReduce ..31
Figure 18: Mapper (PAM)..32
Figure 19: Reducer (PAM)...32
Figure 20: Sequential part CLARA MapReduce..34
Figure 21: Map method (first CLARA MapReduce job)..34
Figure 22: Reduce method (first CLARA MapReduce job)...35
Figure 23: Map method (second CLARA MapReduce job)...36
Figure 24: Reduce method (second CLARA MapReduce job)..36
Figure 25: PAM, iteration 4...37
Figure 26: PAM, iteration 1...37
Figure 27: PAM, iteration 7...38
Figure 28: PAM, iteration 10..38
Figure 29: PAM, final iteration..38
Figure 30: CLARA, result 1..39
Figure 31: CLARA, result 2..39
Figure 32: CLARA, result 3..39
Figure 33: CLARA, best result..39
Figure 34: Algorithm to find the smallest factor..43
Figure 35: Map method of the RSA factoring MapReduce algorithm..43
Figure 36: Reduce method of the RSA factoring MapReduce algorithm....................................44
Index of Tables

Table 1: Runtime of the CG MapReduce and the original CG algorithm ... 29
Table 2: Runtime comparison for PAM and CLARA .. 40
Table 3: Runtime table for RSA ... 45
Table 4: Parallel speedup for RSA .. 45
Table 5: Parallel efficiency for RSA .. 45
Acknowledgements

First I thank my supervisor Satish Srirama for introducing me to cloud computing and MapReduce. He's help and suggestions with the research in this topic and writing this thesis has been invaluable. Secondly, I would like to thank everyone in the Distributed Systems Group in Tartu University. Over the years I got a lot of experience in writing and presenting topics in the weekly seminars of Distributed Systems and this has helped me immensely. I would also like to thank the Tartu University for providing an excellent education and my friends and family for supporting me while I was writing this thesis.
Chapter 1

Introduction

Scientific computing\(^1\) should not be confused with computer science. It is a field of study that applies computer science to solve scientific problems. Scientific computing is most often associated with large scale computer simulation and modelling. However, a considerable effort in scientific computing is actually devoted to studying the numerical methods and algorithms, on which the simulations and models depend on.

The computer simulation problems that scientific computing deals with are often very large scale, from modelling climate to simulating a star going supernova. Because such simulations generally require large amount of computing resources, scientific computing has always been strongly connected to distribute computing, adapting to any advances done in this field and gradually progressing from doing computations on clusters to grids and from grids to clouds.

Clouds are the latest direction in distributed computing. Companies like Google, Amazon and Microsoft are building huge data centres, on which to provide cloud services like Google App engine, Gmail, Windows Azure and Amazon EC2. As a result, cloud computing has become more and more popular as a platform to provide services on. Apart from offering services for external clients these cloud resources are also used internally for these companies own needs for distributed computing. Google has developed a MapReduce\(^2\) model and framework to process very large amounts of raw data that can no longer be managed with normal means. The amount of data Google has to deal with daily basis, like indexed internet documents and web requests logs, grows every day. To cope with this, Google uses a cloud computing platform, which consists of large number of commodity computers in their data centres, to run MapReduce jobs.

MapReduce is a programming model and a distributed computing framework to process extremely large data. It can be used to write auto scalable distributed applications in a cloud environment. In the MapReduce model, programmers have to reduce an algorithm into iterations of map and reduce functions known from Lisp\(^3\) and other functional programming languages. Writing an algorithm only consisting of these two functions can be a complicated task, but MapReduce framework is able to automatically scale and parallelize such algorithms. The framework takes care of partitioning the input data, scheduling, synchronising and handling failures, allowing the programmers to focus more on developing the algorithms and less on the background tasks. Making it easier for programmers without extensive experience with parallel programming to write applications for large distributed systems.

In Tartu University, the Distributed Systems Group is working on a project called Scientific Computing on the Cloud\(^4\) (SciCloud). The goal of this project is to study establishing private clouds using the existing resources of university computer networks, and using the resources of these clouds to solve different large scale scientific and mathematical problems. A section of this project deals with MapReduce and its goal is to study how to apply MapReduce programming model to solve scientific problems. This thesis is the first work on this topic (in the context of SciCloud project) and its goal is to study what steps are needed to reduce different computationally intensive algorithms to MapReduce model and what can affect the efficiency and scalability of the results.
Additional goal is to lay the grounds for further work in this direction, establishing a general idea of which kind of scientific computing problems can be solved using MapReduce and what kinds of complications can arise. The algorithms that are reduced to MapReduce model in the course of this thesis are Conjugate Gradient, breaking RSA\cite{5,6} using integer factorization and two different k-medoid\cite{7} clustering algorithms: Partitioning Around Medoids\cite{7} and Clustering Large Applications\cite{7}.

The Google MapReduce implementation is proprietary and could not be employed for this thesis. Instead, an open source Hadoop\cite{8} implementation of MapReduce framework was chosen. Apache Hadoop is a Java software framework inspired by Google's MapReduce and Google File System\cite{9} (GFS). Hadoop project is being actively developed and is widely used both commercially and for research. It is also very suitable for this thesis because it is under free licence, has a large user base and very adequate documentation.

The structure of this thesis consists of four chapters. First is the introduction. The second chapter introduces scientific computing domain and cloud computing. It gives a brief overview of the problems the scientific computing deals with and explains its connection to distributed computing on clouds. It also tries to explain the advantages of using cloud computing as a platform for solving scientific problems. The third chapter introduces the open source cloud computing framework called Hadoop, describes its components Hadoop MapReduce and Hadoop Distributed File System (HDFS)\cite{10} and also gives a very brief overview of other Hadoop projects. The fourth and last chapter outlines the algorithms that were implemented in MapReduce framework for this thesis. Each sub chapter introduces one algorithm, describing it and the steps taken to reduce the algorithm to MapReduce programming model. Also, the scalability of each of the reduced algorithms is analysed to find how well their implementations would work in large clouds. Additionally, the appendix contains the source code, compiled Java code and Javadoc for the algorithms presented in this thesis.

This thesis is addressed to readers who are interested in scientific computing and want to learn more about reducing different algorithms to auto scalable parallel application framework called MapReduce.
Chapter 2

Scientific computing on the cloud

Scientific computing\(^{(1)}\) (SC) is a field of study dealing with the construction of mathematical models for computer simulations and using numerical methods to solve different scientific and engineering problems. Weather forecasting, nuclear explosion simulation and the simulation of airplane aerodynamics are some of the examples of computer modelling problems, that SC deals with. Also, a substantial effort in SC is devoted to studying the numerical and computational methods and algorithms needed to simulate such models.

The problems the scientific computing deals with are often very large and require to process massive amounts of data. To solve such large scale problems the resources of a single computer is not enough and the use of distributed systems is required. However, writing efficient and precise algorithms for distributed systems is often a very complex task. Methods and algorithms that work on a single computer might not be scalable for distributed environments, or a lot of effort is required to parallelize them, including organizing the distribution of data, managing synchronization and communication, achieving fault tolerance and avoiding race conditions. Thus, because of the large size of the problems it deals with, scientific computing is greatly influenced by other fields of study dealing with parallel computing. Like distributed computing\(^{(11)}\), parallel programming\(^{(12)}\) and cloud computing\(^{(13)}\).

Last one of these three, the cloud computing, is relatively new and is more focused on the commercial side of distributed computing and on providing services to outside clients. It is difficult to define what cloud computing exactly is. A cloud can be described as a large collection of commodity computers connected through a network and forming a computing platform where the resources of the individual computers are shared. However the same description could be used for both grids and clusters\(^{(14)}\). What mainly makes the clouds different is the use of virtualization\(^{(15)}\) technology, which allows more flexible use of the computer resources in the cloud. Virtualization allows to hide the actual characteristics of a cloud hardware and instead of giving limited access to the actual machines in the cloud, users are given full access to virtual machines (VM) that are executed in the cloud. Different VM's can have different configurations and operating systems and it is possible to limit how much resources each VM's is able to access.

In grids and clusters each individual machines must be configured to cater all possible needs of the users, be it different programming language compilers, libraries or programs. But in clouds the individual machines only need to have a basic cloud configuration and the ability to run multiple virtual machines at once. Not only does this make managing the cloud easier, it also gives users complete control over the computing environment. Users can choose what operation system they need for their VM, fully configure it, and freely install any software or libraries they need. Once they have configured the virtual machine they can run it on the cloud and save or delete the VM when they are done.

Clouds can be divided to public clouds, which are available to general public and private clouds, which refer to closed clouds belonging to businesses, universities or other organizations. Public clouds offer their services on demand as utilities, in the sense that users are able to request cloud resources and pay for exactly how much they use, treating the cloud resources as quantity measured services like gas or electricity. Also similarly
with gas and electricity clouds try to provide an illusion of infinite amount of computing resources being available at any time. To achieve this, the Cloud infrastructure must be very flexible and reliable. Considering that the hardware used in clouds is mostly composed of commodity computers, extra measures must be taken to achieve reliability at any time. To achieve fault tolerance all data in the cloud must be replicated, so even if some computers fail, no data is lost. The structure of a cloud must also be dynamic so that failure of a few machines in the cloud does not interrupt the whole system and it would be possible to switch out and add new machines without stopping the cloud services.

The availability of nearly infinite amount computing resources on demand provides cloud users with an ability to scale their applications more easily. For example, a company which is just starting out, can rent the initial computing resources they need from the cloud, and increase or decrease the amount of resources dynamically, when the demand changes. They no longer need to make huge initial investments to plan for the future demand, and can simply pay for what they use, lowering the start up costs and risks of starting a new business.

Also, in the public cloud it does not matter if one computer is used for 10,000 hours, or 1000 computers are used for 10 hours, it still costs the same for the user. This provides cloud users the perfect means to do short term experiments, which require a huge amount of resources, without having to invest into the hardware themselves. If the experiments are long and done frequently, then investing into private hardware might be useful. However, if the experiments are done infrequently, but still require a lot of computer resources, then it is often more cost effective to use a cloud resources and pay for how much was used, rather than to invest into expensive hardware, when most of the time this hardware might not even be used.

The commercial applicability of cloud computing is one of the main reasons why cloud computing is becoming more and more popular. A large amount of money is invested into cloud technologies and infrastructure every year by Google, Amazon, Microsoft, IBM and other companies. Apart from providing services to others, cloud computing is also used by these companies for their own large scale computing needs. For example, Google uses a framework called MapReduce for their computing tasks, which is able to automatically parallelize certain types of algorithms and run them on the cloud. It takes care of the data distribution, synchronisation and communication, allowing the programmer to design algorithms for cloud systems without having to manage these background tasks.

Google developed MapReduce framework because the raw data Google collects on daily basis has grown so large that it is no longer possible to manage and process it by normal means. MapReduce was specifically designed to deal with huge amount of data, by dividing the algorithms into map and reduce tasks that can be executed on hundreds or thousands of machines concurrently in the cloud. Google uses MapReduce for many different problems, including large-scale indexing, graph computations, machine learning and extracting specific data from a huge set indexed web pages.[2] Already in 2008 the MapReduce framework was used by Google to process more than 20 petabytes of data every day[16]. Other related work[17] shows that MapReduce can be successfully used for graph problems, like finding graph components, barycentric clustering, enumerating rectangles and enumerating triangles. And also for scientific problems[18], like Marsaglia polar method for generating random variables, integer sort, conjugate gradient, fast Fourier transform, and block tridiagonal linear system solver. It shows that MapReduce can be used for wide range of problems. However, this previous work has also indicated that MapReduce is more suited for embarrassingly parallel algorithms and has problems with iterative ones. As a result, it was decided that this thesis concentrates more on iterative
algorithms to further study this result.

The structure of algorithms written for MapReduce framework is rather strict, but the potential of automatic parallelization, high scalability and the ability to process huge amount of data could be very useful for scientific computing. This makes it important to study what kind of algorithms can be applied using the MapReduce framework. Because Google's MapReduce implementation is not freely available, the Hadoop distributed computing framework was chosen as platform on which to implement and study algorithms for this thesis. The next chapter takes a closer look on Hadoop, and describes its architecture and its MapReduce implementation in more detail.
Chapter 3

Hadoop

This section gives an overview of the Hadoop software framework. It describes the file system of Hadoop, which is used to store very large data in a distributed manner, and describes the Hadoop implementation of MapReduce, which is used to execute scalable parallel applications. This chapter will also briefly introduce other cloud computing applications that are developed under the Hadoop project.

3.1 What is Hadoop

Hadoop is a free licence Java software framework for cloud computing, distributed by Apache\[^{[9]}\]. It implements Hadoop Distributed File System (HDFS) to store data across hundreds of computers, and MapReduce framework to run scalable distributed applications. Both HDFS and Hadoop MapReduce are open source counterparts of Google File System and Google MapReduce. Hadoop also includes other cloud computing applications like Hive\[^{[20]}\], Pig\[^{[21]}\] and Hbase\[^{[22]}\]. Hadoop is in active development and has been tested to run on up to 2000 nodes, for example to sort 20TB of data.\[^{[23]}\]

The architecture of Hadoop is designed so that any node failures would be automatically handled by the framework. In HDFS all data is replicated to multiple copies, so even if some machines fail and their data is lost, there always exist another replica of the data somewhere else in the cloud. In MapReduce framework the node failures are managed by re-executing failed or very slow tasks. So if a node fails and a MapReduce task was running on it, the framework will keep track of this and re-execute the task on some other machine in the cloud. The framework is also able to detect tasks that are running very slow and re-execute them elsewhere.

3.2 Hadoop Distributed File System

HDFS is an open source counterpart of the proprietary Google File System. It is designed to reliably store very large files across multiple nodes in a cloud network. HDFS is also designed to be deployed on cheap commodity hardware and therefore it is almost guaranteed that there will be hardware failures, especially if the cloud consists of hundreds or thousands of machines. Because of this, the fault tolerance is the most important goal of the HDFS.

HDFS has a master/slave architecture. Master of a HDFS cluster is called a namenode and slave is called a datanode. Namenode handles the file system directory structure, regulates access to files, and manages the file distribution and the replication. All changes to the file system are performed through namenode, however, the actual data is always moved between the client and the datanode, and never through the namenode. All other nodes in a HDFS cluster act as datanodes, which is where the actual data on the HDFS is stored. Each machine in the cloud acting as a datanode allocates and serves part of its local disc space as a storage for the HDFS.
Fault tolerance in the HDFS is achieved by dividing each file into a sequence of file blocks of the same size and replicating each such block. Each such replica is then distributed across different datanodes across the HDFS. The default size of the file block is 64 MB and the default number of file block replicas is 3. Both of these settings can be changed by the user and can be different for each file on the HDFS. File block size must be set when the file is created and can not be changed, but the number of replicas can change at any time. A sample file division into blocks and their replication and distribution is described on the figure 1.

How exactly the replicas are distributed is very important for HDFS performance and fault tolerance. If all replicas are very close to each other, then a large failure could cause a permanent data loss. However, if all replicas are very far from each other and spread across many machines then reading a file from the HDFS can be slowed down considerably. HDFS tries to distribute the replicas so that two replicas are located on nodes in the same rack and another replica is located on other racks in the cloud. So even if a network equipment failure brings down a whole rack the data would still be accessible.

When a user or an application wants to read a file on the HDFS they first have to ask for the file block locations from the namenode. For each file block, the namenode will reply with the file block identification and with the identification of the datanode, where the data block is located. The client then contacts the datanode and asks the file block data. This process is also described on the figure 2.

When a location of a file block is asked from the HDFS namenode, it knows locations of multiple replicas for that block. Namenode always tries to supply the location of a replica that is closest to the request location to minimize the global bandwidth and latency. This can be very helpful when the cloud network is very large and machines are located on different computer racks or even in different buildings. For an application running on a cloud it is always faster to read data from the same machine or from a neighbouring one.
HDFS uses two types of messages to keep track of the condition of the distributed file system. These two messages are heartbeat and block report and they are sent to the namenode by each of the datanodes in the cloud. The heartbeat message is sent periodically to let the namenode know that the datanode is still reachable. If some of the datanodes fail to send the heartbeat message, they are marked as unreachable and no new file read and write requests are forwarded to them by the namenode. This also causes all the file block replicas in those datanodes to be lost, and to preserve the required number of replicas for each file block, the namenode has to manage the creation and distribution of replacement replicas. The second message, block report is sent by the datanodes when they start up. It contains a list of all the HDFS data blocks the datanode has stored in its local file system. The namenode uses the block reports to keep track of the data block locations, and if it notices that some data blocks do not have enough replicas, it will initiate a process to create additional replicas.

3.3 Hadoop MapReduce

MapReduce is a programming model for designing auto scalable distributed computing applications on clouds. However, in the context of Hadoop, MapReduce is also a framework where the distributed applications are implemented. Using the same term for both the model and the framework can be confusing, but its meaning is strictly dependant on the context. When talking about algorithm design, then MapReduce refers to a model. When talking about executing distributed applications in a cloud then it refers to the framework.

Hadoop MapReduce framework is written in Java programming language and is designed for applications processing vast amounts of data in parallel, in a cloud network. Because clouds often consist of commodity hardware, the MapReduce framework must provide reliable and fault tolerant execution of distributed applications.

In the MapReduce model all algorithms consist of two methods: map and reduce. To write auto scalable distributed applications for cloud computing, all the user has to do is to define these two methods. The Hadoop MapReduce framework is able to automatically parallelize such applications, taking care of all the background tasks, including data distribution, synchronisation, communication and fault tolerance. This allows programmers
to easily write distributed applications for cloud computing without having any previous experience with parallel computing.

This sub chapter introduces the MapReduce model and the Hadoop MapReduce framework. It also gives a basic idea how to write MapReduce algorithms and how they are executed on the framework.

3.3.1 Map and Reduce

MapReduce model is inspired by the map and reduce functions commonly used in functional programming. Map method in the functional programming typically takes a function and a list as an argument, applies the function to each element in the list and returns the new list as a result. An example of a map in functional programming is:

\[
\text{map } f [1,2,3,4] = [f(1), f(2), f(3), f(4)] = \\
= [1*2, 2*2, 3*2, 4*2] = [2, 4, 6, 8]
\]

where \(f \) is a function, in this example \(f(x) = x*2 \).

Reduce method in the functional programming can be defined as an accumulator method that takes a function \(f \), a list \(l \) and an initial value \(i \) as the arguments. The values in the list \(l \) are accumulated using the accumulator function \(f \) and starting from the initial value \(i \). An example of a reduce method in functional programming is:

\[
\text{reduce } f 0 [1,2,3,4] = f(4, f(3, f(2, f(1, 0)))) = \\
= 4 + (3 + (2 + (1 + 0))) = 10
\]

where \(f \) is a function, in this example \(f(x, y) = x + y \).

In the MapReduce model the map and reduce methods work similarly, but there are few differences. The main difference is that both map and reduce work on a list of key and value pairs, instead of just a list of values. Also, the user defined function used in map and in reduce does not have to output just one value per input, it can return any number of key and value pairs, including none. The general signatures for map and reduce methods are:

- \(\text{map } (k,v) \rightarrow [(k,v)] \)
- \(\text{reduce } (k, [v]) \rightarrow [(k,v)] \)

Input to a map function is a pair that consists of a key and a value and output is a list of similar pairs. Input to a reduce is a key and a list of values and output is a list consisting of key and value pairs.

The main purpose of map method is to perform operations on each data object separately and to assign a specific key scheme on its output. The map output is grouped by the keys and all such groups form a pair of a key and a list of all values assigned to this key. As a result the map output is distributed into subgroups and each such subgroup is an input for the reduce method. Reduce gets a key and a list of values as an input and its general purpose is to aggregate the list of values. For example it could sum, multiply or find maximum value of the elements in the input list. However the aggregation is not required, reduce method could simply output all the values in the input list. Reduce method that simply outputs its input values is often called identity reducer and is used in cases where all the work in the algorithm is done by the map method.
So, to design a MapReduce algorithm the user has to define the following:

- How the map method processes each input key and value pair.
- What scheme the map method uses to assign keys to its output, meaning how exactly the the map output is divided into subgroups.
- And how the reduce method processes each subgroup.

These three choices form the core of the MapReduce algorithm design.

To better explain this process lets look at an example. There is a list of documents and the goal is to count how many times each word in the document occurs. The solution to this problem is an algorithm called word count, which goes through all documents one word at a time and counts how many times each word is found. But how to solve it using the MapReduce model? Map method can be defined to output every word in the document and the reduce method can be defined to sum all the occurrences of one word. But how to make sure the reduce method receives all occurrences of one word? To achieve this, the map can be defined to output the word as a key and 1 as a value, indicating that this word was seen once. The reduce method gets a key and all values assigned to this key as input. Because the key is a word, reduce method gets a list of all occurrences of one word and can simply sum all the values in the list and output the sum. The pseudo code for this example MapReduce algorithm is following:

```
1: map(document id, document):
2:     for word in document:
3:         emit(word, 1)
4: reduce(word, counts):
5:     #counts is a list, in this example: [1, 1, 1, ..., 1]
6:     emit (word, sum(counts))
```

Figure 3: Word count, example MapReduce algorithm

It is often very hard or even impossible to reduce complex algorithms to a single MapReduce job, consisting of one map and one reduce method. In such cases a sequence of different MapReduce jobs can be used, each job performing a different subtask in the algorithm. This adds yet another aspect to consider when designing MapReduce algorithms, how to decompose a complex algorithm into subtasks, each consisting of a different MapReduce job.

3.3.2 Execution

The MapReduce framework takes care of all the background tasks like scheduling, communication, synchronization and fault tolerance and the user only has to define the map and reduce methods. However, the efficiency and the scalability of MapReduce applications is always dependant on the background tasks that the framework performs. Without knowing how the framework works, it is very hard to determine what can affect the performance of a MapReduce algorithm. This sub chapter gives an overview of the tasks that are performed by the framework every time a MapReduce application is executed.
Parallelization in the MapReduce framework is achieved by having multiple map and reduce tasks run concurrently on different nodes on the network, as described on the following figure.

![MapReduce framework diagram](image)

Figure 4: MapReduce framework

The input to a Hadoop MapReduce applications is a list of key and value pairs. This list is stored on a Hadoop Distributed File System (HDFS) as one or more files. On HDFS a file is stored as a sequence of blocks, and each block is replicated and distributed across different machines on the network. When a MapReduce application starts, a different map task is created for each of the input file blocks. To reduce the remote reading of the file blocks on the HDFS, each individual map task is moved to the location of the input file block and executed there. This is important, because moving the task is much cheaper than moving the data, especially when the size of the dataset is huge. Not moving the data helps to minimise the network traffic and to increase the overall throughput of the system. The number of different map tasks executed by the framework can be modified by the user, but it is not possible to set it lower than the number of actual input file splits.

Map task processes the input key and value pairs one at a time and outputs one or more key and value pairs. The resulting pairs with the same key are collected together and stored as files on the local file system, which will be used as an input to reduce tasks. MapReduce framework uses a partitioner method to decide how to distribute the map output between different reduce tasks. Partitioner uses a hash function, which gets the key as an argument and outputs the reduce task number, indicating to which reduce task the data with this key is assigned. This will effectively divide the whole key space between reduce tasks.

The data that has to be moved between map and reduce tasks is called intermediate data. The size of the intermediate data has a large effect on the efficiency of the MapReduce jobs, because most of the time this data is remotely read over the network and this is relatively slow. To reduce the size of the intermediate data and thus the network traffic and latency between map and reduce tasks, a user defined combiner method can be used on the map output, before its written to the local file system. How exactly combiner works is
described in the next sub chapter.

Before a reduce task is executed, all data that was partitioned to this reduce task is read remotely over the network and stored on the local disk. The data is then grouped and sorted by keys in the ascending order. The reduce task processes the data one group at a time, each group consisting of a key and a list of all values assigned to this key, and outputs a number of key and value pairs as a result. How many different reduce tasks will be executed can also be defined by the user, but this is often left for the framework to decide. Reduce tasks are usually executed on the same machines with the map tasks to utilize the locality of data as much as possible. But this only has a small effect, because reduce tasks often need data from many map tasks, each located on a different machine in the network. The output of the MapReduce job consists of the combined output of all the reduce tasks and is written on HDFS. Each reduce task creates and writes its output to a separate file.

Fault tolerance in Hadoop MapReduce framework is achieved by re-executing failed or very slow tasks. When a map task fails, either because a node or a network failure, the framework can simply re-execute the task on another node that has a replica of the same input data. Thus, thanks to file block replication of the HDFS no extra file transfer is need in such case. When a reduce task fails it is a bit more complicated situation. Framework can re-execute the reduce task on another node, but it means that all the intermediate data this reduce task needs has to be collected again from multiple finished map tasks. The framework also keeps track of tasks that are very slow, and re-executes them on another node in the cloud. However this can be a problem with certain algorithms where the calculations are supposed to take long time to finish. In such cases extra care must be taken to make sure that the framework does not start to re-execute slow but still valid tasks.

3.3.3 Combining intermediate results and preserving task state

In distributed computing one of the factors which greatly affects the efficiency of the parallel applications is the communication between concurrent processes. In Hadoop MapReduce framework the communication between different tasks mainly involves remote reading the intermediate results. The output of the map tasks is first stored on the local file system and the files are then remotely read by the reduce tasks. If the amount of intermediate data is really large it can greatly reduce the efficiency of the whole application, because network operations are relatively slow. Therefore it makes sense to try to decrease the size of the intermediate results, and it is very important to consider this when designing MapReduce algorithms.

One way to reduce the size of intermediate results is to aggregate them using the MapReduce combiner method. After each map task finishes it has generated a number of key and value pairs as an output. The output will be grouped by the key in the memory and before it is stored on the local disk (so that the Reduce processes can read them remotely) it is possible to execute a combiner on the grouped output. Combiner acts very similarly to a reduce method and can be considered a mini reduce task, in the sense that it only runs on the output of one map task. Combiner gets a key and a list of all values assigned to this key as an input, and outputs the key and the result of aggregating the list of values. How exactly the values are aggregated is defined by the programmer and is specific to each algorithm. Very often the reduce method itself can be used as a combiner to pre-reduce the intermediate data.
To illustrate this, let's look at a sample example of a word count MapReduce algorithm that was discussed earlier. The goal of the word count algorithm is to find how many times each word appeared in a document. The map function processes the document one word at a time and emits <word, 1> for each of the words. If a word appears in a document 7 times, then 7 such pairs are emitted. The input to the reduce function is a word as the key and a list of ones as a value. It sums the values in the list together to get the total count of how many times this word appeared in the document. The following figure provides an example word count process:

![Word count process diagram](image)

Figure 5: Word count without combiner

On the figure, it is possible to see that the map task output consists of all the occurrences of every single word that appeared in the map input. Consider performing a word count on thousands of documents, the size of the intermediate results would be enormous. However, if the reduce method is used as a combiner to pre-reduce the map output, the process would look different, as shown on the figure.6

As a result of using the reduce method also as a combiner to calculate subtotals, the output from the first map task is lowered from 8 words to 5, cutting the size of the intermediate data to almost half for this map task. This example is very small, so the gain from using the combiner here is minimal, however if the size and the number of documents is very large, then the gain from using a combiner can be invaluable.
There are a few restrictions when using a combiner. A combiner can be used when the combiner function is both commutative and associative. In this context commutativity means the order of input data does not matter. Commutativity can be expressed with the following formula:

\[f(a, b) = f(b, a) \]

Figure 7: Commutativity of a function

Associativity in this context means that the result does not change if the combiner function is used on the whole data set or on some subgroups of the data set separately and then on the intermediate subgroup results. Formulas explaining this are on the figure 7.

\[f(a, b, c, d) = f(f(a, b, f(c, d))) \]
\[f(a, b, c, d) = f(f(a, c), f(b, d)) \]

Figure 8: Associativity of a function

For example if reduce and combine functions perform summing operation the order of data does not matter and it is possible to first sum some sub groups of the data set and then the results without changing the final result. However if the reduce performs division or exponentiation operation then the order of elements is very important and it is no longer possible to divide the data set to sub groups and to apply these operations first in the subgroup without changing the final result.
Another way to reduce the amount of the intermediate results is to do the counting inside the map task itself, by using the ability of the map task to preserve its state across multiple inputs. One map task usually processes many objects one at a time, and in the Hadoop MapReduce Java implementation, each map or reduce task is a separate Java instance. For each input, a map or reduce method of the instance is called, and in between these calls the Java instance is able to store data in the memory, allowing the map and reduce tasks to preserve their state across multiple inputs.

In word count example, instead of emitting a word right away, it is possible to construct an associative array, where the array index is the word and the value is the how many times the word has been encountered so far. For each word in the input the associative array is checked to see if it already contains this word. If it does, then the count for this word is increased by one, but if it does not, then a new word entry is added to the array with count equal to one. Once the map task has finished processing all its input a method called cleanup() is executed automatically by the MapReduce framework. This method can be defined to emit all words with their counts from the associative array, as a map output. Pseudo code explaining this algorithm is on the following figure:

```
1:   class Mapper:
2:       words = new AssociativeArray()
3:       map(document id, document):
4:           if words.exists(word):
5:               words.set(word) = words.get(word) + 1
6:           else
7:               words.set(word) = 1
8:       cleanup():
9:           for word, count in words:
10:              emit(word, count)
```

Figure 9: Word count map method which uses the associative array to count intermediate words.

This gives exactly the same result as using a combiner from the previous example, except that the combining of words is done inside the map process and not after. Using such technique is usually faster than using a combiner because less values are emitted and thus less objects have to be stored in the memory. However there are also a few problems with this approach. Doing the aggregating inside the map method breaks the map and reduce concepts and makes writing and debugging such programs more difficult. Another problem is that the whole associative array has to fit into the memory and thus its size is limited.

Whether it is possible to aggregate intermediate results or not depends on the algorithm. But, if it is possible to effectively use aggregation to reduce the amount of intermediate data, it should certainly be considered.

3.3.4 Keys and values

Both keys and values in a MapReduce applications can be user defined data objects, however the key object must implement the Hadoop WritableComparable Java interface and a value must implement either Writable or WritableComparable Java interface. To implement Writable interface, a data object must define two functions: write and readFields. Write function writes the object data to file and readFields reads the object.
data from file. To implement `WritableComparable` interface, the object must implement the same functions as `Writable`, but it also has to define two additional methods: `compareTo` and `hashCode`. `compareTo` method compares the data object to another and decides which of the two is larger, or if they are both equal. `compareTo` method is used when sorting objects. The `hashCode` method returns an integer hash representation of the data object and is used for example in partitioner. A following is an example Java class implementing `WritableComparable`.

```java
class Pair implements WritableComparable {
    int x;
    int y;
    public void write (DataOutput out) {
        out.writeInt(x);
        out.writeInt(y);
    }
    public void readFields (DataInput in) {
        x = in.readInt();
        y = in.readInt();
    }
    public int compareTo (Pair o) {
        if (this.x < o.x)          return  -1;
        else if (this.x > o.x)   return +1;
        else if (this.y < o.y)   return  -1;
        else if (this.y > o.y)   return +1;
        else                            return   0;
    }
    public int hashCode () {
        return x << 16 + y;
    }
}
```

Figure 10: A Java class `Pair` which implements `WritableComparable` and can thus act as a key object in Hadoop MapReduce applications.

3.4 Other Hadoop Projects

Apart from MapReduce, Hadoop also includes other distributed computing frameworks dealing with large data. This sub chapter introduces three Hadoop sub projects: Hive, Pig and Hbase.

Hive[20] is a data warehouse infrastructure which provides tools to analyse, summarise and query large distributed datasets stored on the HDFS. It includes its own query language HiveQL which is based on Structured Query Language[26] (SQL) and allows to use similar queries on the distributed data. The actual queries on the distributed data are executed using MapReduce.

Pig[21] is a framework for analysing large distributed datasets on HDFS. Pig also has its own language called Pi Latin which can be used to specify different operations on the dataset, like data transformations, filtering, grouping and aggregating. Programs written in Pig Latin are converted into MapReduce jobs and run on the distributed data sets.

Pig and Hive are very similar, the main difference is in the language they use. HiveQL
is stricter language and puts more restriction on the data structure. For example, it is easier to handle unstructured and nested data with Pig Latin. At the same time HiveQL is based on SQL, so it is easier to learn it for many users who have previous experience with SQL. Both Pig and Hive can be extended with user defined MapReduce functions to perform operations, which may not be supported by the built in capabilities of their respective languages.

Hbase\(^22\) is open source project under Hadoop to provide distributed database on top of HDFS. It is inspired by Bigtable\(^27\), which is Google's distributed storage system on Google File System. In Hbase the data is stored in tables, rows and columns. The tables can be very large and can be distributed on HDFS across multiple or even hundreds of machines. Each row in the table has a sortable key and an arbitrary number of columns. The columns are divided to families, which represent a logical grouping of values which should be stored close to each other on HDFS when the data is distributed. Hbase allows both scanning through the whole row range and retrieving column values specific to a certain row. While Pig and Hive use MapReduce to perform queries on data and have high latency because of that, Hbase is optimised for real time queries and has much lower latency. As a result Hbase is actively used as a cloud database for different web applications.\(^28\)
Chapter 4

Algorithms

This chapter describes the algorithms that were reduced to MapReduce model, provides the steps needed to implement them and analyses the efficiency of running the results on the Hadoop MapReduce framework.

4.1 Choice of algorithms

Four algorithms were selected to illustrate the different designs choices and problems that arise when dealing with similar scientific computing problems. Three out of the four algorithms have an iterative structure, because scientific computing often uses iterative methods to solve problems. The algorithms that are implemented in MapReduce model are:

- Conjugate gradient. (CG)
- Two different k-medoid clustering algorithms:
 - Partitioning Around Medoids (PAM)
 - Clustering Large Application (CLARA)
- Breaking RSA, prime number factoring.

Conjugate Gradient is a classical iterative algorithm, very often used in scientific computing to solve systems of linear equations. CG is a very complex algorithm and it is practically impossible to write the complete algorithm as only one MapReduce job. Instead, the operations used in CG algorithm are reduced to MapReduce model and executed in parallel. As a result the algorithm itself is changed minimally.

Partitioning Around Medoids and Clustering Large Medoids are two different k-medoid clustering algorithms. PAM is also a iterative algorithm like CG, however, compared to CG where the basic operations are written in MapReduce model, it is possible to write the content of a whole iteration as a MapReduce algorithm. As a result the PAM algorithm consists of multiple iterations of a single MapReduce algorithm.

CLARA was designed as an optimisation of the PAM k-medoid clustering algorithm. Compared to PAM it is a lot less computationally intensive, because it uses random sampling and performs the actual clustering only on small subsets of the data. The original CLARA algorithm is also iterative, however, in contrast to CG and PAM the order of iterations is not strict. This allows to break up the order and content of the iterations and recombine them into several different MapReduce jobs. As a result, instead of using a number of iterations, a constant number of different MapReduce jobs are executed, each performing a different task.

Prime number factoring used in breaking RSA is not a complex algorithm and can be considered embarrassingly parallel. It was specifically chosen to illustrate that MapReduce is also suited for problems which do not require processing large amounts of data but still require very intensive calculations.
4.2 Conjugate gradient method

Conjugate gradient (CG) is an iterative linear system solver. It solves specific linear systems whose matrix representation is symmetric and positive-definite. A linear system consists of unknown variables, the coefficients of the unknown variables and the right-hand side values. A sample linear system is on the following figure.

\[
\begin{align*}
ax + by + cz + dw &= e \\
fx + gy + hz + iw &= j \\
kx + ly + mz + nw &= p \\
lx + ry + sz + tw &= u
\end{align*}
\]

Figure 11: System of linear equations

To solve a linear system using CG, it first has to be represented in matrix form. A linear system in the matrix form is expressed as

\[Ax = b\]

where \(A\) is a known matrix, \(b\) is a known vector and \(x\) is an unknown vector. To represent a linear system in the matrix form it is decomposed into one matrix and two vectors. Unknown variables and the right-hand side values form two separate vectors and the coefficients of the unknown variables form a matrix. The decomposition of the example linear system from the figure 11 is shown on the figure 12.

\[
A = \begin{pmatrix}
a & b & c & d \\
f & g & h & i \\
k & l & m & n \\
q & r & s & t
\end{pmatrix}, \quad b = \begin{pmatrix} e \\ j \\ p \\ u \end{pmatrix}, \quad x = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}
\]

Figure 12: Matrix form of a linear system

Such matrix representation makes it easier to store the linear system in the computer memory and allows to perform matrix operations on the system.

As discussed above the matrix representation of a linear system must be both symmetric and positive-definite or it is not possible to use CG to solve it. Matrix \(A\) is symmetric if it has equal number of rows and columns and for each element in the matrix the following condition is true:

\[a_{i,j} = a_{j,i}\]

Matrix \(A\) with \(n\) rows and \(n\) columns is positive-definite if for all non zero vectors \(v\) of length \(n\) the value of the following dot product

\[v^T \cdot A \cdot v > 0\]

is larger than zero, \(^T\) denotes a matrix transpose operation.
The basic idea of CG, which solves the linear system

\[Ax = b \]

is to guess the value of the vector \(x \). As the first step, the CG algorithm performs an initial guess of vector \(x \) values, denotes it \(x^{(0)} \) and calculates \(r^{(0)} \), using the formula

\[r^{(0)} = b - Ax^{(0)} \]

Vector \(r^{(0)} \) is the vector difference between the real result \(b \) and the result obtained by using the initial guess \(x^{(0)} \). The goal of the CG algorithm is to improve the the guess of the vector \(x \) by minimizing the vector \(r \) values, because the smaller the vector \(r \) is, the closer the vector \(x \) guess must be to the real vector \(x \). For example, if the vector \(r \) value becomes 0 then:

\[0 = b - Ax^{(0)} = Ax - Ax^{(0)} \]

\[Ax = Ax^{(0)} \]

The complete CG algorithm is shown on the following figure.

\[r^{(0)} = b - Ax^{(0)} \text{, where } x^{(0)} \text{ is the initial guess of the result} \]

Repeat until \(r^{(i-1)} \) is sufficiently small:

\[z^{(i)} = r^{(i)} \]

\[\rho_{i-1} = (r^{(i-1)})^T z^{(i-1)} \]

if \(i = 1 \):

\[p^{(1)} = z^{(0)} \]

else:

\[\beta_{i-1} = \frac{\rho_{i-1}}{\rho_{i-2}} \]

\[p^{(i)} = z^{(i-1)} + \beta_{i-1} p^{(i-1)} \]

\[q^{(i)} = Ap^{(i)} \]

\[\alpha_i = \frac{\rho_{i-1}}{(p^{(i)})^T} \]

\[x^{(i)} = x^{(i-1)} + \alpha_i p^{(i)} \]

\[r^{(i)} = r^{(i-1)} - \alpha_i q^{(i)} \]

Figure 13: Conjugate Gradient algorithm

Explaining the mathematical background of how exactly the CG algorithm works is out of the scope of this paper, but this is explained in detail in the paper “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain” written by Jonathan R Shewchuk. Remainder of this sub chapter outlines the operations used in the CG algorithm.

The matrix and vector operations used in the CG algorithm are:

- Matrix-vector multiplication
- Two vector addition
• Dot product
• Vector and scalar multiplication

Matrix-vector multiplication is an operation of multiplying a matrix with a vector. This can be expressed as $Ax = b$ where A is a matrix with n rows and m columns, x is a vector of length m and b is a vector of length n. Result vector b elements are calculated using the following formula:

$$b_i = \sum_j (a_{i,j} \cdot x_j)$$

where i is the row index of matrix A and j is column index. Following is an example to illustrate the matrix vector multiplication process. Let matrix A and vector x be

$$A = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12 \\
\end{bmatrix}, \quad x = \begin{bmatrix}
-2 \\
1 \\
0 \\
\end{bmatrix}$$

then the solution $Ax = b$ is calculated in the following way

$$b = A \cdot x = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12 \\
\end{bmatrix} \begin{bmatrix}
-2 \\
1 \\
0 \\
\end{bmatrix} = \begin{bmatrix}
-2 \cdot 1 + 1 \cdot 2 + 0 \cdot 3 \\
-2 \cdot 4 + 1 \cdot 5 + 0 \cdot 6 \\
-2 \cdot 7 + 1 \cdot 8 + 0 \cdot 9 \\
-2 \cdot 10 + 1 \cdot 11 + 0 \cdot 12 \\
\end{bmatrix} = \begin{bmatrix}
0 \\
-3 \\
-6 \\
-9 \\
\end{bmatrix}$$

Each matrix A element a_{ij} is multiplied with x_i and all the elements in the same row are summed together producing a vector $b = (0, -3, -6, -6)$.

Dot product is an operation of multiplying two vectors. It takes two same length vectors, multiplies the elements with same vector index and sums the multiplication results:

$$a \cdot b = a_1 \cdot b_1 + a_2 \cdot b_2 + \ldots + a_n \cdot b_n = \sum_i (a_i \cdot b_i)$$

Dot product can also be called scalar product or inner product.

Two vector addition is an operation that takes two vectors as an argument, and performs a pairwise sum of the vector values in the same position. It outputs the resulting vector.

$$a = (a_1, a_2, \ldots, a_n), \quad b = (b_1, b_2, \ldots, b_n)$$

$$c = a + b = (a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n)$$

Vector and scalar multiplication is a vector operation where each of the vector elements are multiplied by a scalar.

$$a = (a_1, a_2, \ldots, a_n)$$

$$c = a \ast b = (a_1 \ast b, a_2 \ast b, \ldots, a_n \ast b)$$

These four matrix and vector operations are the core of the CG algorithm. The next sub chapter describes how this algorithm is implemented using the MapReduce model.
4.2.1 CG in MapReduce

CG is a very complex algorithm. Apart from consisting of four different vector or matrix operations, it is also iterative and each following iteration strictly depends on the result of the previous iteration. Because of this, it is not possible to perform the iterations concurrently, for example as separate map or reduce tasks. In cases like this, when dealing with iterative algorithms and it’s not possible to divide the iterations between different tasks, it might be possible to reduce the content of one iteration into a MapReduce job, and execute multiple iterations of such jobs instead. However, this is also a problem for CG, because each iteration consists of multiple executions of different matrix or vector operations and combining them into one map and one reduce method is extremely complex or even an impossible task. An alternative solution was to reduce the operations used in each CG iteration into MapReduce model.

When solving a linear system with \(n \) unknowns, each matrix-vector multiplication operation in CG algorithm performs \(n^2 \) multiplications and \(n^2 \) additions. Dot product performs \(n \) multiplications plus \(n \) additions and both adding two vectors and vector and scalar multiplication operations do \(n \) operations. Thus the most expensive operation in CG algorithm is matrix-vector multiplication which has a quadratic time complexity \(O(n^2) \) compared to linear complexity \(O(n) \) of the other operations in relation to the number of unknowns in the linear system.

CG is an iterative algorithm. Reducing all four vector and matrix operations to MapReduce model would mean executing multiple MapReduce jobs at every CG iteration. However, each MapReduce job has a high latency, it takes time for the framework to start up and finish the job, regardless of the size of the input data. Because of this it was decided that only the Matrix vector multiplication would be implemented in MapReduce model, as it is the single most expensive operation in CG, especially when the size of the linear system is huge. For example when, dealing with a linear system of 5 000 unknowns the vector operations do around 5 000 to 10 000 operations, while the matrix vector multiplication must do around 50 million operations.

When dealing with linear systems, whose matrix representation is sparse, it might be useful to also reduce other operations used in CG to MapReduce model. Sparse matrix is a matrix consisting of mostly zeros. The number of operations performed to calculate a matrix vector multiplication can be lowered excessively when most of the matrix elements are zeros. As a result the ratio of computations performed by the other operations in CG will increase in contrast. However, when dealing with dense matrices, adding additional MapReduce jobs that only work on very small subset of the data actually slows down the whole algorithm because of the job latency.

As a result of only changing the basic operations in CG, the algorithm itself was not changed. However, from the implementation point of view, the only operation performed on the matrix \(A \) is the matrix vector multiplication. This means that the CG algorithm itself does not have to know anything about the matrix \(A \), other than to provide the location of the matrix \(A \) data to the matrix vector operation. In case of Hadoop MapReduce implementation, it only has to provide the path to the matrix \(A \) data on the HDFS. This frees the CG implementation from having to read the whole matrix \(A \) into memory.

4.2.2 Matrix-vector multiplication in MapReduce

Input to a matrix vector multiplication algorithm is matrix \(A \) and vector \(x \) and the goal of
The algorithm is to calculate vector \(b \) in the following way

\[
b_i = \sum_j (a_{i,j} \cdot x_j)
\]

The algorithm consists of multiplying each matrix \(A \) value \(a_{i,j} \) with a vector \(x \) value \(x_j \), where \(j \) is the column index of the matrix \(A \) element, and summing all the results that have the same row index.

The definition of map in MapReduce model is to perform operation on each data object separately and the definition of reduce method is to perform aggregation on the map method output. In case of this algorithm the map method can be defined to perform the multiplication and the reduce method can be defined to perform the summing operation. Additionally the key scheme must be defined so that the reduce method would receive all map output values corresponding to one matrix row.

```java
1: class Mapper:
2:     //global values distributed with MapReduce configuration
3:     global x
4:     method Map(<i,j>, value):
5:         emit(i, value*x[j])
```

Figure 14: Map method of the matrix vector multiplication

Input to the map method (Figure 14) is the row and column index as a key and the matrix element as a value. Map multiplies the matrix element with the corresponding vector \(x \) value and assigns the row index of the matrix element as a key.

```java
1: class Reducer:
2:     method Reduce(i, values):
3:         emit(i, sum(values))
```

Figure 15: Reduce method of the matrix vector multiplication

The input to the reduce method is a key and a list of all values assigned to this key. Because the key is the row index of the matrix, the input list must include all values in one row of the matrix, and all the reduce has to do is sum the elements in the list together and output the result. The reduce method is also used as a combiner to calculate subtotals one each map task output, decreasing the size of the intermediate results.

But how does the map method get the vector \(x \) values? As the first step, when the MapReduce algorithm is executed the HDFS file containing the vector \(x \) is distributed across all nodes in the cloud network where the map task is run. This means each separate map task gets a copy of the file with the vector \(x \) values and can read it into the memory.

Also should note that this algorithm works for both dense and sparse input matrices. In case of sparse matrices, all vector \(x \) and matrix \(A \) values equal to zero can be removed without affecting the result.

4.2.3 Result

The execution times of GC MapReduce algorithm were measured in a Cloud cluster, composed of one master and three slave nodes. Both the master and slaves acted as task
nodes, resulting in a 4 parallel worker nodes, where the MapReduce algorithm could run on. Each node was a virtual machine with 500MB RAM and 2.2 GHz CPU. The total size of the HDFS was 8 GB. Algorithm was tested on different random linear systems where the number of unknowns were 10, 100, 500, 1000, 2000, 4000 and 6000 unknowns. For the largest linear system with 6000 unknowns, the number elements in the representation matrix was 36 million and the matrix file size on the HDFS was 727 MB. As a comparison a non parallel CG algorithm was also timed to illustrate how long it takes for the algorithm to run, when the whole problem fits into the memory of one machine.

<table>
<thead>
<tr>
<th>Nr. of unknowns</th>
<th>10</th>
<th>100</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>6000</th>
<th>20000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential</td>
<td>0.003</td>
<td>0.025</td>
<td>0.052</td>
<td>0.078</td>
<td>0.178</td>
<td>0.518</td>
<td>1.074</td>
<td>Out of memory</td>
</tr>
<tr>
<td>MapReduce</td>
<td>194</td>
<td>231</td>
<td>253</td>
<td>314</td>
<td>430</td>
<td>588</td>
<td>802</td>
<td>...</td>
</tr>
</tbody>
</table>

Table 1: Runtime(sec) of the CG MapReduce and the original algorithm.

It took 194 seconds to solve a system with only 10 unknowns using the MapReduce algorithm, while it only took 3 milliseconds with original algorithm on one computer, as shown on the table 1. 194 seconds is definitely too slow for such a small linear system. The main problem here is the number of different MapReduce jobs. One job is started for each CG iteration and the total number of iterations was 10. In Hadoop MapReduce framework every MapReduce job takes a certain time to start and finish independent on the size of the input or calculations performed. This can be viewed as a job latency and it especially affects the algorithms that include multiple iterations of MapReduce jobs like CG. The job lag was around 19 seconds per job based on these runtime records.

Unfortunately, the rest of the tests also showed that CG MapReduce algorithm is unreasonably slow. For example the linear system with 6000 unknowns took more than 25 minutes to solve using the MapReduce algorithm, and it took only 1 second for the sequential algorithm. This illustrates that Hadoop MapReduce can not compete with sequential algorithms as long as problems still fit in the memory of one machine. However, the regular algorithm ran out of memory at 20 000 unknowns, when the matrix representation of the linear system had 400 million elements, showing that it can not handle very large problems.

The advantages of the MapReduce CG algorithm is that the memory requirement is much lower, because the whole representation matrix of the linear system is never stored in the memory and that the MapReduce framework is able to scale most expensive computations across many machines in the cloud. As a result, it is able to solve much larger linear systems than the original algorithm on one machine. However, the time required to solve very large systems would likely be too unreasonable for any real world application and further study is needed to investigate how to lower the job latency.
4.3 K-medoids

This sub chapter introduces two different k-medoid algorithms, describes their implementation in MapReduce model and compares them. These k-medoids algorithms are Partitioning Around Medoids (PAM) and Clustering Large Applications (CLARA).

The k-medoid is a classical partitioning clustering method. Its function is to cluster a data set of n objects into k different clusters. This is achieved by minimising the distances between all objects in a cluster and the most central object of cluster called medoid. A medoid can be defined as the representative of the cluster, the object whose average dissimilarity to all the other objects in the cluster is minimal. In contrast to a similar clustering algorithm called k-means the k-medoids algorithm must choose an existing data point as the centre (or medoid) of the cluster, which makes it more robust to noise and outliers as compared to k-means.

PAM is an exhaustive clustering algorithm, that randomly chooses k data objects as the initial medoids, uses these k medoids to cluster the dataset and tries to improve the clustering by iteratively minimising the average distance of all data objects and the medoid of the cluster they belong to.

CLARA is a clustering algorithm that uses random sampling of data to find the best clustering of a large dataset. It takes a small sample of objects from the dataset and uses PAM algorithm on the sample to find a candidate set of k medoids. The candidate set is then used to divide the large dataset to clusters and the quality of this clustering is calculated. This process is repeated multiple times and the candidate set with the best quality is returned as the result of the CLARA algorithm.

4.3.1 Partitioning Around Medoids

Partitioning Around Medoids is an algorithm first devised by Kaufman and Rousseeuw in 1987. A particularly nice property of PAM is that in contrast to k-means, it allows clustering with respect to any specified distance metric. This means Partitioning Around Medoids can cluster any kind of objects, as long as the pairwise distance or similarity for the objects is defined. In addition, the medoids are robust representations of the cluster centres, which is important in the common context, that many elements do not belong well to any cluster. Such outliers can greatly affect the clustering if their distance from the rest of the objects is extreme.

To cluster a set of objects into k different clusters, the PAM algorithm first chooses k random objects as the initial medoids. As a second step, for each object in the dataset, the distances from each of the k medoids is calculated and the object is assigned to the cluster with the closest medoid, effectively dividing the whole dataset into clusters. At the next step the PAM algorithm recalculates the medoid positions for each of the clusters, choosing the most central object as the new medoid. This process of dividing the objects into clusters and recalculating the cluster medoid positions is repeated, until there is no change from the previous iteration, meaning the the clusters become stable.

The exact PAM algorithm consists of the following steps:

1. Randomly select k of the n dataset objects as the starting medoids.
2. Associate each object to the closest medoid, forming k different clusters.
3. For each of the clusters recalculate its medoid position:
• For each object \(o \) associated with medoid \(m \), swap \(m \) and \(o \) and compute the cost of the cluster.
• Select the object with the lowest cost as the new medoid.

4. Repeat steps 2 to 3 until there is no change in the medoids.

The cost of the cluster is defined as the sum of all distances between the medoid and all the data objects in the cluster. The algorithm steps 2 and 3 are also visually described on the following figure.

4.3.2 PAM in MapReduce

The MapReduce version of the PAM algorithm is very similar the original one. It is divided into two logical units: the sequential part and the MapReduce job. The sequential part chooses \(k \) starting medoids and runs MapReduce job to recalculate the medoid positions. The MapReduce job is repeated until the medoid positions no longer change.

```
1: //pick k random objects
data medoids = pickRandom(dataset, k)
3: repeat:
4:    //run the MapReduce job
5:    newMedoids = runMapReduceJob(dataset, medoids)
6:    if(medoids == newMedoids) break;
7:    medoids = newMedoids
8: return medoids
```

Figure 17: Sequential part of PAM MapReduce

The second part is the MapReduce job. It uses \(k \) medoids to divide the dataset into clusters and then recalculates the medoid position for each of the clusters. The map method of this MapReduce job takes a key and value pair as an argument, where the value is a object of the dataset and the key is the previous cluster it belonged to. Map function calculates the distances from this object to each of the \(k \) medoids and outputs the index of
the medoid which was the closest. This index acts as an identification of the cluster the object belongs to.

1: class Mapper:
2: //Global values are distributed with the MapReduce job configuration
3: global medoids
4: method Map (key, object):
5: min = distance(medoids[0], object)
6: best = 0
7: for (i = 1; i < medoids.length ; i++):
8: distance = distance(medoids[i], object)
9: if(distance < min):
10: min = distance
11: best = i
12: emit (best, object)

Figure 18: Mapper (PAM)

Reduce function takes a key and list of values as an argument, where the key is the cluster identification and the values are the objects belonging to this cluster. It looks through all the objects in the list, choosing each of them as a temporary medoid and calculates the cost of the cluster for it. The cost of the cluster is defined as the sum of all distances between the medoid and all the data objects in the cluster. The temporary medoid with the lowest cost is chosen as the new medoid for this cluster. The output of the reduce is the identification of this cluster as a key and the new medoid as a value.

1: class Reducer:
2: method Reduce (key, objects):
3: bestMedoid = objects[0]
4: bestCost = findCost(bestMedoid, objects)
5: for (i = 1; i < objects.length ; i++):
6: medoid = objects[i]
7: cost = findCost(medoid, objects)
8: if(cost < bestCost):
9: bestCost = cost
10: bestMedoid = medoid
11: emit (key, bestMedoid)
12: method findCost(medoid, objects):
13: sum = 0
14: for (i = 0; i < objects.length ; i++):
15: sum += distance(medoid, object[i])
16: return sum

Figure 19: Reducer (PAM)

The MapReduce PAM algorithm works almost the same way as the original PAM algorithm. The most computationally exhaustive portion of the algorithm was rewritten as a MapReduce job, but the actual algorithm steps performed inside the job did not change.

The MapReduce job can be automatically parallelized by the MapReduce framework, however there is a limit on how efficient this parallelization is. While there is no limit on the number of concurrent map processes run on the input data, other than the number of
input file blocks, the number of reduce tasks is limited to the total number of clusters, which is equal to k. This is because one reduce method must work with all the values in one cluster and there are only k clusters in total. It greatly limits the scalability of the PAM implementation in the MapReduce framework, because running it on more than k nodes results in a very little efficiency increase. Because of this limitation the PAM implementation in MapReduce is not able to take full advantage of a large cloud computing platform. It is also one of the reasons why another k-medoid clustering algorithm was chosen as the third algorithm for this thesis.

4.3.3 Clustering large applications

Clustering Large Application was first devised by Kaufman and Rousseeuw in 1990\[7\]. In contrast to the PAM algorithm, CLARA can deal with much larger datasets, because it is not exhaustive and performs the actual clustering only on small samples of the data. Like PAM, CLARA also tries to find k medoids, that are more or less centrally located in the cluster they define. But instead of clustering the whole dataset, it considers only data subsets of fixed size, so that the overall computation time becomes linear in the total number of objects rather than quadratic.

The main idea in CLARA algorithm is to perform a number of random experiments. Each experiment finds one possible clustering of the dataset and the best of them is chosen as the output. An experiment consists of two steps. First is finding a candidate set of k medoids. For this, a random sample of size S (for example\[7\] $S = 40+2k$, where k is the number of clusters) is drawn from the dataset, and the PAM k-medoid algorithm is used on the sample to cluster it. As a result of the clustering PAM returns k medoids, which are noted as the candidate medoids for the dataset. Second step is finding the quality of the candidate set. The medoids in the candidate set are used to divide the whole dataset into clusters, by assigning each object in the dataset to the cluster of it's closest medoid. And the total cost of such clustering is calculated, which is defined as the sum of all pairwise distances between the objects in the dataset, and the medoid of the cluster they are assigned to. This allows to compare the different candidate sets, and CLARA chooses the one with the lowest cost.

There are also other ways to measure the quality of a clustering in general. Instead of total sum of distances, it is possible to use average or maximum distance, or to consider the shape of the clusters, by comparing the ratio of the maximum distance in a cluster and the minimum distance to a medoid of another cluster. However, in the context of this thesis, using the sum of all distances is sufficient to compare the different clusterings of the same dataset.

The exact CLARA algorithm consists of the following steps:

- $Q =$ number of experiments to do
- **Repeat** Q times:
 - Draw a sample S of $40 + 2k$ objects randomly.
 - Cluster the sample S with PAM to find a set of k medoids.
 - Use the medoids from the previous step to divide the main dataset to clusters and find the cost of this clustering.
- Choose the clustering with the lowest cost.

CLARA is generally faster than PAM algorithm because the actual clustering is only performed on small samples of data, randomly chosen from the dataset. However, it is also
less accurate because a good clustering based on the samples will not necessarily represent a good clustering of the whole dataset. To increase the accuracy it is possible increase the sample size and the number of samples, but doing so will decrease the efficiency of the algorithm. Finding a good balance between the efficiency and the accuracy is the main difficulty in using CLARA algorithm in real applications, but this is out of the scope of this thesis.

4.3.4 CLARA in MapReduce

CLARA implementation in MapReduce consists of three logical units. The sequential main application and two different MapReduce jobs. The main part of the application is a non parallel code, that manages the two MapReduce jobs and chooses the best set of \(k \) medoids to output.

```
1: Q = 10  //number of samples
2: sampleSize = 40+2*k
3: //First MapReduce job
4: candidates = findCandidatesMR(Q, sampleSize, dataset)
5: //Second MapReduce job
6: listOfCosts = findCostsMR(candidates, dataset)
7: //choosing the best candidate
8: best = candidates[0]
9: bestCost = listOfCosts[0]
10: for (i = 1; i < Q ; i++):
11:     if(listOfCosts[i] < bestCost):
12:         bestCost = listOfCosts[i]
13:         best = candidates[i]
14: return best
```

Figure 20: Sequential part of CLARA MapReduce

The first MapReduce job randomises the order of objects in the dataset and picks \(Q \) different samples of size \(S = 40+2k \). It then uses PAM algorithm on the samples, clustering them to find a set of \(k \) medoids for each of the samples. The first MapReduce job outputs the \(Q \) different sets of \(k \) medoids as candidates.

```
1: class Mapper:
2:     method Map(key, object):
3:         rand = random()
4:         emit (rand, object)
```

Figure 21: Map method of the first CLARA MapReduce job

The map method of the first MapReduce job does not process the input objects, but simply assigns a random key to each of them. By the time these objects reach the reduce method their order has been randomized, because the MapReduce framework groups and orders the keys of the reduce task input. Pseudo code for the map method is on the figure 21.

The reduce method has to pick \(S = 40 + 2k \) random objects for a sample, but because the order of objects is now randomized, it can simply choose the first \(S \) objects. As a side effect of assigning each object a random key, the number of different keys is very large and
depending on the dataset size, each key might only have a few objects assigned to it. This means that the reduce task might have to collect objects across multiple keys, to have enough objects to make up a whole sample of size S. The reduce task is able to do this, because it has persistent memory in the duration of one reduce task and is able to store previously processed objects in the memory.

The reduce method of the first MapReduce job stores objects in a global list, until it has collected a sample of size S and ignores all following objects. A method called cleanup is automatically executed every time a reduce task finishes and in this algorithm it is used to apply PAM clustering algorithm on the collected sample. The PAM algorithm clusters the sample to find and output a set of k medoids. Pseudo code for the reduce method is on the figure 22.

```java
class Reducer:
  //Global values are distributed with the MapReduce job configuration
  global sample
  global S
  //this method is run when reducer has finished
  method cleanup():
    //Use PAM algorithm on the sample
    medoids = PAM(sample)
    for (i = 0; i < medoids.length ; i++):
      emit (key, medoids[i])
  method Reduce(key, objects):
    //Add S objects into sample set
    for (i = 0; i < objects.length ; i++):
      if(sample.length == S) break;
      sample.add(object[i])
```

Figure 22: Reduce method of the first CLARA MapReduce job

The goal of the second MapReduce job is to find the quality for all the different candidates from the previous MapReduce job. This is done by using each candidate to divide the whole dataset into clusters and then calculating the sum of all pairwise distances between all objects and their closest medoid.

The Map method of the second MapReduce job processes one object at a time and for each object it looks through Q different candidate sets. Each candidate set consists of k medoids and the algorithm finds, which of these medoids is closest to the object. The distance from the closest medoid is returned for each of the Q candidate sets. Map method also maps each calculated distance with a key, corresponding the the candidate set, so that the distances with same key can be summed together later. Pseudo code for the map method is shown on the Figure 23.

The reduce method of the second job performs a simple summing operation, which gets a key and a list of values and outputs the same key and the sum of all the values in the list. It is also used as a combiner to calculate subtotals on each map task output to reduce the size of the intermediate results. Pseudo code for the reduce method is on the figure 24.
1: class Mapper:
2: // Global values are distributed with the MapReduce job configuration
3: Global medoidSets
4: method Map(key, object):
5: for (i = 0; i < medoidSets.length ; i++):
6: medoids = medoidSets[i]
7: min = distance(medoids[0], object)
8: for (j= 1; j < medoids.length ; j++):
9: distance = distance(medoids[j], object)
10: if(distance < min):
11: min = distance
12: emit (i, min)

Figure 23: Map method of the second CLARA MapReduce job

1: class Reducer:
2: method Reduce(key, objects):
3: emit (key, sum(objects))

Figure 24: Reduce method of the second CLARA MapReduce job. It is also used as a combiner.

As the Map method outputs values with Q different keys and the Reduce sums only the elements with one key, the second MapReduce is able to calculate Q different sums (one for each of the samples) looking through the dataset only once. These quality values found in the second MapReduce job are then used to decide, which of the Q candidates results in the best clustering for the whole dataset. The best candidate, which consists of k medoids, is returned as the result of the CLARA algorithm.

The CLARA MapReduce algorithm is very similar to the original CLARA algorithm, as the basic operations stay the same. But most of the iterative part of the algorithm was removed. Instead of using Q iterations to pick random samples, to find the candidates and to calculate the quality of each of the candidates, it uses one MapReduce job to find Q different candidates and another MapReduce job to find the quality measurement for all of them. The removal of the iterations and combining the work into concurrent tasks was possible, because in contrast to the PAM algorithm, the order of the iterations in the original CLARA do not matter and the results of the iterations are independent of each other.

The tasks in these two MapReduce jobs are almost fully parallelizable by the framework, but there are few issues that can affect the efficiency and the scalability of this solution. While the map process of the first MapReduce job can be distributed between any number of nodes in the cloud, the number of different reduce tasks is limited to Q. This is because each reduce task executes PAM algorithm on one sample set to find a candidate set and there is only Q sample sets in total. Increasing the number of reduce tasks over this value has no effect as the algorithm does not need more candidates.

In the second MapReduce job, finding the quality for each of the Q candidates can be distributed to any number of concurrent map tasks, each working on a subset of the input data. However, similarly with the first job, the number of concurrent reduce tasks is limited to the number of candidates Q, as this is how many different sums will be calculated. But in contrast to the first MapReduce job, it affects the efficiency of the whole job less, because bulk of the work in the second MapReduce job is done by the map tasks and the
reduce task just sum up the results. Also a combiner method is used to calculate the sub totals on the map output before the data is directed to the reduce tasks, greatly decreasing the number of calculations that reduce tasks must perform.

4.3.5 Comparison

This sub chapter compares the PAM and CLARA algorithms. In the first subsection the clustering steps of the both algorithms are visualised and compared. The second subsection compares the efficiency of the two algorithm implementations in MapReduce.

Visualisation

To better demonstrate the results of the two different k-medoid algorithms a dataset of 5000 two dimensional points was generated and clustered using both PAM and CLARA algorithms.

All the intermediate and final results were saved in a text format and later visualised using a Python library called Easyviz. Easyviz is a interface written in Python with the purpose of scientific visualization and plotting of two and three dimensional data points. Use of Python scripting language was preferred to Java programming language because Python is a higher level programming language and allows faster development of code. Thanks to Python libraries like Easyviz it is very easy to write short visualization scripts much faster than in Java, even though the Python code might run slower but in this case it is not important.

The generated dataset has 6 different rectangle shaped dense regions. The number of clusters for the both algorithms is also chosen to be 6. Expected result for the both algorithms is to cluster each of the dense regions into different clusters.

PAM

A visual snapshot was made for each of the iteration in the PAM MapReduce application. The total number of iterations was 12 and 5 of them are shown on the following figures.

![Figure 26: PAM, iteration 1](image1)
![Figure 25: PAM, iteration 4](image2)
First iteration starts with a random guess of 6 different medoids, divides the data into 6 clusters, which are in different colours on the figures.

At each of the following iterations the medoid positions and the division of the points into clusters are recalculated, trying to find a stable clustering.

The final result on the figure 29 is as expected. All the six different dense regions are clustered into different separate clusters. It is possible to see there is a slight overlap between the two middle clusters so the clustering is not quite perfect, but it is still very close to what was expected.

CLARA

A visual snapshot was made for each of the candidate clusterings in the CLARA MapReduce application. In contrast to PAM algorithm, each of the results are completely random and not dependent on each other in any way. Out of the 10 candidates 2 were very similar to the PAM result and the best result of the CLARA algorithm was almost identical
to the final result of the PAM algorithm. Four of the ten snapshots are shown on the following figures, with the last being the final result chosen by the algorithm.

The medoid positions on the PAM final result (Figure 29) are almost exactly in the middle of the dense areas while in CLARA (Figure 33) they more or less in random position near the centre of the dense areas. This indicates that PAM is much more accurate, but in this example the clustering is still almost exactly as expected when trying to cluster 6 dense regions into 6 different clusters.

The figure 32 shows a clustering which seems almost perfect. It actually looks more accurate to a human eye than the best clustering chosen by both the CLARA and PAM algorithms (figures 29 and 33). It is well known that human eye and mind has extremely good ability to cluster objects based on the shapes they form, and it is very hard for any kind of algorithm to match it, but at least on this example both PAM and CLARA performed very well.
Runtime comparison

The execution times of PAM and CLARA MapReduce algorithms were compared in a Cloud cluster, with one master node and three slave nodes. Both the master and slaves acted as a task nodes, resulting in a 4 parallel worker nodes, where the MapReduce algorithms could run on. Both algorithms were tested on different dataset sizes, which were 5 000, 10 000, 15000, 25 000, 50 000 and 100 000 objects. CLARA was also tested on additional data sizes of 250 000, 1 000 000 and 5 000 000 objects to illustrate its scalability. Both algorithms were run on a randomly generated dataset, which was clustered into 6 clusters. For CLARA the number of samples was 10 and the sample size was 112.

<table>
<thead>
<tr>
<th></th>
<th>5 000</th>
<th>10 000</th>
<th>15 000</th>
<th>25 000</th>
<th>50 000</th>
<th>100 000</th>
<th>250 000</th>
<th>1 000 000</th>
<th>5 000 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAM</td>
<td>255</td>
<td>317</td>
<td>342</td>
<td>575</td>
<td>833</td>
<td>3489</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CLARA</td>
<td>52</td>
<td>57</td>
<td>65</td>
<td>63</td>
<td>69</td>
<td>68</td>
<td>74</td>
<td>117</td>
<td>219</td>
</tr>
</tbody>
</table>

Table 2: Runtime comparison (sec)

From the results in table 2 it is possible to see, that CLARA MapReduce algorithm works much faster than PAM, especially when the number of objects in the dataset increases. PAM is not able to handle datasets larger than 100 000 objects while CLARA can cluster datasets consisting of millions and tens of millions of objects. However, the sample size for CLARA was not increased when the dataset size was, so the actual accuracy of CLARA clustering may have decreased in the process.

It should also be noted, that the time to cluster the smallest dataset is quite large for both CLARA and PAM. This is because the background tasks of MapReduce framework are relatively slow to start, so each separate MapReduce job that is started slows down the whole algorithm. This affects PAM more greatly than CLARA because PAM consists of many MapReduce job iterations while in CLARA only uses two MapReduce jobs.

Comparison result

The Partitioning Around Medoids algorithm implementation in the MapReduce was straightforward. The final MapReduce algorithm was almost identical to the original. A part of the algorithm was rewritten in MapReduce to achieve parallelization, but the actual algorithm steps used remained the same.

The work inside each iteration in PAM MapReduce algorithm is parallelized but while the work can be divided between potentially unlimited number of map tasks, the number of different reduce tasks is limited to k. Because the bulk of the work in PAM MapReduce algorithm is done in the reduce method, the scaling of this algorithm is problematic. It might be possible to improve the algorithm to use more than k different reduce tasks, meaning using more than one reduce task to find the new medoid for a cluster, but it is out of the scope of this thesis. The problematic scalability of PAM is also one of the reasons why a second k-medoid algorithm CLARA was included in this thesis, to illustrate that to reduce a complex problem to MapReduce model it is often useful to consider alternate approaches, which might be better suited for MapReduce.

The implementation of CLARA algorithm was not as straightforward. The iterative portion of the algorithm was removed and the bulk of the work was divided into two different MapReduce jobs. First MapReduce job randomly selects Q samples of size 40+2k
and uses PAM algorithm on each of those samples concurrently to find q different sets of k medoids as candidates. The second MapReduce job calculates the quality measurements for each of the candidate sets on the whole data set. The application outputs the candidate set of k medoids with the best quality.

Removing the iterations in the CLARA MapReduce application and incorporating multiple tasks into two MapReduce jobs results in a better scaling of the application and allows to take full advantage of the parallel computing on the Hadoop framework. The same could not be done for PAM algorithm because each following iteration strictly depends on the result of the previous iteration.

Comparing the results of PAM and CLARA on datasets with different sizes clearly shows that CLARA is much faster than PAM. However is still unclear what is the best amount and size of samples for the CLARA algorithm to get a good clustering. Still, using a test data set of 5,000 two dimensional points and clustering it into 6 different clusters using CLARA with 10 samples of size of 100+2k gave a rather good results with at least 2 candidates out of 10 returning almost identical clustering to PAM on the same data set.

4.4 RSA breaking

RSA is named after its inventors R. Rivest, A. Shamir, and L. Adleman and was designed in 1978 with the purpose of providing privacy to electronic mail messages and to allow signing them by the senders. RSA is currently the most widely used public-key encryption used for both encrypting data and signing digital signatures. Security in the RSA is based on the difficulty of the factorization of very large integers.

First step in RSA is to generate the secret and public keys, which are used for encrypting and decrypting. The algorithm to generate the keys is following:

1. Generate two large random primes p and q, each roughly the same size, but distinct.
2. Compute \(n = p \cdot q \) and find \(\varphi = (p - 1)(q - 1) \).
3. Select a random integer e in range \(1 < e < \varphi \), such that the global common delimiter of e and \(\varphi \) equals 1. (\(\gcd(e, \varphi) = 1 \))
4. Find the unique integer d in range \(1 < d < \varphi \), such that \(e \cdot d \equiv 1 \mod \varphi \). (For example using the extended Euclidean algorithm)\(^{34}\)
5. The pair \((n, e) \) is considered as public key and the integer \(d \) is the private key.

The public key can be known for anyone and is used to encrypt messages. The private key is used for decryption and must stay secret. To encrypt an integer \(m \) the following formula is used:

\[
c = m^e \mod n
\]

There are few limits when using this formula. To encrypt a text message it first has to be represented as an integer. The integer can then be encrypted, however the value of the integer must be smaller than \(n \) because in RSA all calculations are done in modulo \(n \). Any larger values will be divided by \(n \) and replaced with the remainder of the division. To solve this problem the original message will be split into smaller blocks and each such block will be encrypted separately.

The decryption uses the same formula as encryption, but the exponent used in the
formula is not the public key e but instead the secret key d, meaning that secret key must be known to decrypt a message. The exact formula used to decrypt an integer c is following:

$$m = c^d \mod n.$$

There are multiple different methods to break the RSA encryption, like forward search attack, common modulus attack, cycling attacks, message concealing or factoring of the public modulus n.\[35\] The attack method that is used in this thesis is the factoring of the RSA public modulus n to find p and q:

$$n = pq$$

Once p and q are found it is possible to find the secret key d by simply following the original algorithm, using the now known values of p, q, n and e. This attack is simple by its design, however the complexity of breaking RSA comes from using very large prime numbers as p and q. The larger the prime numbers are, the longer it takes to factor n. It is currently suggested\[36\] that the size of n should be 2048 bits long to make factoring public modulus impractical. The cost and time involved would simply be too high.

4.4.1 Integer factoring algorithm

Factor an integer n means finding a set of prime numbers $f_1, f_2, ..., f_m$ so that

$$f_1 \cdot f_2 \cdot \ldots \cdot f_m = n$$

$f_1, f_2, ..., f_m$ are called the factors of n. To find these factors it is possible to use trial division, which is a brute force method to find a divisor of an integer. There are faster methods to factor a number, like the Number Field Sieve\[37\], but in the context of this thesis, using the trial division is sufficient.

To find the factors of n using the trial division, the n will be divided by all values in the range from 2 to $n/2$, one by one. If a certain number in the range divides the n evenly, without leaving a remainder, then it is one of the factors of n. However, because this algorithm is used specifically to find the factors for the RSA modulus, it is possible to make some simple optimisations. RSA modulus n only has two large prime factors p and q, meaning it is not needed to check any even numbers, because all even numbers are divisible by 2 and thus can not be prime. Also, because n only has two factors, it is possible to find one of the factors and calculate the second one by dividing n with the first factor. As a result, it is not necessary to check the whole range from 3 to $n/2$, and can check the range from 3 to \sqrt{n} instead to find just one of the factors. The range can be limited to \sqrt{n}, because at least one of the factors must be smaller or equal to \sqrt{n}. Otherwise, if both p and q are larger than \sqrt{n}, then the multiplication of the two must also be larger than n. But this is not possible because the product of p and q is strictly equal to n.

So, to find one of the factors of RSA public modulus n, all odd numbers in range 3 to \sqrt{n} should be checked to see, if they divide the number n evenly. The second factor can then be found by dividing the number n with the first. Algorithm to find one of the factors of the RSA public modulus n is shown on the following figure.
4.4.2 Integer factoring algorithm in MapReduce

The factoring of integers using trial division is a relatively simple algorithm, but few things need to be considered before it can be reduced to the MapReduce model. The goal is to divide the calculations between multiple map or reduce tasks, which could be executed parallel on multiple nodes in the cloud. This can be achieved by dividing the range (in which the factors are checked for), between the concurrent tasks, each task checking for factors in a smaller sub range. The integer factorization algorithm can be reduced to MapReduce model by defining the map method to divide the initial range into multiple sub ranges and defining reduce method to check for the factors in those sub ranges. It is also important each sub range would be assigned a unique key to guarantee that more than one reduce task can be used.

The input to the map method of the MapReduce application is an arbitrary key and the number that needs to be factored. Map calculates \sqrt{n} and divides the range from 3 to \sqrt{n} into k smaller ranges. For each smaller range the map emits a unique key and a data object consisting of three values:

- Start of the range.
- End of the range.
- Number n.

The key of the map output must be unique for each smaller range, to make sure that each range can be assigned to a different reduce task. The value of k is the number of reduce tasks, and must be chosen by the user. The pseudo code for the map method is on the following figure.

```java
1: class Mapper:
2:     global k  // k= number of reduce tasks
3:     method Map(key, n):
4:         m = squareRoot(n)
5:         block = m/k
6:         for (i = 0; i < k ; i++):
7:             start = block * i
8:             if(i == 0) start = 3
9:             end = block * (i + 1) – 1
10:            if(i == k-1) end = m
11:            emit (i, <start, end, n>)
```

Figure 35: Pseudo code for the map method of the RSA factoring MapReduce algorithm

The reduce method gets a key and a list of data objects as an argument, each data object
consists of the start of the range, the end of the range and the number \(n \) that will be factored. The reduce method checks all odd numbers in the input range to see if one of them divides \(n \) evenly. If one of the numbers does, then the reduce method outputs it as a factor of \(n \). If no factors are found in this range, then the reduce method does not output anything. If the number \(n \) has factors then at least one of the reduce tasks will output it. Following figure shows the pseudo code for the reduce method.

```java
1: class Reducer:
2:  method Reduce(key, ranges):
3:    for <start, end, n> in ranges:
4:      // make sure the start of the range is odd
5:        if(start % 2 == 1) start++
6:      for (i = start; i <= end; i += 2):
7:        // if i divides n evenly then output n and i
8:          if(n % i == 0) emit(n, i)
```

Figure 36: Pseudo code for the reduce method of the RSA factoring MapReduce algorithm

The RSA MapReduce application has extremely small input compared to most MapReduce applications. This can be a problem because the MapReduce framework uses the size of the input to decide how many map processes should be executed and the size of the intermediate results to decide how many reduce processes can be executed. Because the size of the intermediate data is very small the Hadoop MapReduce framework is not able to decide the right number of reduce tasks for this algorithm. Thus, the user has to specifically decide how many reduce tasks will be used to parallelize the execution of RSA MapReduce application. The number of map processes does not need to be increased, because the input is only one number. It is actually possible to use more than one number as an input, and as a result, factor multiple numbers at once.

This distributed MapReduce algorithm can be considered to be embarrassingly parallel, because there is almost no data operations needed. The size of the input, intermediate and output data is insignificant so the network use is minimal. There is also almost no limit for the number of reduce tasks, as it is possible to divide the range (in where the factors are checked in) to practically any number of sub ranges. So, it is theoretically possible to utilize any number of parallel cloud nodes to achieve a high parallel efficiency for this algorithm.

4.4.3 Result

The execution times of RSA breaking MapReduce algorithm were measured in a Cloud cluster, composed of one master and three slave nodes. Both the master and slaves acted as task nodes, resulting in a 4 parallel worker nodes, where the MapReduce algorithm could run on. Each node was a virtual machine with 500MB RAM and 2.2 GHz CPU. The total size of the HDFS was 8 GB. Algorithm was tested on different sized numbers ranging from \(10^{14} \) from \(10^{20} \) and for each number it was tested with 1, 2 and 4 reduce tasks. The MapReduce framework automatically parallelized the algorithm if the number reduce tasks was set above 1. The calculated runtime numbers are on the table 3.
Compared to previous algorithms, where the number of parallel workers depended on the input size and the size of the intermediate result, it was possible to strictly regulate the number of workers by increasing the number of reduce tasks. As a result it was possible to calculate speedup and efficiency for the RSA modulus factoring. Speedup is calculated using the formula:

$$speedup(m) = \frac{T_1}{T_m}$$

where m is the number of nodes, T_1 is the runtime for one node execution and T_m is the runtime for execution with m nodes. Speedup measures how many times the parallel execution is faster than the non parallel one. If it is larger than 1, it means there is at least some gain from doing the work in parallel. Speedup equal to m is considered an ideal and means the algorithm has the perfect scalability. Calculated speedup is shown on the table 4.

<table>
<thead>
<tr>
<th></th>
<th>10^{14}</th>
<th>10^{15}</th>
<th>10^{16}</th>
<th>10^{17}</th>
<th>10^{18}</th>
<th>10^{19}</th>
<th>10^{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 tasks</td>
<td>20</td>
<td>26</td>
<td>44</td>
<td>86</td>
<td>242</td>
<td>642</td>
<td>3121</td>
</tr>
<tr>
<td>2 tasks</td>
<td>21</td>
<td>26</td>
<td>32</td>
<td>57</td>
<td>135</td>
<td>359</td>
<td>1682</td>
</tr>
<tr>
<td>4 tasks</td>
<td>22</td>
<td>24</td>
<td>29</td>
<td>49</td>
<td>104</td>
<td>253</td>
<td>958</td>
</tr>
</tbody>
</table>

Table 3: Runtime table. Column value is the size of the factored number.

Efficiency is calculated using the formula:

$$efficiency(m) = \frac{T_1}{T_m} \cdot m$$

where m is the number of nodes, T_1 is the runtime for one node execution and T_m is the runtime for execution with m nodes. Efficiency measures how well the multiple parallel workers are utilized. If it is equal to 1 then it means that 100% of parallel workers were utilized properly. It it is lower than 1 then it means a part of the runtime was wasted for background tasks and slowed down the parallel calculations. Calculated efficiency is on the table 5.

<table>
<thead>
<tr>
<th></th>
<th>10^{14}</th>
<th>10^{15}</th>
<th>10^{16}</th>
<th>10^{17}</th>
<th>10^{18}</th>
<th>10^{19}</th>
<th>10^{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 tasks</td>
<td>0,95</td>
<td>1,00</td>
<td>0,00</td>
<td>1,51</td>
<td>1,79</td>
<td>1,79</td>
<td>1,86</td>
</tr>
<tr>
<td>4 tasks</td>
<td>0,91</td>
<td>1,08</td>
<td>1,52</td>
<td>1,76</td>
<td>2,33</td>
<td>2,54</td>
<td>3,26</td>
</tr>
</tbody>
</table>

Table 4: Parallel speedup

From the table 4 and 5 it is possible to see that, when the factored number is small, there is no advantage of using multiple workers in parallel. The speedup is below 1 and efficiency is also very low. This is because the number of calculations done was relatively small compared to the job latency, caused by the MapReduce framework. However, with
the increase of the size of the input number, both the speedup and the efficiency started to grow significantly. When the modulus size was 10^{20}, the efficiency for two and four node executions were 0.93 and 0.81 and the speedup were 1.86 and 3.26, showing that there is significant gain from using multiple nodes to find the factors, when the size of the modulus is large enough.

The calculated speedup and efficiency numbers indicate that this algorithm has a good scalability and that similar algorithms, with very little input and intermediate data, are very suitable for MapReduce framework.
Chapter 5

Conclusion

The MapReduce model and framework has been successfully used by Google for various problems dealing with massive amount of data. The Google MapReduce implementation of is proprietary, but thanks to open source cloud computing framework Hadoop, MapReduce is also available for both commercial applications and for research.

This work contributes to the SciCloud project, which is carried out by the distributed systems group in the Tartu University. SciCloud project studies the scope of establishing private clouds at universities by utilizing the existing university computer resources and using these resources to solve large scale scientific and mathematical problems. The purpose of the thesis is to study how to reduce various algorithms to MapReduce model, what can affect the efficiency of the resulting algorithms, and to provide a foundation for further work in this field. For both the author and for the SciCloud project. To achieve this, four algorithms with different characteristics are chosen and reduced to the MapReduce model. The four algorithms are Conjugate gradient, Partitioning Around Medoids, Clustering Large Application and Breaking RSA. Each of the algorithms is studied, implemented on MapReduce model and the implementation result is analysed to investigate its scalability.

The main problem with MapReduce is latency, caused by the relatively slow execution of MapReduce jobs. This greatly affects iterative algorithms, like Conjugate Gradient and Partitioning Around Medoids, which need to run many iterations of MapReduce jobs in sequence. Because of this, it is crucial to determine if the order of iterations is absolute when reducing iterative algorithms to MapReduce model. If the order of iterations can be changed, then it might be possible to parallelize the iterative algorithm by executing the content of the iterations concurrently in multiple map or reduce tasks. A good example of this is the Clustering Large Application algorithm, where the original algorithm is iterative, however, the different iterations are independent of each other. As a result, it is possible to restructure the iterative part of the algorithm, and instead of doing Q different iterations, a two different MapReduce jobs is used. The content of the Q iterations is decomposed into smaller tasks, and executed in multiple concurrent map and reduce tasks in parallel. Greatly reducing the effect of the job latency.

Because of the job latency, MapReduce is more suited for non iterative algorithms that process massive amount of data. However, it is also very suitable for algorithms like integer factorization for RSA breaking, which have almost non existent input and intermediate data, but have to do massive number of calculations. MapReduce unsuitability for iterative algorithms is a great concern for scientific computing, as scientific computing often uses iterative methods to solve problems. Because of this, further study, focused specifically on reducing iterative algorithms to MapReduce model, is necessary.

Author plans to continue work in this field by widening the range of different algorithms to study, but at the same time, concentrating more on problems that deal with massive amounts of data. The longer term goal is to apply this research to implement applicable, large scale cloud computing solutions.
Teadusarvutuse probleemide taandamine MapReduce raamistikule

Magistritöö (30 EAP)

Pelle Jakovits

Kokkuvõte

Teadusarvutused tegelevad peamiselt arvutisimulatsioonide ja teadusarvutuslike eksperimentide läbi viimisega, nagu näiteks naftamaardlate simulatsioon, laevade käitumine lainetes või kliimamuutuste modelleerimine. Sellised simulatsioonid on tihti väga suuremahulised ning nende läbi viimiseks ei piisa üksiku arvuti võimsusest. On vaja rakendada kas superarvutit, mis on ülikallis, või paralleelarvutusi paljudel omavahel ühendatud arvutitel. Selle tõttu on teadusarvutused alati olguvalt seotud paralleelarvutustest ning paralleelprogrammeerimisega.

Programmide kirjutamine paralleelarvutuste jaoks on üldjuhul küllaltki keeruline, kuna lisaks programmri algortimile on vaja paika panna ka andmete jagamine, kommunikatsioon ning arvutuste kordineerimine erinevate arvutite vahel. MapReduce on Google poolt loodud paralleelarvutuse raamistik suuremahuliste arvutuste jaoks, mis on võimeline teatud struktuuriga algoritme paralleelselt käivitama nii, et raamistik ise hoolitseb andmete jagamise, kommunikatsiooni ning kordineerimise eest. Programmeerija peab vaid algortmi valmis kirjutama ja raamistik hoolitseb ise kõige ülejäänu eest, mis lihtsustab paralleelprogrammeerimist ning teeb selle raamistiku teadusarvutuste jaoks huvitavaks.

Algoritmid, mida MapReduce raamistik on võimeline paralleelselt käivitama, peavad olema kindla struktuuriga; koosneses kahest erinevast meetodist map ja reduce, mis käivitatakse paralleelselt erinevates arvutites. Kässeleva töö eesmärgiks on uurida kuidas taandada erinevaid teadusarvutuse poolt kasutatavaid meetodeid MapReduce raamistikule. Vaikaks näevad erinevat algortmi, taandatakse need MapReduce raamistikule ja uuritakse millised probleemid võivad tekkida selle protsessi käigus, ning mis võiks mõjutada tulemuse paralleelset efektiivsust. Töö käigus taandatud algortmid on Kaasgradientide meetod (Conjugate Gradient), kaks erinevat k-medoid klasterdamise algoritmi ning RSA krüptosüsteemi murdmine. Tulemuseks on nende algortimite baaskood, dokumentatsioon (Javadoc) ning MapReduce raamistikul käivitatav programmkood.

Töö käigus selgus, et MapReduce raamistikul on probleeme keeruliste algoritmidega, mis on iteratiivsed ning kus erinevate iteratsioonide järjekordana ei ole võimalik muuta. See on probleem teadusarvutuste jaoks kuna suur osa teadusarvutuste poolt kasutatavatest meetoditest on iteratiivsed.
References

15. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, Andrew Warfield, *Xen and the art of virtualization*, Proceedings of the nineteenth ACM symposium on Operating systems principles, October 19-22, 2003, Bolton Landing, NY, USA
29 Jonathan R Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, Carnegie Mellon University, Pittsburgh, PA, 1994
30 Chia-Ping Chen, Positive Definite Matrices, Notes on Linear Algebra, Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan ROC
32 Python programming language, http://www.python.org/ [23.05.2010]
35 Oorschot Menezes, Scott Vanstone, Handbook of Applied Cryptography, Chapter 8.2.2 CRC Press, 1996.
36 RSA Laboratories, How large a key should be used in the RSA cryptosystem? Public-Key Cryptography Standards (PKCS) http://www.rsa.com/rsalabs/node.asp?id=2218 [11.05.2010]
Appendices

Appendix A: Source Code
Appendix B: Implemented algorithms
Appendix C: Javadoc
Appendix A

Source code

Source code is on an external DVD, in the folder /source. It includes source code for both the algorithms and for the PAM and CLARA visualization python scripts. DVD is provided with this thesis.
Appendix B

Implemented algorithms

Jar file containing the compiled algorithms is on an external DVD, in the folder /compiled. The folder also includes a readme.pdf file containing instructions how to run the algorithms. DVD is provided with this thesis.
Appendix C

Javadoc

Javadoc is on an external DVD, in the folder /source/sciCoToMR/doc. DVD is provided with this thesis.