MTAT.07.003 Cryptology II
Spring 2010 / Exercise session I

1. A company holds electronic lotteries briefly described below.

A secure hardware is used to generate the output = € {0, 1}20.
The input zx is fed into a specially designed garbling algorithm
(worldwide patented), which takes in 2 and broadcasts a garbled
output y to everybody. All participants submit their guesses ¢;
about x. The company releases x and everybody uses the de-
scription of the garbling algorithm to verify that y was computed
form z. The one who guessed x gets a prize.

(a) Formalise the lottery system using abstract primitives for appropriate
actions. Describe such functional requirements that the organiser
cannot cheating and that participants can verify the correctness.

(b) Define an attack scenario where participants try to cheat. Quantify
the success of the malicious participant. Formalise the corresponding
security definition.

(¢) Show that no garbling algorithm can meet functional requirements
and be secure at the same time.

2. A standard way to protect data against malicious corruption is hashing.
Namely, there are many industry standard algorithms, like MD5, SHA-256
and WHIRLPOOL, that take in a long file and output a short digest. If
the digest is securely stored, then the validity of the file can be tested by
recomputing the digest and comparing it to the stored value.

(a) Formalise the functional requirements and describe the attack sce-
nario if the original data is generated by flipping a fair coin.

(b) Describe the attack scenario if an attacker gets to know the randomly
generated original data before spoofing the file.

(¢) Describe the attack scenario if attacker can influence the content of
the original file. Show that no function can be secure against such
attacks. What does it mean in real life applications?

3. Salted hashing is common mechanism for storing passwords. Each user
is first granted an identifier id. Every time the password is hashed, the
identifier id is appended to it and then a system-wide hash function is
used to compute the digest. The authentication is successful if the digest
coincides with the digest stored in passwd file.

(a) Formalise the system by using abstract primitives for appropriate
actions. Describe the functional requirements that are needed for
seamless authentication. Compare the formalisation with the lottery
system described in the first exercise.

(b)

()

Define an attack scenario where the attacker tries to reverse engineer
passwords from salted hashes. Formalise the corresponding security
condition. Can this security condition be met in practice?

Extend the attack description to the setting where the identifier id
depends on the identity of a user. What does such a design choice
give to the attacker? Modify the corresponding attack scenario and
derive the corresponding security requirement.

4. Let G be a finite group such that all elements y € G can be expressed as
powers of g € G. Then the Computational Diffie-Hellman (CDH) problem
is following. Given z = ¢ and y = ¢°, find a group element z = ¢®.

(a)

Show that Computational Diffie-Hellman problem is random self-
reducible, i.e., for any algorithm B that achieves advantage

Advgh(B) = Pr [l’,y (TG . B($, y) — gloggzlogg y]

there exists an oracle algorithm A® that for any input =,y € G
outputs the correct answer with the probability AdvE"(B) and has
roughly the same running time.

Given that the CDH problem is random self-reducible, show that the
difficulty of CDH instances cannot wary a lot. Namely, let B be a
t-time algorithm that achieves maximal advantage Advgh(B). What
can we say about worst-case advantage

min Pr [A(;v, y) = glOgg xlog, u} 2
Ty

Can there be a large number of pairs (z, y) for which the CDH prob-
lem is easy?

5. Let G be a finite group such that all elements y € G can be expressed as
powers of g € G. Then the Decisional Diffie-Hellman (DDH) problem is
following. Given z = g% and y = ¢® and z, decide whether z = ¢¥ or not.

(a)

Show that Decisional Diffie-Hellman problem can be reduced to Com-
putational Diffie-Hellman problem, i.e., for any algorithm A that
achieves advantage Adv&"(B), there exists an oracle algorithm B#

that has has roughly the same running time and that the advantage
xay (TGa Z glogwlogy :

B(x,y,2) =1

Y2 G
Advidh(B) = |pr | D2
B(z,y,2) =1

is equal to the advantage Advi"(A).

Provide a reductions between DL, CDH and DDH problems.

Show that if there exists an efficient procedure that can always com-
pute the highest bit of log, y then the DL problem is easy.

Prove or disprove the claim that Decisional Diffie-Hellman problem
is randomly self-reducible. Why cannot we use standard techniques?

