
MTAT.07.003 Cryptology II

Analysis of Randomised Algorithms

Sven Laur
University of Tartu

Models of Computation

Conceptual description of a computing device

F
in

it
e

A
u
t
o
m
a
t
o
n

Randomness

Source

Code

Input

Randomness

Output

Memory

⊲ Code is not part of the computing device.

⊲ Randomness is not part of the computing device.

⊲ Other details depend on the exact model of computations

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 1

Standard models of computation

Universal Turing Machine

⋄ Takes in a code φ and inputs x1, . . . , xn.

⋄ The random tape ω ∈ {0, 1}∗ is filled with fair coin tosses.

⋄ Jumps in memory and in code costs Θ(n) where n is address.

⋄ Programmed by filling the table of configurations and reads.

Universal Random Access Machine

⋄ Takes in a code φ and inputs x1, . . . , xn.

⋄ The random tape ω ∈ {0, 1}∗ is filled with fair coin tosses.

⋄ Jumps in memory and in code costs Θ(log n) where n is address.

⋄ Programmed in modified assembly language (Generalised Intel assembly).

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 2

Yet another model of computation

A finite time computations can be represented as Boolean circuits

Hardwired Code

Input Randomness

Output

⊲ No explicit calls to memory. Memory is in-lined to the circuit.

⊲ No explicit branching. Possible choices must be in-lined to the circuit.

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 3

Time-complexity

Let A be a randomised algorithm and let t(x, ω) denote the number of
elementary steps that are needed to obtain the output A(x, ω).

Then for each input we can define average and maximum running time.

Average time E
ω∈Ω

[t]

Maximum time max
ω∈Ω

t(ω)

These estimates of running time are defined analogously for sets of inputs.

Finally, we can consider a t-time algorithm A that is halted after t elementary
steps. The corresponding invalid output is denoted by ⊥.

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 4

Discrete random variable and its sample space

A discrete random variable f is a function f : Ω→ {0, 1}∗ that maps each
non-deterministic choice ω ∈ Ω to a concrete output f(ω).

1 0 1 1 . . .

1 0 1 0 . . .

1 0 0 0 . . .

1 0 0 1 . . .

1 1 0 1 . . .

1 1 0 0 . . .

1 1 1 0 . . .

1 1 1 1 . . .

· · ·

· · ·

· · ·

0

1

⊥

Ω⊥

Ω1

Ω0

f

f

f

⊲ A sample space Ω consists of all non-deterministic choices.

⊲ An elementary event Ωy = {ω ∈ Ω : f(ω) = y} consists of all non-
deterministic choices that lead to the same output y.

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 5

Observable events and probability measure

A probability measure is determined by the likelihoods for all elementary
events. The assignment can be arbitrary as long as their sum is one.

Ω⊥ Ω0 Ω1 Ω00 Ω01 . . .
∑

Pr p⊥ p0 p1 p00 p01 . . . 1

All events that are determined by condition {ω ∈ Ω : f(ω) ∈ Y} for some
set Y ⊆ {0, 1}∗ are observable events and their probability is defined

Pr [ω ∈ Ω : f(ω) ∈ Y]
.
=

∑

y∈Y

Pr [ω ∈ Ωy] =
∑

y∈Y

py .

As a result, the probability measure is both additive and σ-additive as long
as we consider mutually exclusive observable events.

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 6

Randomised algorithms and strategies

⊲ A randomised strategy is a function of type f : {0, 1}∗ × Ω → {0, 1}∗

where the output f(x) = f(x; ω) depends on randomness ω.

⊲ A randomised algorithm A : {0, 1}∗ × Ω → {0, 1}∗ is a randomised
strategy that has a finite, precise and complete description.

⊲ A t-time randomised algorithm A can be represented as a table or a tree.

A(x;ω)

ω
∈
{
0
,
1}

t

x ∈ {0, 1}
t

t

x0

??

?? ?

?
?

?
0 1

0

0

0

0

0

0

0

1

1

1

1 1

1

A(x;ω)

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 7

Analysis by Exhaustive

Decomposition

Success of a compound adversary

Let A1,A2,A3,A5 be algorithms for finding discrete logarithm such that
the success probability Pr [x← Ai(y) : y = gx] ≥ 7 ·Advdl

G(Ai) if π(y) = 1.
Find the advantage Advdl

G(A) of the following adversary B

B(y)
2

6

6

6

6

6

6

6

6

6

6

6

6

4

i←u {1, 2, 3} , x← Ai(y)

if πi(y) = 1 then
"

if g
x
6= y ∧ π4(y) = 1 then return A4(y)

else return x

else if π5(y) = 1 then return A5(y)

else return A1(y)

provided that Pr [y ←u G : πi(y) = 1] = 1
42+i

and Advdl
G(Ai) = i2 · ε.

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 8

Total probability formula

Let H1, . . . ,Hn be mutually exclusive events such that

Pr [Hi ∧Hj] = 0 and Pr [H1 ∨ . . . ∨Hn] = 1 .

H1

H2

H3
H4

H5

A

Then for any any event A we can express

Pr [A] =

n∑

i=1

Pr [Hi ∧A] =

n∑

i=1

Pr [Hi] · Pr [A|Hi] .

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 9

Conditional probability

Often, the presence of one event is correlated with some other events. The
corresponding influence is formally quantified by conditional probability

Pr [f(ω) = y|g(ω) = x]
.
=

Pr [f(ω) = y ∧ g(ω) = x]

Pr [g(ω) = x]

Consequently, for any two events A and B:

Pr [A ∧B] = Pr [A] · Pr [B|A] = Pr [B] · Pr [A|B] .

Two events are independent if Pr [A ∧B] = Pr [A] · Pr [B].

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 10

Premature Halting

Problem

The effect of premature halting

Let A be an algorithm that always succeeds but does not runs in constant
time. What happens if we stop the after t time steps?

P
r[h

altin
g]

Running time

P
r[h

as
stop

p
ed

]

Running time

⊲ The first graph corresponds to probability pseudo-density function.

⊲ The second graph corresponds to cumulative distribution function.

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 11

Theory. PDF and CDF

Discrete random variables do not have a classical probability density function.
Instead, we can consider probabilities of the smallest observable events
Ω⊥, Ω0,Ω1, Ω00, Consider the corresponding pseudo-density function

px
.
= Pr [ω ∈ Ω : f(ω) = x] .

Then we can express a cumulative distribution function

F (y) = Pr [ω ∈ Ω : f(ω) ≤ y]

in terms of pseudo-density function

F (y) =

y
∑

x=−∞

Pr [ω ∈ Ω : f(ω) = x] =

y
∑

x=−∞

px .

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 12

PDF and CDF. Illustration

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

px = Pr [ω ∈ Ω : f(ω) = x]

F (y) =

y
∑

x=−∞

px

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 13

Bounds on Expected

Running-time

Amplification by repetition

Let A be a discrete logarithm finder with the advantage Advdl
G(A) = ε.

What is the expected running-time of the following algorithm?

B
A(y)










while true do






a←u Zq

x← A(yga)− a

if gx = y then return x

⊲ The program ends when A returns a correct answer

⊲ All runs of A are independent and succeed with probability ε.

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 14

Expected value

The expected value of a random variable f is defined as

E [f] =
∑

x∈{0,1}∗

x · Pr [ω ∈ Ω : f(ω) = x] =
∑

x∈{0,1}∗

px · x .

Alternatively, we can compute expected value as

E [f] =
∞∑

y=1

Pr [ω ∈ Ω : f(ω) ≥ y]−
−1∑

y=−∞

Pr [ω ∈ Ω : f(ω) ≤ y]

=
∞∑

y=0

(1− F (y))−
−1∑

y=−∞

F (y) .

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 15

Corresponding proof

Left area

−1∑

y=−∞

Pr [ω ∈ Ω : f(ω) ≤ y]

Right area

∞∑

y=1

Pr [ω ∈ Ω : f(ω) ≥ y]

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 16

Analysis of the discrete logarithm finder

Let ℓ be the number of iteration made by BA before stopping. Then

Pr [ℓ ≥ y] = (1− ε)y−1

and thus

E [ℓ] =

∞∑

y=1

(1− ε)y−1 =
1

1− (1− ε)
=

1

ε
.

Hence, for a t-time adversary A the expected running-time of BA is

t

ε
+ O

(1

ε

)

.

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 17

Form Average Running-time

to Success Probability

Premature halting problem revisited

Let A be an algorithm that always succeeds but runs in expected time τ .
What happens if we stop the algorithm after t time steps?

0.12

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.55

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Running time Running time

P
r[h

altin
g]

P
r[h

altin
g]

⊲ Both distributions on the graph have the same expected value.

⊲ Still, the expected value and variance limit potential distributions.

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 18

Markov’s inequality

For every non-negative random variable Pr [f(ω) ≥ α] ≤ E[f]
α

.

p1 p2 p3 · · · Pr [f(ω) ≥ α]

α

α · Pr [f(ω) ≥ α] ≤ E[f]

Corollary. Any algorithm A is stops with probability at least 1
2 after 2τ

time steps where τ is the expected running time.

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 19

Success Amplification

by Majority Voting

Amplification by majority voting

Let A be a CDH solver with the advantage Advcdh
G (A) = ε > 1

2. Find a
lower bound of the advantage of the following algorithm

B
A(x, y)










For i ∈ {1, . . . , n} do
[

a←u Zq, b←u Zq

zi ← A(xga, ygb) · x−by−ag−ab

Output the most frequent value among z1, . . . zn.

⊲ All runs of A are independent and succeed with probability ε.

⊲ The program succeeds if more than half of the answers are correct.

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 20

Variance

Variance D [f] characterises how scattered are possible values f(ω):

D [f] = E
[
(f −E [f])2

]
= E

[
f2

]
−E [f]

2
.

Usually, one also needs standard deviation σ [f] =
√

D [f].

Important properties

⊲ If random variables X1, . . . ,Xn are pairwise independent then

D [X1 + · · ·+ Xn] = D [X1] + · · ·+ D [Xn] .

⊲ For binary random variables D [X] = Pr [X = 1]Pr [X = 0].

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 21

Chebyshev’s inequality

For any random variable Pr [|f(ω)−E [f]| ≥ α] ≤ D[f]
α2 .

Proof

⊲ Let g = (f −E [f])2. Then by definition D [f] = E [g].

⊲ As g is non-negative, Markov’s inequality assures that

Pr
[
(f −E [f])2 > α2

]
≤

E [g]

α2

m

Pr [|f −E [f]| > α] ≤
D [f]

α2

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 22

Analysis of the CDH solver

Let Xi denote whether A succeeded in computing zi and let X be the
number of correct answers. Then the following claims hold:

⊲ The advantage can be expressed as Advcdh
G (B) = Pr

[
X > n

2

]
.

⊲ The variance can be computed as D [X] = nε(1− ε).

⊲ Chebyshev’s inequality gives

Pr
[
X ≤ n

2

]
= Pr

[
|X − εn| ≥ n

(
ε− 1

2

)]

≤
4nε(1− ε)

n2(2ε− 1)2
=

4ε(1− ε)

n(2ε− 1)2

⊲ The upper bound on the failure probability is inversely proportional to n.

Remark. Hoeffding and Chernoff bounds provide sharper estimates.

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 23

Basic Properties

of Entropy

Jensen’s inequality

Let x be a random variable. Then for every convex-cup function f

E [f(x)] ≤ f(E [x])

and for every convex-cap function g

E [g(x)] ≥ g(E [x]) .

These inequalities are often used to get lower and upper bounds:

⊲ for success probabilities,

⊲ for complex expressions involving probabilities.

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 24

Corresponding proof

Note that it is sufficient to give a proof for sums with two terms.

E[x]

E[f(x)]

f(E[x])

x1 x2

For any weight p1 and p2, the expected values align as shown in the figure.

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 25

Shannon entropy

Entropy is another measure of uncertainty for random variables. Intuitively,
it captures the minimal amount of bits that are needed on average to
describe a value of a random variable X .

Shannon entropy is defined as follows

H(X) = −
∑

x∈{0,1}∗

px · log2 px = E

[

log2

1

Pr [X]

]

Jensen’s inequality assures that

0 ≤ H(X) ≤ log2 |supp(X)|

where the support of X is defined as supp(X) =
{
x ∈ {0, 1}∗ : px > 0

}
.

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 26

Conditional of entropy

Conditional entropy is defined as follows

H(Y |X) = −EX,Y [log2 Pr [Y |X]]

Now observe that

H(X,Y) = −EX,Y [log2 Pr [X ∧ Y]]

= −EX,Y [log2 Pr [X] + log2 Pr [Y |X]]

= −EX [log2 Pr [X]]−EX,Y [log2 Pr [Y |X]]

= H(X) + H(Y |X) .

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 27

Mutual information

Recall that entropy characterises the average length of minimal description.
Now if we consider two random variables. Then we can describe them
jointly or separately. Mutual information captures the corresponding gain

I(Y : X) = H(X) + H(Y)−H(X,Y)

Evidently, mutual information between independent variables is zero:

I(Y : X) = H(X) + H(Y)−H(X)−H(Y |X)
︸ ︷︷ ︸

H(Y)

= 0 .

Similarly, if X and Y coincide then

I(Y : X) = H(X) + H(Y)−H(X)−H(Y |X)
︸ ︷︷ ︸

0

= H(X) .

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 28

Min-entropy. Rényi entropy

Shannon entropy is not always descriptive enough for measuring uncertainty.
For example, consider security of passwords.

⊲ Obviously, we can just try the most probable password. The correspond-
ing uncertainty measure is known as min-entropy

H∞(X) = − log2 max
x∈{0,1}∗

Pr [X = x]

⊲ Often, we do not want that two persons have coinciding passwords. The
corresponding uncertainty measure is known as Rényi entropy

H2(X) = − log2 Pr [x1 ← X,x2 ← X : x1 = x2]

where x1 and x2 are independent draws from the distribution X .

MTAT.07.003 Cryptology II, Analysis of Randomised Algorithms, 17 February, 2009 29

