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Semantic security

s ← S

f(s)

g(s)?

s ← S g(s)?

Charlie tries to guess g(s) from the description of S and f(s).

Charlie tries to guess g(s) solely from the description of S .
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Indistinguishability implies semantic security

IND-SEM theorem. If for all si, sj ∈ supp(S) distributions f(si) and
f(sj) are (2t, ε)-indistinguishable, then for all t-time adversaries A:

Advsem
f,g(A) ≤ ε .

Further comments

⊲ Note that function g might be randomised.

⊲ Note that function g : S → {0, 1}
∗

may extremely difficult to compute.

⊲ It might be even infeasible to get samples from the distribution S.

⊲ The theorem does not hold if S is specified by the adversary.

⊲ As the proof is non-constructive, there are no explicit reductions.
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Proof Sketch



A slightly modified formal definition

By definition Advsem
f,g(A) = Pr [GA

0 = 1]− Pr [GA
1 = 1] where

GA

0








s← S

g∗ ← A(f(s))

return [g∗
?
= g(s)]

GA

1








s← S

g∗ ← argmaxg∗
Pr [g(s) = g∗]

return [g∗
?
= g(s)]

As a minimising value g∗ is uniquely determined by g(·), we can express

Advsem
f,g(A) = Pr [s← S0 : A(f(s)) = g(s)]− Pr [g(s) = g∗]
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Coin fixing argument

Let g : S × Ω→ Y is a randomised function. Then by definition

Advsem
f,g(A) =

∑

ω∈Ω

Pr [ω] · Advsem
f,gω

(A)

where gω(s)
.
= g(s; ω) is a deterministic function.

Hence, the advantage is maximised by a deterministic function, since

∑

ω∈Ω

Pr [ω] · Advsem
f,gω

(A) ≤ max
ω∈Ω
{Advsem

f,gω
(A)} .
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Sampling idiom

Sy0
Sy1

Sy2
Sy3

Sy4

S Y

y0 y1 y2 y3 y4

Sy0
Sy1

Sy2
Sy3

Sy4

Let Syi
be the conditional distribution over the set {s ∈ S : g(s) = yi} and

Y distribution of final outcomes g(s). Then we get the distribution S if we
first draw y from Y and then choose s according to Sy.
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Resulting guessing game

By using the sampling idiom, we can transform the game into a new form

G
A

0
2

6

6

4

y ← Y

s← Sy

return [g(s)
?
= A(f(s))]

where the adversary A must choose between hypotheses Hy0 = [y
?
= y0] for

all possible outcomes y ∈ Y. The success bound for guessing games yields

Pr
[

GA

0 = 1
]

≤ max
y0,y1∈Y

cd2t
f(s)(Hy0,Hy1) + max

y∗∈supp(Y)
Pr [y ← Y : y = y∗] .
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Indistinguishability of conditional distributions

Fix y0, y1 ∈ Y and let Sy0 and Sy1 be the corresponding distributions. Then
for any 2t-time B the acceptance probabilities are

pi =
∑

s0,s1

Pr [s← Sy0 : s = s0] Pr [s← Sy1 : s = s1] Pr [B(f(si)) = 1] .

Now the difference of acceptance probabilities can be bounded

|p0 − p1| ≤
∑

s0,s1

Pr [s0] Pr [s1] |Pr [B(f(s0)) = 1]− Pr [B(f(s1)) = 1]|

≤ max
s0,s1

|Pr [B(f(s0)) = 1]− Pr [B(f(s1)) = 1]| ≤ ε

since all states in S are (2t, ε)-indistinguishable.
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Semantic security of a single encryption

Let f : M×K → C is a (2t, ε)-pseudorandom function family. Then it
is difficult to approximate a function g(m) given only a value f(m; k). In
particular, for all t-time adversaries A and message distributions M0:

Pr [A(f(m,k)) = g(m)] ≤ max
m∗∈supp(M0)

Pr [g(m∗)] + ε .

Remarks

⊲ We have to consider f as randomised function f(m) = f(m; k).

⊲ The theorem does not hold ifM0 is specified by the adversary.

⊲ The result cannot be generalised for longer multi-block messages.
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Symmetric Key

Encryption



Symmetric key cryptosystem

Gen

sk sk

m ←M0

c← Encsk(m) c

m ← Decsk(c)

⊲ A randomised key generation algorithm outputs a secret key sk that must
be transferred privately to the sender and to the receiver.

⊲ A randomised encryption algorithm Encsk :M→ C takes in a plaintext

and outputs a corresponding ciphertext.

⊲ A decryption algorithm Decsk : C → M∪ {⊥} recovers the plaintext or
a special abort symbol ⊥ to indicate invalid ciphertexts.
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Fixed message attack

Challenger G0 A

b

A

b

Challenger G1

sk ← Gen

c ← Encsk(m0) c ← Encsk(m1)c

sk ← Gen

c

m0, m1
m0, m1

A cryptosystem C is (t, ε)-IND-FPA secure if for all t-time adversaries A:

Advind-fpa
C

(A) =
∣

∣Pr
[

GA

0 = 1
]

− Pr
[

GA

1 = 1
]
∣

∣ ≤ ε

and thus for any function g :M→ {0, 1}
∗

and for any t
2-time adversary B

Advsem
Encsk(·),g

(B) ≤ ε.
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Weaknesses of IND-FPA security

Fact I. One-time pad is perfectly IND-FPA secure.

Fact II. If f :M×K → C is (t, ε)-pseudorandom function, the Electronic
Codebook algorithm defined below is (t, 2ε)-IND-FPA secure.

⊲ Key generation Gen: Return k ←u K.

⊲ Encryption Encsk(·): Given m ∈M, return f(m, k)

⊲ Decryption Decsk(·): Given c ∈ C, return m such that f(m, k) = c.

Observation. If we apply these encryption algorithms for messages m1,m2,
the resulting ciphertexts c1, c2 leak information whether m1 = m2 or not.

Analysis

⊲ Separately taken c1 and c2 leak no information about m1 nor m2.

⊲ As c1 is known by the adversary dependence m1 between m2 may leak.
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Chosen message attack

Challenger G0 A

b

sk ← Gen

c ← Encsk(m0)

Encsk(·)

m0, m1

c

Challenger G1

c ← Encsk(m1)

A

b

sk ← Gen

Encsk(·)

m0, m1

c

A cryptosystem C is (t, ε)-IND-CPA1 secure if for all t-time adversaries A:

Advind-cpa
C

(A) =
∣

∣Pr
[

GA

0 = 1
]

− Pr
[

GA

1 = 1
]∣

∣ ≤ ε .

MTAT.07.003 Cryptology II, Semantic Security and Cryptosystems, 12 March, 2010 12



Semantic Security



Semantic security against adaptive influence

m

m ←M0

M0

Encsk(m)

Given
– M0

– Encsk(m)
Charlie tries to guess g(m)

m

m ←M0

M0

Given
– no information
Charlie tries to guess g(m)
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Formal definition

Consider following games:

GA

0




















sk← Gen

M0 ← A
Encsk(·)

m←M0

c← Encsk(m)

return [g(m)
?
= A(c)]

GA

1
























sk← Gen

M0 ← A
Encsk(·)

m←M0, m←M0

c← Encsk(m)

return [g(m)
?
= A(c) ]

The true guessing advantage is

Advsem
g (A) = Pr [GA

0 = 1]− Pr [GA

1 = 1] .
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IND-CPA ⇒ SEM-CPA

Theorem. Assume that g is a tg-time function and it is always possible
to obtain a sample from M0 in time tm. Now if the cryptosystem is
(t, ε)-IND-CPA1 secure, then for all (t− tg − 2tm)-time adversaries A:

Advsem
g (A) ≤ ε .

Note that

⊲ The function g might be randomised.

⊲ The function g must be efficiently computable.

⊲ The distribution M0 must be efficiently samplable.
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The corresponding proof

Let A be an adversary that can predict the value of g well in SEM-CPA1
game. Now consider a new IND-CPA adversary B:

B
Encsk(·)









M0 ← A
Encsk(·)

m0 ←M0,m1 ←M

return (m0,m1)

B(c)




guess← A(c)

return [guess
?
= g(m0)]

Running time analysis

The running time of A is tb + tg + 2tm where tb is the running time of B.

MTAT.07.003 Cryptology II, Semantic Security and Cryptosystems, 12 March, 2010 16



Further analysis by code rewriting

For clarity, let Q0 and Q1 denote the IND-CPA1 security games and G0 and
G1 IND-SEM security games. Then note

QB

0 ≡ G
A

0 and QB

1 ≡ G
A

1

where

QB

0








sk← Gen

(m0,m1)← B
Encsk(·)

return B(Encsk(m0))

QB

1








sk← Gen

(m0, m1)← B
Encsk(·)

return B(Encsk(m1))
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CTR cipher mode is IND-CPA secure

m1

f(1, k)

c1

f(2, k) f(3, k) f(q, k)
· · ·

· · ·m2 m3 mq

++ + +

· · ·c2 c3 cq

= ===

⊲ Key generation: Set ctr← 0 and choose k ←u K.

⊲ Encryption: Given m ∈M, increment ctr by 1 and return m⊕ f(ctr, k)

⊲ Decryption Given c ∈M, increment ctr by 1 and return c⊕ f(ctr, k).

Theorem. If f :M×K → C is (t, ε)-pseudorandom function, then CTR
cipher mode is (t, 2ε)-IND-CPA secure.
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Switching Lemma



Motivation

Block ciphers are designed to be pseudorandom permutations. However, it
is much more easier to work with pseudorandom functions. Therefore, all
classical security proofs have the following structure:

1. Replace pseudorandom permutation family F with the family Fprm.

2. Use the PRP/PRF switching lemma to substitute Fprm with Fall.

3. Solve the resulting combinatorial problem to bound the advantage:

⊲ All output values f(x) have uniform distribution.

⊲ Each output f(x) is independent of other outputs.

More formally, let G0 the original security game and G1 and G2 be the games
obtained after replacement steps. Then

Advwin
G0

(A) = Pr [GA

0 = 1] ≤ cdt
⋆(G0,G1) + sd⋆(G1,G2) + Pr [GA

2 = 1] .
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PRP/PRF switching lemma

Theorem. Let M be the input and output domain for Fall. Then the
permutation family Fprm is (q, ε)-pseudorandom function family where

ε ≤
q(q − 1)

2 |M|
.

Theorem. Let M be the input and output domain for Fall. Then for any
q ≤

√

|M| there exists a O(q log q) distinguisher A that achieves

Advind
Fall,Fprm

(A) ≥ 0.316 ·
q(q − 1)

|M|
.
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Birthday paradox

Obviously f /∈ Fprm if we find a collision f(xi) = f(xj) for i 6= j.

For the proof note that:

⊲ If x1, . . . , xq are different then the outputs f(x1), . . . , f(xq) have uniform
distribution overM× . . .×M when f ←u Fall.

⊲ Hence, the corresponding adversary A that outputs 0 only in case of
collision obtains

Advind
Fall,Fprm

(A) = Pr [Collision|Fall]− Pr [Collision|Fprm]

= Pr [Collision|Fall] ≥ 0.316 ·
q(q − 1)

|M|
.
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Distinguishing strategy as decision tree

Let A be a deterministic distinguisher that makes up to q oracle calls.

αi

1

1
3

1
9

βi

1

1
3

1
6

f(1)?

f(3)? f(2)? f(2)?

f(2)? f(2)? f(2)? f(3)? f(3)? f(3)? f(3)? f(3)? f(3)?

1 2 3
1 2 3 1 2 3 1 2 3

Then Pr [Vertex u|Fprm] and Pr [Vertex u|Fall ∧ ¬Collision] might differ.
However, if A makes exactly q queries then all vertices on decision border
are sampled with uniform probability and thus

Pr [A = 1|Fprm] = Pr [A = 1|Fall ∧ ¬Collision] .
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The corresponding proof

Obviously, the best distinguisher A is deterministic and makes exactly q
oracle calls. Consequently,

Pr [A = 1|Fall] = Pr [Collision|Fall] · Pr [A = 1|Fall ∧ Collision]

+ Pr [¬Collision|Fall] · Pr [A = 1|Fall ∧ ¬Collision]

≤ Pr [Collision|Fall] + Pr [A = 1|Fprm]

and thus also

Advind
Fall,Fprm

(A) ≤ Pr [Collision|Fall] .

Now observe

Pr

[

∨
i 6=j

f(xi) = f(xj)

]

≤
∑

i 6=j

Pr [f(xi) = f(xj)] =
q(q − 1)

2
·

1

|M|
.
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