MTAT.07.003 Cryptology II
Spring 2010 / Exercise Session V

1.

Recall that the message space of the ElGamal cryptosystem is a (¢,e1)-
DDH group G. The latter is rather limiting, since normally one needs
to encrypt n-bit messages and not the group elements. The simplified
ElGamal cryptosystem is defined as follows:

o Gen returns sk =z and pk = y = ¢° for v - Zg|;
e Encp(m) = (%, h(y*) & m);
e Decg(c1,c2) = ca ® h(cF);

where h : G — {0,1}" is a almost regular hash function. That is, the
distribution h(y) for y < G is statistically ea-close to the uniform distri-
bution over {0,1}". Prove that the simplified ElGamal cryptosystem is
also IND-CPA secure and give the corresponding security bounds.

Hint: Modify the security proof for the ElGamal cryptosystem to accom-
modate the change. Where do you need almost regularity?

(x) In practice, it is difficult if not impossible to define almost regular
hash function h : G — {0,1}". Relax the security requirements even
further so that the corresponding construction is also practical.

Prove the only non-trivial inclusion result for homological classification of
public key cryptosystems. What about symmetric key cryptosystems?

Theorem. Assume that 7(-) is always a t,-time predicate and it is always
possible to obtain a sample from My in time ¢,,. If the cryptosystem C is
(t,e)-IND-CCA2 secure, then for all (¢t — t, — 2¢,,)-time adversaries A:

AdvE™ 2 (A) < e .
Why does not a similar proof exists for IND-CCA1=NM-CCA1?

In a fixed plaintext attack (FPA), an adversary has to fix the queried
messages ahead of other interactions. Consequently, it might be possible
to achieve a security goal against fixed plaintext attacks (CPA) that is
infeasible against chosen ciphertext attacks. This separation manifests
already if we consider indistinguishability as a security goal. Recall that
a cryptosystem is (¢,¢)-IND-FPA if for all t-time adversaries

Adv" P (A) = |Pr[Gft = 1] - Pr[Gft = 1]| <e

where
gt g
(mo,ml) — A (mo,ml) — A
(sk, pk) < Gen (sk, pk) < Gen
return A(Ency(myo)) return A(Encpi(m1))



(a) Prove that if the message space M = {0, 1} then IND-FPA security
implies IND-CPA security. Generalise the proof and show that IND-
FPA security also implies IND-CPA security of encryption tuples

Encok(w1, ...\ 2n) = (Encpk(acl), A Encpk(xn)) )

(b) Give a corresponding construction that converts any IND-FPA secure
encryption scheme to the IND-CPA secure encryption scheme. What
is the corresponding overhead in communication and computation if
we want to preserve the size of the message space?

(¢) Prove that IND-FPA security still implies IND-CPA security for
larger message spaces; however, the IND-CPA advantage can be
O(|M]) times larger than the IND-FPA advantage. What is the
optimal trade-off point for construction given in (b).

(d) Finally, prove that the reduction result obtained in (c) is tight. For
that, give a construction that takes in an IND-CPA secure cryptosys-
tem and creates a new cryptosystem that is functional and IND-FPA
secure but the IND-CPA advantage meets the bound derived in (d).
If the bounds do not mach exactly, the reduction given in (¢) might
be non-optimal. Hence, it is important to study the relation between
the upper and the lower bound on advantage obtained in (¢) and (d).

3. Show that the Goldwasser-Micali cryptosystem is IND-CPA secure if the
Quadratic Residuosity Problem is hard. All necessary concepts are defined
below. The proof is similar to the analysis of the ElGamal cryptosystem.

Number theory. A prime p is a Blum prime if p = 3 mod 4. Let
N = pq where p, q are Blum primes. Then for each element a € Zy, we
can efficiently compute the Jacobi symbol (£). One can show that Jacobi
symbols satisfies following equations

(=66 = (D)=

In the following, we also need a set

In(1) = {x €Zn : (%) - 1}

Finally, recall that an element b is a quadratic residue if there exists a such
that b = a®> mod N. The set of quadratic residues is denoted by QRx.

Quadratic residuosity problem. Let P,, denote uniform distribution
over n-bit Blum primes. We say that the set of n-bit Blum primes is
(t, e)-secure with respect to quadratic residuosity problem if for all ¢-time
adversaries A:

AdviP(A) = [Pr[Qfl =1] - Pr[Qf =1]| <&



where

o)y of
P, q < P(n) P, q = P(n)
N —pq N —pq
T < QRN v Jnv \ QRN
return A(x) return A(x)

Goldwasser-Micali cryptosystem.

Key generation. Sample primes p,q € P(n) and choose quadratic
non-residue y € Jy (1) modulo N = pq. Set pk = (N, y), sk = (p, q).

Encryption. First choose a random z « Z3; and then compute
Encok(0) =2? mod N and Encp(1) = yz® mod N.

Decryption. Output 0 if the ciphertext ¢ is quadratic residue and
1 otherwise. The latter is easy if the factorisation of IV is known.

4. Let (Gen, Enc, Dec) be a public key cryptosystem and Gen®, Enc®, Dec®) a
symmetric key cryptosystem. Then we can define a hybrid cryptosystem.

Key generation. Run the key generation algorithm Gen and output
the corresponding secret and public key pair (sk, pk).

Encryption. Given a message m, generate a session key sk® < Gen®
and output a pair ¢; «— Encpi(sko) and ¢z «— Encge (m).

Decryption. To decrypt a ciphertext (c1,c2), first reconstruct the
session key sk® «— Dece(c1) and then recover m «— Decgo (c2).

Analyse the IND-CPA security proof for the hybrid encryption scheme.

(a)

Note that the change in the first proof step does not require full IND-
CPA security. Derive a minimal reasonable security condition for the
public key encryption scheme so that the proof would still hold. A
security condition is reasonable if it contains no explicit references to
the symmetric cryptosystem and would be universal for all symmetric
key cryptosystems. To achieve that, you might slightly change the
construction of hybrid encryption scheme. Interpret the result.

Prove that the same proof construction can be used to shows that
hybrid encryption scheme preserves IND-CCA1 security. Derive cor-
responding security guarantees. Generalise results of (a).

Why cannot we use the same proof construction to show that hybrid
preserves IND-CCA2 security? Give a separation that invalidates
the first proof step and the entire claim about IND-CCA2 security.
A separation is construction that takes in primitives needed in con-
struct and then modifies them so that new primitives still satisfy the
premises but the final claim does not hold, i.e., no proof can exist.



5.

A cryptosystem is homomorphic if there exists an efficient multiplication
operation defined over the ciphertext space C such that for any valid en-
cryption ¢; «— Encpi(m) the distribution ¢; - Encpe(mg) coincides with the
distribution Encpk(mi ® ms), where ® is a binary operation defined over
the message space M. Show that

(a) the RSA cryptosystem is multiplicatively homomorphic;

(b) the ElGamal cryptosystem is multiplicatively homomorphic;

(¢) the Goldwasser-Micali cryptosystem is XOR, homomorphic;
Prove the following claims about public key cryptosystems

(a) A homomorphic cryptosystem cannot be non-malleable.
(b) NM-CPA security implies IND-CPA security.

(¢) NM-CCA1 security implies IND-CCA1 security.

(d) NM-CCAZ2 security implies IND-CCA2 security.

Show as many separations among the security properties of cryptosystem

as you can. For example, show that there are IND-CPA secure cryptosys-
tems that are not IND-CCA1 secure.



