MTAT.07.003 Cryptology II

Commitment Schemes

Sven Laur
University of Tartu
Formal Syntax
A randomised key generation algorithm Gen outputs a public parameters pk that must be authentically transferred all participants.

A commitment function $\text{Com}_{\text{pk}} : \mathcal{M} \rightarrow \mathcal{C} \times \mathcal{D}$ takes in a plaintext and outputs a corresponding digest c and decommitment string d.

A commitment can be opened with $\text{Open}_{\text{pk}} : \mathcal{C} \times \mathcal{D} \rightarrow \mathcal{M} \cup \{\perp\}$.

The commitment primitive is functional if for all $\text{pk} \leftarrow \text{Gen}$ and $m \in \mathcal{M}$:

$$\text{Open}_{\text{pk}}(\text{Com}_{\text{pk}}(m)) = m.$$
Binding property

A commitment scheme is \((t, \varepsilon)\)-binding if for any \(t\)-time adversary \(A\):

\[
\text{Adv}^{\text{bind}}(A) = \Pr[\mathcal{G}^A = 1] \leq \varepsilon,
\]

where the challenge game is following

\[
\mathcal{G}^A
\]

\[
\begin{align*}
\text{pk} & \leftarrow \text{Gen} \\
(c, d_0, d_1) & \leftarrow A(\text{pk}) \\
m_i & \leftarrow \text{Open}_{\text{pk}}(c, d_i) \text{ for } i = 0, 1 \\
\text{if } m_0 = \bot \text{ or } m_1 = \bot \text{ then return 0 } \\
\text{else return } \neg[m_0 ? = m_1]
\end{align*}
\]
Collision resistant hash functions

A function family \mathcal{H} is (t, ε)-\textit{collision resistant} if for any t-time adversary \mathcal{A}:

$$\text{Adv}_{\mathcal{H}}^{\text{cr}}(\mathcal{A}) = \Pr [G^\mathcal{A} = 1] \leq \varepsilon,$$

where the challenge game is following

$$G^\mathcal{A}$$

$$h \leftarrow \mathcal{H}$$

$$(m_0, m_1) \leftarrow \mathcal{A}(h)$$

if $m_0 = m_1$ then \textbf{return} 0

else \textbf{return} $[h(m_0) \neq h(m_1)]$
Hash commitments

Let \mathcal{H} be (t, ε)-collision resistant hash function family. Then we can construct a binding commitment:

- The setup algorithm returns $h \leftarrow \mathcal{H}$ as a public parameter.
- To commit m, return $h(m)$ as digest and m as a decommitment string.
- The message m is a valid opening of c if $h(m) = c$.

Usage

- Integrity check for files and file systems in general.
- Minimisation of memory footprint in servers:
 1. A server stores the hash $c \leftarrow h(m)$ of an initial application data m.
 2. Data is stored by potentially malicious clients.
 3. Provided data m' is correct if $h(m') = c$.
Hiding property

A commitment scheme is \((t, \varepsilon)\)-hiding if for any \(t\)-time adversary \(\mathcal{A}\):

\[
\text{Adv}^{\text{hid}}(\mathcal{A}) = \left| \Pr \left[G^\mathcal{A}_0 = 1 \right] - \Pr \left[G^\mathcal{A}_1 = 1 \right] \right| \leq \varepsilon ,
\]

where

\[
\begin{align*}
G^\mathcal{A}_0 & \quad \text{pk} \leftarrow \text{Gen} \\
& \quad (m_0, m_1) \leftarrow \mathcal{A}(\text{pk}) \\
& \quad (c, d) \leftarrow \text{Com}_{\text{pk}}(m_0) \\
& \quad \text{return } \mathcal{A}(c)
\end{align*}
\]

\[
\begin{align*}
G^\mathcal{A}_1 & \quad \text{pk} \leftarrow \text{Gen} \\
& \quad (m_0, m_1) \leftarrow \mathcal{A}(\text{pk}) \\
& \quad (c, d) \leftarrow \text{Com}_{\text{pk}}(m_1) \\
& \quad \text{return } \mathcal{A}(c)
\end{align*}
\]
Any cryptosystem is a commitment scheme

Setup:

Compute \((pk, sk) \leftarrow \text{Gen}\) and delete \(sk\) and output \(pk\).

Commitment:

To commit \(m\), sample necessary randomness \(r \leftarrow \mathcal{R}\) and output:

\[
\begin{align*}
 c & \leftarrow \text{Enc}_{pk}(m; r), \\
 d & \leftarrow (m, r).
\end{align*}
\]

Opening:

A tuple \((c, m, r)\) is a valid decommitment of \(m\) if \(c = \text{Enc}_{pk}(m; r)\).
Security guarantees

If a cryptosystem is \((t, \varepsilon)\)-IND-CPA secure and functional, then the resulting commitment scheme is \((t, \varepsilon)\)-hiding and perfectly binding.

- We can construct commitment schemes from the ElGamal and Goldwasser-Micali cryptosystems.
- For the ElGamal cryptosystem, one can create public parameters \(pk\) without the knowledge of the secret key \(sk\).
- The knowledge of the secret key \(sk\) allows a participant to extract messages from the commitments.
- The extractability property is useful in security proofs.
Simple Commitment Schemes
Modified Naor commitment scheme

Setup:
Choose a random n-bit string $\mathbf{pk} \leftarrow \{0, 1\}^n$.
Let $f : \{0, 1\}^k \rightarrow \{0, 1\}^n$ be a pseudorandom generator.

Commitment:
To commit $m \in \{0, 1\}$, generate $d \leftarrow \{0, 1\}^k$ and compute digest

$$c \leftarrow \begin{cases} f(d), & \text{if } m = 0, \\ f(d) \oplus \mathbf{pk}, & \text{if } m = 1. \end{cases}$$

Opening:
Given (c, d) check whether $c = f(d)$ or $c = f(d) \oplus \mathbf{pk}$.
Security guarantees

If \(f : \{0, 1\}^k \rightarrow \{0, 1\}^n \) is \((t, \varepsilon)\)-secure pseudorandom generator, then the modified Naor commitment scheme is \((t, 2\varepsilon)\)-hiding and \(2^{2k-n}\)-binding.

Proof

Hiding claim is obvious, since we can change \(f(d) \) with uniform distribution. For the binding bound note that

\[
|\mathcal{PK}_{\text{bad}}| = \# \{ \text{pk} : \exists d_0, d_1 : f(d_0) \oplus f(d_1) = \text{pk} \} \leq 2^{2k}
\]

\[
|\mathcal{PK}_{\text{all}}| = \# \{0, 1\}^n = 2^n
\]

and thus

\[
\text{Adv}^{\text{bind}}(A) \leq \Pr [\text{pk} \in \mathcal{PK}_{\text{bad}}] \leq 2^{2k-n}.
\]
Discrete logarithm

Let $G = \langle g \rangle$ be a q-element group that is generated by a single element g. Then for any $y \in G$ there exists a minimal value $0 \leq x \leq q$ such that

$$g^x = y \iff x = \log_g y.$$

A group G is (t, ε)-secure DL group if for any t-time adversary A

$$\text{Adv}_{G}^{\text{dl}}(A) = \Pr \left[G^A = 1 \right] \leq \varepsilon,$$

where

$$G^A$$

\[
\begin{align*}
 y &\leftarrow_u G \\
 x &\leftarrow A(y) \\
 \text{return} \left[g^x ? y \right]
\end{align*}
\]
Pedersen commitment scheme

Setup:

Let \(q \) be a prime and let \(G = \langle g \rangle \) be a \(q \)-element DL-group. Choose \(y \) uniformly from \(G \setminus \{1\} \) and set \(\text{pk} \leftarrow (g, y) \).

Commitment:

To commit \(m \in \mathbb{Z}_q \), choose \(r \leftarrow \mathbb{Z}_q \) and output

\[
\begin{align*}
 c &\leftarrow g^m y^r, \\
 d &\leftarrow (m, r).
\end{align*}
\]

Opening:

A tuple \((c, m, r)\) is a valid decommitment for \(m \) if \(c = g^m y^r \).
Security guarantees

Assume that \mathbb{G} is (t, ε)-secure discrete logarithm group. Then the Pedersen commitment is perfectly hiding and (t, ε)-binding commitment scheme.

Proof

▷ **Hiding.** The factor y^r has uniform distribution over \mathbb{G}, since $y^r = g^{xr}$ for $x \neq 0$ and \mathbb{Z}_q is simple ring: $x \cdot \mathbb{Z}_q = \mathbb{Z}_q$.

▷ **Binding.** A valid double opening reveals a discrete logarithm of y:

$$g^{m_0} y^{r_0} = g^{m_1} y^{r_1} \iff \log_g y = \frac{m_1 - m_0}{r_0 - r_1}.$$

Note that $r_0 \neq r_1$ for valid double opening. Hence, a double opener A can be converted to a discrete logarithm finder.
Other Useful Properties
Extractability

A commitment scheme is \((t, \varepsilon)\)-extractable if there exists a modified setup procedure \((pk, sk) \leftarrow \text{Gen}^*\) such that

- the distribution of public parameters \(pk\) coincides with the original setup;
- there exists an efficient extraction function \(\text{Extr}^s_k : C \rightarrow M\) such that for any \(t\)-time adversary \(\text{Adv}^{\text{ext}}(A) = \Pr[G^A = 1] \leq \varepsilon\) where

\[
G^A \\
\begin{cases}
(pk, sk) \leftarrow \text{Gen}^* \\
(c, d) \leftarrow A(pk) \\
\text{if } \text{Open}_{pk}(c, d) = \perp \text{ then return } 0 \\
\text{else return } \neg[\text{Open}_{pk}(c, d) \Rightarrow \text{Extr}^s_k(c)]
\end{cases}
\]
A commitment scheme is \textit{equivocable} if there exists
\begin{itemize}
\item a modified setup procedure \((pk, sk) \leftarrow \text{Gen}^*\)
\item a modified fake commitment procedure \((\hat{c}, \sigma) \leftarrow \text{Com}^*_sk\)
\item an efficient equivocation algorithm \(\hat{d} \leftarrow \text{Equiv}^*_sk(\hat{c}, \sigma, m)\)
\end{itemize}
such that
\begin{itemize}
\item the distribution of public parameters \(pk\) coincides with the original setup;
\item fake commitments \(\hat{c}\) are indistinguishable from real commitments
\item fake commitments \(\hat{c}\) can be opened to arbitrary values
\end{itemize}

\[\forall m \in \mathcal{M}, (\hat{c}, \sigma) \leftarrow \text{Com}^*_sk, \hat{d} \leftarrow \text{Equiv}^*_sk(\hat{c}, \sigma, m) : \text{Open}^*_pk(\hat{c}, \hat{d}) \equiv m \] .

\item opening fake and real commitments are indistinguishable.
Formal security definition

A commitment scheme is \((t, \varepsilon)\)-equivocable if for any \(t\)-time adversary \(\mathcal{A}\)

\[
\text{Adv}^{\text{eqv}}(\mathcal{A}) = \left| \Pr [G_0^A = 1] - \Pr [G_1^A = 1] \right| \leq \varepsilon,
\]

where

\[
\begin{align*}
G_0^A & : \text{pk} \leftarrow \text{Gen} \\
& \text{repeat} \\
& \quad m_i \leftarrow \mathcal{A} \\
& \quad (c, d) \leftarrow \text{Com}_{\text{pk}}(m) \\
& \quad \text{Give } (c, d) \text{ to } \mathcal{A} \\
& \text{until } m_i = \bot \\
& \text{return } \mathcal{A}
\end{align*}
\]

\[
\begin{align*}
G_1^A & : (\text{pk}, \text{sk}) \leftarrow \text{Gen}^* \\
& \text{repeat} \\
& \quad (c, \sigma) \leftarrow \text{Com}_{\text{sk}}^*(m_i) \\
& \quad d \leftarrow \text{Equiv}_{\text{sk}}(c, \sigma, m) \\
& \quad \text{Give } (c, d) \text{ to } \mathcal{A} \\
& \text{until } m_i = \bot \\
& \text{return } \mathcal{A}
\end{align*}
\]
A famous example

The Pedersen is perfectly equivocable commitment.

▷ **Setup.** Generate $x \leftarrow \mathbb{Z}_q^*$ and set $y \leftarrow g^x$.

▷ **Fake commitment.** Generate $s \leftarrow \mathbb{Z}_q$ and output $\hat{c} \leftarrow g^s$.

▷ **Equivocation.** To open \hat{c}, compute $r \leftarrow (s - m) \cdot x^{-1}$.

Proof

▷ Commitment value c has uniform distribution.

▷ For fixed c and m, there exists a unique value of r.

Equivocation leads to perfect simulation of (c, d) pairs.
Homomorphic commitments

A commitment scheme is \otimes-homomorphic if there exists an efficient coordinate-wise multiplication operation \cdot defined over \mathcal{C} and \mathcal{D} such that

$$\text{Com}_{pk}(m_1) \cdot \text{Com}_{pk}(m_2) \equiv \text{Com}_{pk}(m_1 \otimes m_2),$$

where the distributions coincide even if $\text{Com}_{pk}(m_1)$ is fixed.

Examples

- ElGamal commitment scheme
- Pedersen commitment scheme
Active Attacks
Non-malleability wrt opening

A commitment scheme is non-malleable wrt. opening if an adversary who knows the input distribution \mathcal{M}_0 cannot alter commitment and decommitment values c, d on the fly so that

∇A cannot \emph{efficiently} open the altered commitment value \overline{c} to a message \overline{m} that is related to original message m.

Commitment c does not help the adversary to create other commitments.
Formal definition

\[\mathcal{G}_0^A \]
\[
\begin{align*}
\text{pk} & \leftarrow \text{Gen} \\
\mathcal{M}_0 & \leftarrow \mathcal{A}(\text{pk}) \\
m & \leftarrow \mathcal{M}_0 \\
(c, d) & \leftarrow \text{Com}_{\text{pk}}(m) \\
\pi(\cdot), \hat{c}_1, \ldots, \hat{c}_n & \leftarrow \mathcal{A}(c) \\
\hat{d}_1, \ldots \hat{d}_n & \leftarrow \mathcal{A}(d) \\
\text{if } c \in \{\hat{c}_1, \ldots, \hat{c}_n\} & \text{ then return } 0 \\
\hat{m}_i & \leftarrow \text{Open}_{\text{pk}}(\hat{c}_i, \hat{d}_i) \text{ for } i = 1, \ldots, n \\
\text{return } \pi(m, \hat{m}_1, \ldots, \hat{m}_n)
\end{align*}
\]

\[\mathcal{G}_1^A \]
\[
\begin{align*}
\text{pk} & \leftarrow \text{Gen} \\
\mathcal{M}_0 & \leftarrow \mathcal{A}(\text{pk}) \\
m & \leftarrow \mathcal{M}_0, \overline{m} & \leftarrow \mathcal{M}_0 \\
(\overline{c}, \overline{d}) & \leftarrow \text{Com}_{\text{pk}}(\overline{m}) \\
\pi(\cdot), \hat{c}_1, \ldots, \hat{c}_n & \leftarrow \mathcal{A}(\overline{c}) \\
\hat{d}_1, \ldots \hat{d}_n & \leftarrow \mathcal{A}(\overline{d}) \\
\text{if } c \in \{\hat{c}_1, \ldots, \hat{c}_n\} & \text{ then return } 0 \\
\hat{m}_i & \leftarrow \text{Open}_{\text{pk}}(\hat{c}_i, \hat{d}_i) \text{ for } i = 1, \ldots, n \\
\text{return } \pi(m, \hat{m}_1, \ldots, \hat{m}_n)
\end{align*}
\]
A commitment scheme is non-malleable wrt commitment if an adversary A_1 who knows the input distribution M_0 cannot alter the commitment value c on the fly so that

▷ an unbounded adversary A_2 cannot open the altered commitment value \tilde{c} to a message \overline{m} that is related to original message m.

Commitment c does not help the adversary to create other commitments even if some secret values are leaked after the creation of c and \tilde{c}.
Can we define decommitment oracles such that the graph depicted above captures relations between various notions where

- NM1-XXX denotes non-malleability wrt opening,
- NM2-XXX denotes non-malleability wrt commitment.